
Efficient Intermittent Computing
with Differential Checkpointing

Saad Ahmed
LUMS, Pakistan

16030047@lums.edu.pk

Naveed Anwar Bhatti
RI.SE SICS Swedish
naveed.bhatti@ri.se

Muhammad Hamad Alizai
LUMS, Pakistan

hamad.alizai@lums.edu.pk

Junaid Haroon Siddiqui
LUMS, Pakistan

junaid.siddiqui@lums.edu.pk

Luca Mottola
Politecnico di Milano, Italy and

RI.SE SICS Swedish
luca.mottola@polimi.it

Abstract
Embedded devices running on ambient energy perform com-
putations intermittently, depending upon energy availabil-
ity. System support ensures forward progress of programs
through state checkpointing in non-volatile memory. Check-
pointing is, however, expensive in energy and adds to execu-
tion times. To reduce this overhead, we present DICE, a sys-
tem design that efficiently achieves differential checkpoint-
ing in intermittent computing. Distinctive traits of DICE are
its software-only nature and its ability to only operate in
volatile main memory to determine differentials. DICE works
with arbitrary programs using automatic code instrumenta-
tion, thus requiring no programmer intervention, and can be
integrated with both reactive (Hibernus) or proactive (Me-
mentOS, HarvOS) checkpointing systems. By reducing the
cost of checkpoints, performance markedly improves. For
example, using DICE, Hibernus requires one order of magni-
tude shorter time to complete a fixed workload in real-world
settings.

CCS Concepts • Computer systems organization →
Embedded software.

Keywords transiently powered computers, intermittent com-
puting, differential checkpointing
ACM Reference Format:
Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai,
Junaid Haroon Siddiqui, and Luca Mottola. 2019. Efficient Inter-
mittent Computing with Differential Checkpointing. In Proceed-
ings of the 20th ACM SIGPLAN/SIGBED Conference on Languages,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6724-0/19/06. . . $15.00
https://doi.org/10.1145/3316482.3326357

Compilers, and Tools for Embedded Systems (LCTES ’19), June 23,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3316482.3326357

1 Introduction
Energy harvesting allows embedded devices to mitigate, if
not to eliminate, their dependency on traditional batteries.
However, energy harvesting is generally highly variable
across space and time [7]. This trait clashes with the in-
creasing push to realize tiny devices enabling pervasive de-
ployments. Energy storage facilities, such as capacitors, are
used to ameliorate fluctuations in energy supplies and need
to be miniaturized as well, as they often represent a dominat-
ing factor in size. System shutdowns due to energy depletion
are thus difficult to avoid. Computing then becomes intermit-
tent [41, 46]: periods of normal computation and periods of
energy harvesting come to be unpredictably interleaved [26].
Problem. System support exists to enable intermittent com-
puting, employing a form of checkpointing to let the program
cross periods of energy unavailability [5, 40]. This consists
in replicating the application state over non-volatile memory
(NVM) in anticipation of power failures, where it is retrieved
back once the system resumes with sufficient energy.
Due to the characteristics of NVM, checkpoints are ex-

tremely costly in energy and time. When using flash mem-
ories, for example, the energy cost is orders of magnitude
larger than most system operations [6, 34]. FRAM improves
these figures; still, checkpoints often represent the dominat-
ing factor in an application’s energy and time profile [5, 8].
As the cost of checkpoint is subtracted from the energy for
useful computations, taming this overhead is crucial.
Contribution. To reduce the energy cost and additional ex-
ecution times of checkpoints, we design DICE (DIfferential
ChEckpointing), a system that limits the checkpoint opera-
tion to a slice of NVM data, namely, the differential between
the previous checkpoint data and the volatile application
state at the time of checkpointing.

To that end, as described in Sec. 3, we identify an efficient
design point that integrates three contributions:

https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3316482.3326357

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

1) unlike previous attempts [1, 6] that access NVM to com-
pute differentials, DICE maintains differential informa-
tion only in main memory and access to NVM is limited
to updating existing checkpoint data; we achieve this
through an automatic code instrumentation step.

2) DICE capitalizes on the different memory write patterns
by employing different techniques to track changes in
long-lived global variables as opposed to short-lived vari-
ables local to functions or the heap; the code instrumenta-
tion step identifies these patterns and accordingly selects
the most appropriate tracking technique.

3) in the absence of hardware support to track changes in
main memory, which is too energy-hungry for intermit-
tently-powered devices, our design is entirely implement-
ed in software and ensures functional correctness by pru-
dently opting for worst-case assumptions in tracking
memory changes; we demonstrate, however, that such a
choice is not detrimental to performance.

We design DICE as a plug-in complement to existing sys-
tem support. This adds a further challenge. Systems such as
Hibernus [4, 5] operate in a reactive manner: an interrupt is
fired that may preempt the application at any point in time.
Differently, systems such as MementOS [40] and HarvOS [8]
place explicit function calls to proactively decide whether to
checkpoint. Knowledge of where a checkpoint takes place
influences what differentials need to be considered, how to
track them, and how to configure the system parameters trig-
gering a checkpoint. Sec. 4 details the code instrumentation
of DICE, together with the different techniques we employ
to support reactive and proactive systems.
Benefits. DICE reduces the amount of data to be written
on NVM by orders of magnitude with Hibernus, and by a
fraction of the original size with MementOS or HarvOS.
This bears beneficial cascading effects on a number of

other key performance metrics. It reduces the peak energy
demand during checkpoints and shifts the energy budget
from checkpoints to useful computations. Reducing the peak
demand enables a reduction of up to one-eighth in the size
of energy buffer necessary for completing a given work-
load, cutting charging times and enabling smaller device
footprints. This is crucial in application domains such as
biomedical wearables [11] and implants [3]. Furthermore,
DICE yields up to one order of magnitude fewer checkpoints
to complete a workload. Sparing checkpoints lets the system
progress farther on a single charge, cutting down the time
to complete a workload up to one order of magnitude.
Following implementation details in Sec. 5, our quantita-

tive assessment in this respect is two-pronged. Sec. 6 reports
on the performance of DICE based on three benchmarks
across three existing systems (i.e., Hibernus, MementOS,
and HarvOS), two hardware platforms, and synthetic power
profiles that allow fine-grained control on executions and ac-
curate interpretation of results. Sec. 7 investigates the impact

of DICE using power traces obtained from highly diverse
harvesting sources. We show that the results hold across
these different power traces, demonstrating the general ap-
plicability of DICE and its performance impact.

2 Background and Related Work
We elaborate on how intermittent computing shapes the
problem we tackle in unseen ways; then proceed with dis-
cussing relevant works in this area.

2.1 Mainstream Computing
The performance trade-offs in mainstream computing are
generally different compared to ours. Energy is not a concern,
whereas execution speed is key, being it a function of stable
storage operations or message exchanges on a network. Sys-
tems are thus optimized to perform as fast as possible, not
to save energy by reducing NVM operations, as we do.

Differential checkpointing is widely used in tackling vari-
ous challenges in the domain of virtual machines and multi-
processor operating systems. Here, checkpoints are mainly
used for fault tolerance and load balancing. Systems use spe-
cialized hardware support to compute differentials [12, 36,
38], including memory management units (MMUs), which
would be too energy-hungry for intermittently-powered de-
vices. Moreover, updates happen at page granularity, say
4 KBytes. This is a tiny fraction of main memory in a main-
stream computing system, but a large chunk of it in an
intermittently-powered one, thus motivating different tech-
niques.
Checkpointing in databases and distributed systems [21,

32, 39] is different in nature. Here, checkpoints are used to en-
sure consistency across data replicas and against concurrently-
running transactions. Moreover, differential checkpointing
does not require any tracking of changes in application state,
neither in hardware nor in software, because the data to be
checkpointed is explicitly provided by the application.

Differential checkpoints are also investigated in autonomic
systems to create self-healing software. Enabling this behav-
ior requires language facilities rarely available in embedded
systems, let apart intermittently-powered ones. For example,
Fuad et al. [13] rely on Java reflection, whereas Java is gen-
erally too heavyweight for intermittently-powered devices.

Our compile-time approach shares some of the design ra-
tionale with that of Netzer and Weaver [33], who however
target debugging long-running programs, which is a differ-
ent problem. Further, our techniques are thought to benefit
from the properties of proactive checkpointing and to en-
sure correctness despite uncertainty in checkpoint times in
reactive checkpointing. We apply distinct criteria to record
differentials depending on different memory segments, in-
cluding the ability of allowing cross-frame references along
an arbitrary nesting of function calls.

DICE LCTES ’19, June 23, 2019, Phoenix, AZ, USA

2.2 Intermittent Computing
We can effectively divide the literature in three classes, de-
pending on device architectures.
Non-volatilemainmemories.Device employing non-vola-
tile main memories trade increased energy consumption
and slower memory access for persistence [16]. When using
FRAM as main memory with MSP430, for example, energy
consumption increases by 2-3× and the device may only
operate up to half of the maximum clock frequency [25].
The persistence brought by non-volatile main memory

also creates data consistency issues due to repeated execution
of non-idempotent operations that could lead to incorrect
executions. Solutions exist that tackle this problem through
specialized compilers [45] or dedicated programming abstrac-
tions [10, 26, 28]. The former may add up to 60% run-time
overhead, whereas the latter require programmers to learn
new language constructs, possibly slowing down adoption.
An open research question is what are the conditions—for
example, in terms of energy provisioning patterns—where
the trade-off exposed by these platforms play favorably.
NVM for checkpoints. We target devices with volatile
mainmemories and external NVM facilities for checkpoints [18,
24, 29, 35]. Existing literature in this area focuses on striking
a trade-off between postponing the checkpoint as long as
possible; for example, in the hope the environment provi-
sions new energy, and anticipating the checkpoint to ensure
sufficient energy is available to complete it.

Hibernus [5] and Hibernus++ [4] employ specialized hard-
ware support to monitor the energy left. Whenever it falls
below a threshold, both systems react by firing an interrupt
that preempts the application and forces the system to take
a checkpoint. Checkpoints may thus take place at any arbi-
trary point in time. Both systems copy the entire memory
area—including unused or empty portions—onto NVM. We
call this strategy copy-all.
MementOS [40] and HarvOS [8] employ compile-time

strategies to insert specialized system calls to check the en-
ergy buffer. Checkpoints happen proactively and only when-
ever the execution reaches one of these calls. During a check-
point, every used segment in main memory is copied to NVM
regardless of changes since the last checkpoint. We call such
a strategy copy-used.
Improving checkpoints. Unlike our approach of proac-
tively tracking changes in application state, solutions exist
that evaluate the differential at checkpoint time; either via
hash comparisons [1] or by comparing main memory against
a word-by-word sweep of the checkpoint data on NVM [6].
We call these approaches copy-if-change.

Note, however, that these systems are fundamentally in-
compatible with both the reactive and the proactive check-
pointing systems that DICE aims to complement. The fun-
damental limitation is the inability to determine the energy
cost of a checkpoint a priori, which is mandatory to decide

bss,

data,

heap

call

stack

First

checkpoint

Subsequent

checkpoints

V
o
la

ti
le

 M
a
in

 M
e
m

o
ry

N
o
n

-V
o
la

ti
le

 S
to

ra
g
e

differential

(a) DICE

First

checkpoint

Subsequent

checkpoints

c
o

m
p

le
te

 r
e

w
ri
te

(b) Existing systems

Figure 1. DICE fundamental operation. DICE updates check-
point data based on differentials at variable level in the global context,
or with modified stack frames.

when to trigger a checkpoint and is necessary input to all
of the aforementioned systems. DICE provides an estimate
of the actual cost of a checkpoint at any moment in exe-
cution, allowing to dynamically update system parameters
triggering a checkpoint.

Compared to copy-if-change, DICE alsominimizes accesses
to NVM. We achieve this through a specialized code instru-
mentation step. This inserts functionality to track changes
in application state that exclusively operates in main mem-
ory. Operations on NVM are thus limited to updating the
relevant blocks when checkpointing, with no additional pre-
processing or bookkeeping required. The checkpoint data is
then ready to be reloaded when computation resumes, with
no further elaboration.

3 DICE In A Nutshell
Fig. 1 describes the fundamental operation of DICE. Once an
initial checkpoint is available, DICE tracks changes in main
memory to only update the affected slices of the existing
checkpoint data, as shown in Fig. 1a.We detail such a process,
which we call recording differentials, in Sec. 4.
Differentials.We apply different criteria to determine the
granularity for recording differentials. The patterns of reads
and writes, in fact, are typically distinct depending on the
memory segment [22]. We individually record modifications
in global context, including the BSS, DATA, and HEAP seg-
ments. Such a choice minimizes the size of the update for
these segments on checkpoint data. Differently, we record
modifications in the call stack at frame granularity. Local
variables of a function are likely frequently updated during a
function’s execution. Their lifetime is also the same: they are
allocated when creating the frame, and collectively lost once
the function returns. Because of this, recording differentials
at frame-level amortizes the overhead for variables whose
differentials are likely recorded together.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

NVM write
NVM read

Amount of data written on NVM

E
n
e
rg

y

Copy-if-change

Copy-used
(MementOS,

HarvOS)

DICE

Memory Access

Copy-all
(Hibernus,

Hibernus++)

Figure 2. Qualitative comparison of the checkpoint tech-
niques. Copy-all has highest energy costs due to maximum writes on
NVM. Copy-used avoids copying unused memory areas, reducing the
energy cost. Copy-if-change further reduces energy costs, using NVM
reads to compute differentials. DICE records changes in the stack at
frame granularity, but only operates in main memory.

A dedicated precompiler instruments the code to record
both kinds of differentials. For global context, we insert DICE
code to populate an in-memory data structure with informa-
tion about modified memory areas. Writes to global variables
can be statically identified, while indirect writes via pointers
have to be dynamically determined. Therefore, we instru-
ment direct writes to global variables and all indirect writes
in the memory via pointer dereferencing. The precompiler
also instruments the code to record differentials in the call
stack by tracking the changes to the base pointer.
At the time of checkpointing, the in-memory data struc-

tures contain sufficient information to identify what slices of
NVM data require an update. Unlike existing solutions [1, 6],
this means that a checkpoint operation only accesses NVM
to perform the actual updates to checkpoint data, whereas
any other processing happens in main memory.
Our approach is sound but pessimistic, as we overesti-

mate differentials. Our instrumentation is non-obtrusive as
it only reads program state and records updates in a secluded
memory region that will not be accessed by a well-behaved
program. Similarly, an interrupted execution will be identical
to an uninterrupted one because a superset of the differential
is captured at the checkpoint and the entire program state
is restored to resume execution. The differential is correctly
captured because the grammar of the target language allows
us to identify all direct or indirect (via pointers) memory
writes. Any writes introduced by the compiler, such as reg-
ister spilling, are placed on the current stack frame that is
always captured, as described in Sec. 4.
DICE and the rest. Reducing NVM operations is the key to
DICE performance. Fig. 2 qualitatively compares the energy
performance of checkpointing solutions discussed thus far.

void foo(int a){

int var = a,*ptr; //local variables

...

ptr = &var;

record_p(ptr,sizeof(*ptr));

*ptr= a+5; //current stack frame

... //modification

bar(&var);

...

}

void bar(int *lptr){

int a = 5; //local variables

...

record_p(lptr,sizeof(*lptr));

*lptr = a + 5; //previous stack frame

... //modification

}

int var,*ptr; //global variables

...

record(&var,sizeof(var));

var++;

...

record(&ptr,sizeof(*ptr));

ptr = &var;

Figure 3. Example instrumented code.

Hibernus [5] and Hibernus++ [4] lie at the top right with
their copy-all strategy. The amount of data written to NVM
is maximum, as it corresponds to the entire memory space
regardless of occupation. Both perform no read operations
from NVM during checkpoint, and essentially no operation
in main memory. MementOS [40] and HarvOS [8] write
fewer data on NVM during checkpoint, as their copy-used
strategy only copies the occupied portions. To that end, they
need to keep track of a handful of information, such as stack
pointers, adding minimal processing in main memory.
The copy-if-change [6] strategy lies at the other extreme.

Because of the comparison between the current memory
state and the last checkpoint data, the amount of data writ-
ten to NVM is reduced. Performing such comparison, how-
ever, requires to sweep the entire checkpoint data on NVM,
resulting in a high number of NVM reads. Because write
operations on NVM tend to be more energy-hungry than
reads [31], the overall energy overhead is still reduced.

In contrast, DICE writes slightly more data to NVM com-
pared to existing differential techniques, because modifi-
cations in the call stack are recorded at frame granularity.
However, recording differentials only require operations in
main memory and no NVM reads. As main memory is signifi-
cantly more energy efficient than NVM, energy performance
improves. Sec. 6 and Sec. 7 offer quantitative evidence.

4 Recording Differentials
We describe how we record differentials in global context,
how we identify modified stack frames, and how we handle
pointer dereferencing efficiently, while maintaining correct-
ness. The description is based on a C-like language, as it is
common for resource-constrained embedded platforms. Note
our techniques work based on a well-specified grammar of
the target language. We cannot instrument platform-specific
inline assembly code, yet its use is extremely limited as it
breaks cross-platform compatibility [14].

4.1 Global Context
DICE maintains a data structure in main memory, called
modification record, to record differentials in global context.
It is updated as a result of the execution of a record()
primitive the DICE precompiler inserts when detecting a
potential change to global context. The modification records
are not part of checkpoint data.

DICE LCTES ’19, June 23, 2019, Phoenix, AZ, USA

1 i n t var1 , var2 , a r r [s i z e] ;
2 . . .
3 vo id foo () {
4 i n t l o c a l _ v a r ;
5 . . .
6 i f (l o c a l _ v a r < MAX) {
7 l o c a l _ v a r ++ ;
8
9 var1 = l o c a l _ v a r ;
10
11 var2 = var2 + l o c a l _ v a r ;
12
13
14 }
15 e l s e {
16
17 var2 = MAX;
18
19 }
20 f o r (i n t i = 0 ; i <SIZE ; i ++) {
21
22 a r r [i] =zoo (i) ;
23 }
24
25
26 . . .

(a) Before instrumentation

1 i n t var1 , var2 , a r r [s i z e] ;
2 . . .
3 vo id foo () {
4 i n t l o c a l _ v a r ;
5 . . .
6 i f (l o c a l _ v a r < MAX) {
7 l o c a l _ v a r ++ ;
8 r e co r d (& var1 , s i z e o f (va r1)) ;
9 var1 = l o c a l _ v a r ;
10 r e co r d (& var2 , s i z e o f (va r2)) ;
11 var2 = var2 + l o c a l _ v a r ;
12
13
14 }
15 e l s e {
16 r e co r d (& var2 , s i z e o f (va r2)) ;
17 var2 = MAX;
18
19 }
20 f o r (i n t i = 0 ; i <SIZE ; i ++) {
21 r e co r d (& a r r [i] , s i z e o f (i n t)) ;
22 a r r [i] =zoo (i) ;
23 }
24
25
26 . . .

(b) After instrumentation (reactive)

1 i n t var1 , var2 , a r r [s i z e] ;
2 . . .
3 vo id foo () {
4 i n t l o c a l _ v a r ;
5 . . .
6 i f (l o c a l _ v a r < MAX) {
7 l o c a l _ v a r ++ ;
8
9 var1 = l o c a l _ v a r ;
10
11 var2 = var2 + l o c a l _ v a r ;
12 r e co r d (& var1 ,& var2 ,
13 s i z e o f (va r1) , s i z e o f (var2)) ;
14 }
15 e l s e {
16
17 var2 = MAX;
18 r e co r d (& var2 , s i z e o f (va r2)) ;
19 }
20 f o r (i n t i = 0 ; i <SIZE ; i ++) {
21
22 a r r [i] =zoo (i) ;
23 }
24 r e co r d (a r r , s i z e o f (a r r)) ;
25 t r i g g e r () ;
26 . . .

(c) After instrumentation (proactive)

Figure 4. Example instrumentation for reactive or proactive checkpoints.With reactive checkpoints, each statement possibly changing
global context data is preceded by a call to record(). With proactive checkpoints, code locations where a checkpoint may take place are known,
so calls to record() may be aggregated to reduce overhead.

Fig. 3 shows an example. The record() primitive simply
takes as input a memory address and the number of bytes
allocated to the corresponding data type. This information is
sufficient to understand that the corresponding slice of the
checkpoint data is to be updated. How to inline the call to
record() depends on the underlying system support.
Reactive systems. In Hibernus [4, 5], an interrupt may pre-
empt the execution at any time to take a checkpoint. This
creates a potential issue with the placement of record().
If the call to record() is placed right after the state-

ment modifying global context and the system triggers a
checkpoint right after such a statement, but before execut-
ing record(), the modification record includes no infor-
mation on the latest change. The remedy would be atomic
execution of the statement changing data in global context
and record(); for example, by disabling interrupts. With
systems such as Hibernus [4, 5], however, this may delay or
miss the execution of critical functionality.
Because of this, we choose to place calls to record()

right before the relevant program statements, as shown in
Fig. 4(b). This ensures that the modification record is pes-
simistically updated before the actual change in global con-
text. If a checkpoint happens right after record(), the
modification record might tag a variable as updated when it
was not. This causes an unnecessary update of checkpoint
data, but ensures correctness.

If a checkpoint happens right after record(), however,
the following statement is executed first when resuming
from checkpointed state. The corresponding changes are
not tracked in the next checkpoint, as record() already
executed before. We handle this by re-including in the next

checkpoint the memory region reported in the most recent
record() call. We prefer this minor additional overhead
for these corner cases, rather than atomic executions.
Proactive systems. MementOS [40] and HarvOS [8] insert
systems calls called triggers in the code. Based on the
state of the energy buffer, the triggers decide whether to
checkpoint before continuing. This approach exposes the
code to further optimizations.
As an example, Fig. 4(c) shows the same code as Fig. 4(a)

instrumented for a proactive system. For segments without
loops, we may aggregate updates to the modification record
at the basic block level or just before the call to trigger(),
whichever comes first1. The former is shown in line 8 to 14,
where however we cannot postpone the call to record()
any further, as branching statements determine only at run-
time what basic block is executed.

In the case of loops over contiguous memory areas, further
optimizations are possible. Consider lines 20 to 23 in Fig. 4: a
call to record() inside the loop body, necessary in Fig. 4(b)
for every iteration of the loop, may now be replaced with a
single call before the call to trigger(). This allows DICE
to record modifications in the whole data structure at once,
as shown in Fig. 4(c) line 24.

Certain peculiarities of this technique warrant careful con-
sideration. For instance, loops may, in turn, contain branch-
ing statements. This may lead to false positives in the modi-
fication record, which would result in an overestimation of
differentials. Fine-grained optimizations may be possible in
these cases, which however would require to increase the

1The aggregation of updates does not apply to pointers: if a single pointer
modifies multiple memory locations, only the last one will be recorded.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

complexity of instrumentation and/or to ask for programmer
intervention. We opt for a conservative approach: we record
modifications on the entire memory area that is possibly, but
not definitely modified inside the loop.

4.2 Call Stack
Unlike data in global context, we record differentials of vari-
ables local to a function at frame level, as these variables are
often modified together and their lifetime is the same. To this
end, DICE monitors the growth and shrinking of the stack
without relying on architecture support as in Clank [17].

Normally, base pointer (BP) points to the base of the frame
of the currently executing function, whereas the stack pointer
(SP) points to the top of the stack. DICE only requires an
additional pointer, called the stack tracker (ST), used to track
changes in BP between checkpoints. We proceed according
to the following four rules:

R1: ST is initialized to BP every time the system resumes
from the last checkpoint, or at startup;
R2: ST is unchanged as long as the current or additional
functions are executed, that is, ST does not follow BP as the
stack grows;
R3: whenever a function returns that possibly causes BP to
point deeper in the stack than ST, we set ST equal to BP,
that is, ST follows BP as the stack shrinks;
R4: at the time of checkpoint, we save the memory region
between ST and SP, as this corresponds to the frames possi-
bly changed since the last checkpoint.

Fig. 5 depicts an example. Say the system is starting with
an empty stack. Therefore, ST, SP, and BP point to the base
of the stack as per R1. Three nested function calls are ex-
ecuted. While executing F3, BP points to the base of the
corresponding frame. Say a checkpoint happens at this time,
as shown under checkpoint #1 in Fig. 5: the memory region
between ST and SP is considered as a differential since the
initial situation, due to R4.
When resuming from checkpoint #1, ST is equal to BP

because of R1. Function F3 continues its execution; no new
functions are called and no functions return. According to
R2, ST and BP remain unaltered. The next checkpoint hap-
pens at this time. As shown for checkpoint #2 in Fig. 5, R4
indicates that the memory region to consider as a differen-
tial for updating the checkpoint corresponds to the frame
of function F3. In fact, the execution of F3 might still alter
local variables, requiring an update of checkpoint data.

When the system resumes from checkpoint #2, F3 returns.
Because of R3, ST is updated to point to the base of the stack
frame of F2. If a checkpoint happens at this time, as shown
under checkpoint #3 in Fig. 5,R4 indicates the stack frame of
function F2 to be the differential to update. This is necessary,
as local variables in F2might have changed once F3 returns
control to F2 and the execution proceeds within F2.

SP,

BP,

ST F1

BP

SP

ST

F2

F1

F2

BP

SP

F3STF3

F1

F2 BP

SP

ST

Update

stack

frames

Checkpoint #

startup 1 2 3

Figure 5. Identifying possibly modified stack frames. The
stack tracker (ST) is reset to the base pointer (BP) when the system
resumes or at startup. ST does not follow BP as the stack grows, but it
does so as the stack shrinks. The dark grey region between ST and the
stack pointer (SP) is possibly modified.

void foo(int a){

int var = a,*ptr; //local variables

...

ptr = &var;

record_p(ptr,sizeof(*ptr));

*ptr= a+5; //current stack frame

... //modification

bar(&var);

...

}

void bar(int *lptr){

int a = 5; //local variables

...

record_p(lptr,sizeof(*lptr));

*lptr = a + 5; //previous stack frame

... //modification

}

int var,*ptr; //global variables

...

record(&var,sizeof(var));

var++;

...

record(&ptr,sizeof(*ptr));

ptr = &var;

Figure 6. Example instrumented code to record local vari-
ables that are passed by reference.

Note that the efficiency of recording differentials at frame
level also depends on programming style. If function calls are
often nested, the benefits brought by this technique likely
amplify compared to tracking individual local variables.

4.3 Pointer Dereferencing
Special care is required when tracking changes in main
memory through dereferencing pointers. We use a separate
record_p() primitive to handle this case.

With record_p(), we check if the pointer is currently
accessing the global context or a local variable inside a stack
frame. In the former case, the modification record is updated
as described in Sec. 4.1. Otherwise, there are two possibilities
depending on whether the memory address pointed to lies
between ST and SP. If so, the corresponding change is already
considered as part of the checkpoint updates, as per R4
above. Otherwise, we find ourselves in a case like Fig. 6 and
update ST to include the frame being accessed. As a result,
we include the memory changes in the update to existing
checkpoint data at the next checkpoint, as perR4 above. This
ensures correctness of our approach even if local variables
are passed by reference along an arbitrary nesting of function
calls or when using recursion.

DICE LCTES ’19, June 23, 2019, Phoenix, AZ, USA

5 Implementation
We describe implementation highlights for DICE, which are
instrumental to understand our performance results.
Precompiler. We use ANTLR [37] to implement the pre-
compiler for the C language. The precompiler instruments
the source code for recording modifications in the global
context as described in Sec. 4.1, depending on the underlying
system support, for identifying modified regions of the stack,
as explained in Sec. 4.2, and to handle pointer dereferencing
as illustrated in Sec. 4.3.

As a result of code instrumentation, DICE captures changes
in main memory except for those caused by peripherals
through direct memory accesses (DMA). In embedded plat-
forms, DMA buffers are typically allocated by the application
or by the OS, so we know where they are located in main
memory. We may simply flag them as modified as soon as
the corresponding peripheral interrupts fire, independent of
their processing.
DICE runtime. We implement record() as a variable
argument function. In the case of proactive systems, this
allows us to aggregate multiple changes in main memory,
as shown in Fig. 4(c). We employ a simple bit-array to store
the modification record, where each bit represents one byte
in main memory as modified or not. This representation is
compact, causing little overhead in main memory—12.5% in
the worst case, corresponding to one bit in the modification
record per byte of main memory.

Our choice allows record() to run in constant time, as
it supports direct access to arbitrary elements. This prevents
record() from changing the application timings, which
may cause issues on resource-constrained embedded plat-
forms [47]. Such a data structure, however, causes no over-
head on NVM, as it does not need to be part of the checkpoint.
Every time the system resumes from the previous checkpoint,
we start afresh with an empty set of modification records.

We customize the existing checkpoint procedures with
DICE-specific ones. Hibernus [5] and Hibernus++ [4] set the
voltage threshold for triggering a checkpoint to match the
energy cost for writing the entire main memory on NVM,
as they use a copy-all strategy. HarvOS [8] bases the same
decision on a worst-case estimate of the energy cost for
checkpointing at specific code locations, as a function of
stack size. When using DICE, due to its ability to limit check-
points to a slice of the application state, both approaches
are overly pessimistic. We set these parameters based on
the actual cost of checkpointing. We obtain this by looking
at how many modification records we accumulate and the
positions of ST and SP at a given point in the execution.

MementOS [40] sets the threshold for triggering a check-
point based on repeated emulation experiments using pro-
gressively decreasing voltage values and example energy
traces, until the system cannot complete the workload. This
processing requires no changes when using DICE; simply,

when using DICE, the same emulation experiments generally
return a threshold smaller than in the original MementOS,
as the energy cost of checkpoints is smaller.

6 Evaluation: Synthetic Power Profiles
We dissect the performance of DICE using a combination
of three benchmarks across three system support and two
hardware platforms. Based on 107,000+ data points and com-
pared with existing solutions on the same workload, our
results indicate that using DICE reflects into:
• up to one-eighth smaller energy buffer to complete the

same workload, cutting the time to reach the operating
voltage and enabling smaller device footprints;

• up to 97% fewer checkpoints, which is a direct effect of
DICE’s ability to use a given energy budget for computing
rather than checkpointing;

• up to one order of magnitude shorter completion time
for a given workload, increasing system’s responsiveness
and despite the instrumentation overhead.

In the following, Sec. 6.1 describes the settings, whereas
Sec. 6.2 to Sec. 6.4 discuss the results.

6.1 Settings

Benchmarks. We consider three benchmarks widely em-
ployed in intermittent computing [5, 20, 40, 45]: i) a Fast
Fourier Transform (FFT) implementation, ii) RSA cryptog-
raphy, and iii) Dijkstra spanning tree algorithm. FFT is rep-
resentative of signal processing functionality in embedded
sensing. RSA is an example of security support on modern
embedded systems. Dijkstra’s spanning tree algorithm is
often found in embedded network stacks [19].
These benchmarks offer a variety of different data struc-

tures, memory access patterns, and processing load. The
FFT implementation operates mainly over variables local to
functions and has moderate processing requirements; RSA
operates mostly on global data and demands great MCU re-
sources; Dijkstra’s algorithm only handles integer data types
and exhibits much deeper levels of nesting. This diversity
allows us to generalize our conclusions. All implementations
are taken from public code repositories [30].
Systems and platforms.We measure the performance of
DICE with both reactive (Hibernus) and proactive (Memen-
tOS, HarvOS) checkpoints. We consider as baselines the
unmodified systems using either the copy-all or copy-used
strategies. We also test the performance of copy-if-change [6]
when integrated with either of these systems. Note that, in
principle, such integration is not possible due to the inabil-
ity of copy-if-change to predetermine checkpoint cost. For
completeness, we still provide results assuming an oracle
that provides this cost and enables integration. To make our
analysis of MementOS independent of specific energy traces,

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es

0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(a) Hibernus (FFT)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es
0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(b) Hibernus (RSA)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
0 200 400 600 800 1000

of

 b
yt

es

0

200

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(c) Hibernus (Dijkstra)
Trigger Call Locations

TCL1 TCL2 TCL3 TCL4 TCL5 TCL6 TCL7

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20
MementOS+Copy-if-change
MementOS+DICE
MementOS

FFT

22

Dijkstra

19

7

111
2

33
2

1

7

RSA

121212121212

6 6

(d)MementOS
Trigger Call Locations

TCL1 TCL2 TCL3

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20

25

HarvOS+Copy-if-change
HarvOS+DICE
HarvOS

RSAFFT

Dijkstra

3 3

12

6

12

2

19

2

6

(e) HarvOS

Figure 7. Update size. The size of NVM updates is significantly smaller when using DICE compared to the original systems. Compared to
copy-if-change, it remains the same or marginally larger.

we manually sweep the possible parameter settings at steps
of 0.2V and use the best performing one.
We run Hibernus on an MSP430-based TelosB interfaced

with a byte-programmable 128 KByte FRAM chip, akin to
the hardware originally used for Hibernus [5]. MementOS
and HarvOS run on a Cortex M3-based ST Nucleo with a
standard flash chip, already used to compare MementOS and
HarvOS [8]. Both boards offer a range of hooks to trace the
execution, enabling fine-grained measurements. Further, our
choice of platforms ensures direct comparison with existing
literature. In the same way as the original systems [4, 8, 40],
our experiments focus on the MCU. Peripherals may operate
through separate energy buffers [15] and dedicated solutions
for checkpointing their states also exist [27, 43].
Metrics.We compute four metrics:
• The update size is the amount of data written to NVM dur-

ing a checkpoint. This is the key metric that DICE seeks
to reduce: measuring this figure is essential to understand
the performance of DICE in all other metrics.

• The size of the smallest energy buffer is the minimum
energy to complete a workload. If too small, a system
may be unable to complete checkpoints, and ultimately
make no progress. However, target devices typically em-
ploy capacitors: a smaller capacitor reaches the operating
voltage sooner and enables smaller device footprints.

• The number of checkpoints is the total number of check-
points to complete a workload. The more are necessary,
the more the system subtracts energy from useful com-
putations. Reducing NVM operations allows the system
to use energy more for computations than checkpoints,
allowing an application to progress further on the same
charge.

• The completion time is the time to complete a workload,
excluding deployment-dependent recharge times. DICE
introduces a run-time overhead due to recording differ-
entials. On the other hand, fewer NVM operations reduce
both the time required for a single checkpoint and, be-
cause of the above, their number.

Power profile andmeasurements.We use a foundational
power profile found in existing literature [6, 20, 40, 45] that
provides fine-grained control over executions and facilitates
interpreting results. The device boots with the full capacitor
and computes until the capacitor is empty again. In the mean
time, the environment provides no additional energy. Once
the capacitor is empty, the environment provides new energy
until the capacitor is full again and computation resumes.

This profile is also representative of a staple class of inter-
mittently-powered applications, namely, those based onwire-
less energy transfer [9, 40]. With this technology, devices
are quickly charged with a burst of wirelessly-transmitted
energy until they boot. Next, the application runs until the
capacitor is empty again. The device rests dormant until
another burst of wireless energy comes in.

We trace the execution on real hardware using an attached
oscilloscope along with the ST-Link debugger and µVision
for the Nucleo board. This equipment allows us to ascertain
the time taken and energy consumption of every operation
during the execution, including checkpoints on FRAM or
flash memory. The results are obtained from 1,000 (10,000)
benchmark iterations on the MSP430 (Cortex M3) platform.

6.2 Results → Update Size
We compare the update size in DICEwith the original designs
of Hibernus, MementOS, and HarvOS as well as when these
are combined with copy-if-change. We do this despite its
inability to work together with these systems because of
integration issues, as previously discussed.

Fig. 7 shows the results. With Hibernus, the code location
where a checkpoint takes place is unpredictable: depending
on the capacitor size, an interrupt eventually fires prompting
the system to checkpoint. Fig. 7a, 7b, and 7c2 thus report the
average update size during an experiment until completion
2Some data points are missing in the charts for the original design of Hi-
bernus, as it is unable to complete the workload in those conditions. We
investigate this aspect further in Sec. 6.3.

DICE LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Capacitor (uF)
0 200 400 600 800 1,000

of

 c
he

ck
po

in
ts

102

104

106

Hibernus
Hibernus+DICE

(a) Hibernus (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

2.2

2.0
1.8

2.4

1.8

2.2
2.0

1.8

1.81.81.81.81.8

(b)MementOS (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(c) HarvOS (RSA)

Figure 8. Number of checkpoints necessary against vary-
ing capacitor sizes. With smaller capacitors, highly-intermittent
executions greatly benefit from DICE.

of the workload, as a function of the capacitor size. Com-
pared to the original copy-all strategy, DICE provides orders
of magnitude improvements. These are a direct result of lim-
iting updates to those determined by the instrumented code.
Using copy-if-change with Hibernus provides marginal ad-
vantages over DICE, because modifications in the call stack
are recorded at word-, rather than frame-granularity.

WithMementOS and HarvOS, the update size is a function
of the location of the trigger call as determined by the original
design of either system, which DICE has no impact on. This is
because the stack may have different sizes at different places
in the code. Fig. 7d and Fig. 7e3 show that DICE reduces the
update size to a fraction of that in the original copy-used
strategy, no matter the location of the trigger call. The same
charts show that the performance of copy-if-change when
combined with MementOS or HarvOS is the same as DICE.
This is an effect of the page-level programmability of flash
storage, requiring an entire page to be rewritten on NVM
even if a small fraction of it requires an update.
The cost for copy-if-change to match or slightly improve

the performance of DICE in update size is, however, prohibi-
tive in terms of energy consumption. Copy-if-change indeed
requires a complete sweep of the checkpoint data on NVM
before updating, and even for FRAM, the cost of reads is
comparable to writes [31]. As an example, we compute the
energy cost of a checkpoint with the data in Fig. 7b to be
93% higher with copy-if-change than with DICE, on aver-
age. For Hibernus, copy-if-change would result in an energy
efficiency worse than the original copy-all strategy. As en-
ergy efficiency is the figure users are ultimately interested
in, we justifiably narrow down our focus to comparing a
DICE-equipped system with the original ones.

FFT RSA Dijkstra

C
ap

ac
ito

r
(u

F
)

0

100

200

300

400

500

600

700

800

Without DICE
With DICE

500 500

100

400

200

50

(a) Hibernus Trigger Call Locations
FFT RSA Dijkstra FFT RSA Dijkstra

C
ap

ac
ito

r
(m

F
)

0

10

20

30

40

50

60

70

80 Without DICE
With DICE

60

4040 40

1010 101010

20 20 20

MementOS HarvOS

(b)MementOS and HarvOS

Figure 9. Smallest capacitor. A DICE-equipped system completes
the workload with smaller capacitors. This is due to a reduction in the
energy cost of checkpoints, enabled by the reduction in update size.

6.3 Results → Checkpoints and Energy Buffers
The results in the number of checkpoints and in the size of
the smallest energy buffer are intimately intertwined. Fig. 84
shows an excerpt of the results we gather in the number of
checkpoints against variable capacitor sizes, focusing on the
most complex benchmark we test. The results are similar
or better for other benchmarks. A significant area of these
charts only shows the performance of the DICE-equipped
systems, as the original ones are unable to complete the
workload with too small capacitors. As soon as a comparison
is possible, the improvements for DICE with small capacitors
are significant and apply consistently across benchmarks.

Fig. 9 reports the minimum size of the capacitor required
to complete the given workloads. A DICE-equipped system
constantly succeeds with smaller capacitors. With Hibernus,
DICE allows one to use a capacitor up to one-eighth of the
one required with the original copy-all strategy. For Memen-
tOS and HarvOS, the smallest capacitor one may employ is
about half the size of the one required in the original designs.

These results are directly enabled by the reduction in up-
date size, discussed in Sec. 6.2. With fewer data to write on
NVM, the energy cost of checkpoints reduces. This has two
direct consequences. First, the smallest amount of energy the
system needs to have available at once to complete the check-
point reduces. Second, the system can invest the available
energy to compute rather than checkpointing.
With larger capacitors, the improvements in Fig. 8 are

smaller, but still appreciable5. This is expected: the larger is
the capacitor, the more the application progresses farther
on a single charge, thus executions are less intermittent
and checkpoints are sparser in time. Modifications since

3For MementOS, the trigger call locations refer to the “function call” place-
ment strategy in MementOS [40]. We find the performance with other
MementOS strategies to be essentially the same. We omit that for brevity.
4For MementOS, we tag every data point with the minimum voltage thresh-
old that allows the system to complete the workload, if at all possible, as it
would be returned by the repeated emulation runs [40].
5Note the log scale on the Y axis of Fig. 8.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
/o

 c
he

ck
po

in
ts

 (
s)

0

0.5

1

1.5

2

Without DICE
With DICE

0.005 0.008

1.69
1.802 1.72

1.81

(a) Hibernus
FFT RSA Dijkstra FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
/o

 c
he

ck
po

in
ts

 (
m

s)
0

10

20

30

40

50

60

70
Without DICE
With DICE

HarvOSMementOS

27.27 27.38

5.41

51.82

4.74 5.38

51.63

27.3327.23

4.75

51.66 51.87

(b)MementOS and HarvOS

Figure 10. Completion time without concrete checkpoints.
Overhead due to code instrumentation is limited.

the previous checkpoint accumulate as a result of increased
processing times. The state of main memory then becomes
increasingly different than the checkpoint data, and eventu-
ally DICE updates a significant part of it.
This performance allows systems to reduce the time in-

vested in checkpoint operations, because of a reduction in
their number and in the time taken for single checkpoints
due to fewer NVM operations. This reduces the time to com-
plete the workload, as we investigate next.

6.4 Results → Completion Time
DICE imposes a cost, mainly due to run-time overhead for
recording differentials. On the other hand, based on the above
results, DICE enables more rapid checkpoints as it reduces
NVM operations. In turn, this allows the system to reduce
their number as energy is spent more on completing the
workload than checkpoints. These factors should conversely
reduce the completion time.
Fig. 10 investigates this aspect in a single iteration of the

benchmarks where the code executes normally, but we skip
the actual checkpoint operations. This way, we observe the
net run-time overhead due to record[_p](). The over-
head is limited. This is valid also for reactive checkpoints
in Hibernus, despite the conservative approach at placing
record[_p]() calls due to the lack of knowledge on
where the execution is preempted.

Fig. 11 includes the time required for checkpoint opera-
tions with the smallest capacitor allowing both the DICE-
equipped system and the original one to complete the work-
load, as per Fig. 9. The overhead due to record[_p]()
is not only compensated, but actually overturn by fewer
more rapid checkpoints. Using these configurations, DICE
allows the system to complete the workload much earlier,
increasing the system’s responsiveness.
Fig. 12 provides an example of the trends in completion

time against variable capacitor sizes. The improvements are

FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
s)

0

5

10

15

20

Without DICE
With DICE

0.32 0.008

8.17

1.93

20

1.78

(a) Hibernus
FFT RSA Dijkstra FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s)

0

100

200

300

400

500

600

Without DICE
With DICE

MementOS
501.1

HarvOS

59.5
33.14

103.5

69.2

30.1
7.1

205.3

34.1

82.7

11.2 7.4

(b)MementOS and HarvOS

Figure 11. Completion time including checkpoints. The run-
time overhead due to DICE is overturn by reducing size and number
of checkpoints, yielding in shorter completion times.

Capacitor (mF)
0 200 400 600 800 1000

C
om

pl
et

io
n

tim
e

(s
)

0

2

4

6

8

10

Hibernus
Hibernus+DICE

(a) Hibernus (RSA)
Capacitor (mF)

0 20 40 60 80 100

C
om

pl
et

io
n

tim
e

(m
s)

0

200

400

600
MementOS (RSA)
MementOS+DICE (RSA)
HarvOS (RSA)
HarvOS+DICE (RSA)

(b)Mementos and HarvOS (RSA)

Figure 12. Completion time against capacitor size. DICE-
enabled gains are higher with more intermittent executions.

significant in a highly-intermittent setting with smaller ca-
pacitors. Similar to Fig. 8, two factors contribute to the curves
in Fig. 12 approaching each other. Larger capacitors allow
the code to make more progress on a single charge, so the
number of checkpoints reduces. As more processing hap-
pens between checkpoints, more modifications occur in ap-
plication state, forcing DICE to update a larger portion of
checkpoint data.

7 Evaluation: Variable Power Profiles
We investigate the impact of DICE using a variety of different
power profiles. We build the same activity recognition (AR)
application often seen in existing literature [10, 26, 28, 40],
using the same source code [14]. We use an MSP430F2132
MCU, that is, the MCU used in the WISP platform [42] for
running the same AR application. The rest of the setup is
as for Hibernus in Sec. 6. We focus on completion time, as
defined in Sec. 6.1, in a single application iteration. All of
the performance metric we study eventually converge on
completion time.
Power traces.We consider five power traces, obtained from
diverse energy sources and in different settings.

DICE LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Time (ms) #104

0 1 2

V
ol

ta
ge

 (
V

)

0

2

4

6

RF
Solar Indoor Rest (SIR)

Solar Outdoor Moving (SOM)

Solar Outdoor Rest (SOR)

Solar Indoor Moving (SIM)

(a) Voltage traces excerpt. (b)Device setup.

Figure 13. Example voltage traces and device setup.

Traces
RF SOM SOR SIM SIR

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s) #105

0

0.5

1

1.5

2

2.5
Without DICE
With DICE

(a) Completion time with 50uF.
Traces

RF SOM SOR SIM SIR

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s) #104

0

1

2

3

4

5
Without DICE
With DICE

(b) Completion time with 100uF.

Figure 14. Performance of the AR app running on Hibernus
with 50uF and 100uF capacitor. Performance gains are observed
across diverse power traces obtained from different energy sources.

One of the traces is the RF trace from MementOS [23, 40],
recorded using theWISP 4.1. The black curve in Fig. 13 shows
an excerpt, plotting the instantaneous voltage reading at the
energy harvester over time. We collect four additional traces
using a mono-crystalline solar panel [44] and an Arduino
Nano [2] to measure the voltage output across a 30kOhm
load, roughly equivalent to the resistance of anMSP430F2132
in active mode. Using this setup, we experiment with differ-
ent scenarios. We attach the device to the wrist of a student
to simulate a fitness tracker. The student roams in the uni-
versity campus for outdoor measurements (SOM), and in
research lab for indoor measurements (SIM). Alternatively,
we keep the device on the ground right outside the lab for
outdoor measurements (SOR), and at desk level in our re-
search lab for the indoor measurements (SIR). Fig. 13 visually
demonstrates the extreme variability and considerable dif-
ferences among the power traces we consider.
Results. Across all traces, we find that a 10uF capacitor is
sufficient for a DICE-equipped Hibernus to complete a single
iteration of the AR application. Without DICE, Hibernus
needs a five times larger capacitor for the same workload.
Fig. 14a shows the performance with a 50uF capacitor,

where both the original Hibernus and the DICE-equipped
one can complete. Completion times diminish by at least one

order of magnitude using DICE. This means better energy
efficiency and increased reactivity to external events. Best
performance is obtained with the outdoor solar power trace
in a static setup, as expected in that it supplies the largest
energy. However, DICE constantly improves over the original
Hibernus, regardless of the power trace.

The trends we discuss in Sec. 6 with larger capacitors are
confirmed here. Fig. 14b plots the performance using a 100uF
capacitor. Improvements are reduced compared with Fig. 14b:
applications progress farther on a single charge, checkpoints
are sparser, and DICE records more changes to the applica-
tion state between checkpoints.

8 Conclusion
DICE is a differential checkpointing solution for intermit-
tent computing. To reduce the amount of data written on
NVM, we conceive different ways to track changes in main
memory, depending on the memory segments. These tech-
niques are embedded within existing code in an automatic
fashion using a specialized pre-processing step, and designed
to only operate in main memory until checkpointing. This
helps existing system support complete a given workload
with i) smaller energy-buffers, ii) fewer checkpoints, and
thus better energy efficiency, and iii) reduced completion
time. Our benchmark evaluation, based on a combination
of three benchmarks across three different systems and two
different hardware platforms, provides quantitative evidence.
The improvements are confirmed against variable power pro-
files: experiments with an AR application show orders of
magnitude improvements against power traces as diverse as
RF-based wireless energy transfer and solar radiation.

References
[1] Faycal Ait Aouda, Kevin Marquet, and Guillaume Salagnac. 2014. In-

cremental checkpointing of program state to NVRAM for transiently-
powered systems. In 9th International Symposium on Reconfigurable
and Communication-Centric Systems-on-Chip.

[2] ARDUINO. 2018. NANO. https://store.arduino.cc/usa/arduino-nano
(accessed 2018-02-28).

[3] Satu Arra, Jarkko Leskinen, Janne Heikkila, and Jukka Vanhala. 2007.
Ultrasonic power and data link for wireless implantable applications.
In 2nd International Symposium on Wireless Pervasive Computing.

[4] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive sys-
tem for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2016).

[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters (2015).

[6] Naveed Bhatti and Luca Mottola. 2016. Efficient state retention for
transiently-powered embedded sensing. In Proceedings of the Interna-
tional Conference on Embedded Wireless Systems and Networks.

[7] Naveed Anwar Bhatti, Muhammad Hamad Alizai, Affan A Syed, and
Luca Mottola. 2016. Energy harvesting and wireless transfer in sensor
network applications: Concepts and experiences. ACM Transactions

https://store.arduino.cc/usa/arduino-nano

LCTES ’19, June 23, 2019, Phoenix, AZ, USA S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

on Sensor Networks (2016).
[8] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code

instrumentation for transiently-powered embedded sensing. In Pro-
ceedings of the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks.

[9] Michael Buettner, Benjamin Greenstein, and David Wetherall. 2011.
Dewdrop: An Energy-Aware Runtime for Computational RFID. In
Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation.

[10] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for
reliable intermittent programs. In Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

[11] CananDagdeviren, Pauline Joe, Ozlem L Tuzman, Kwi-Il Park, Keon Jae
Lee, Yan Shi, Yonggang Huang, and John A Rogers. 2016. Recent
progress in flexible and stretchable piezoelectric devices formechanical
energy harvesting, sensing and actuation. Extreme Mechanics Letters
(2016).

[12] Bernhard Egger, Younghyun Cho, Changyeon Jo, Eunbyung Park, and
Jaejin Lee. 2016. Efficient Checkpointing of Live Virtual Machines.
IEEE Transactions on Computers (2016).

[13] M. Muztaba Fuad and Michael J. Oudshoorn. 2007. Transformation of
Existing Programs into Autonomic and Self-healing Entities. In 14th
Annual IEEE International Conference and Workshop on Engineering of
Computer Based Systems.

[14] Abstract Research Group. 2018. Benchmark Applications. www.github.
com/CMUAbstract/releases#benchmark-applications (accessed 2018-
02-28).

[15] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of
the Coulombs: Federating Energy Storage for Tiny, Intermittently-
Powered Sensors. In Proceedings of the 13th ACM Conference on Em-
bedded Networked Sensor Systems.

[16] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for
the Batteryless Internet-of-Things. In Proceedings of the 15th ACM
Conference on Embedded Networked Sensor Systems.

[17] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent
Computation. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture.

[18] Texas Instruments. 2013. MSP430 Solar Energy Harvesting Development
Tool. http://www.ti.com/tool/EZ430-RF2500-SEH (accessed 2018-08-
03).

[19] Oana Iova, Pietro Picco, Timofei Istomin, and Csaba Kiraly. 2016. RPL:
The Routing Standard for the Internet of Things... Or Is It? IEEE
Communications Magazine (2016).

[20] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghu-
nathan. 2015. Quick Recall: A HW/SWApproach for Computing across
Power Cycles in Transiently Powered Computers. ACM Journal on
Emerging Technologies in Computing Systems (2015).

[21] Richard Koo and Sam Toueg. 1986. Checkpointing and Rollback-
recovery for Distributed Systems. In Proceedings of ACM Fall Joint
Computer Conference.

[22] P. Koopman. 2010. Better Embedded System Software. CMU Press.
[23] PERSIST Lab. 2018. RF Trace. https://github.com/PERSISTLab/

BatterylessSim/tree/master/traces (accessed 2018-02-28).
[24] Libelium. 2017. Waspmote. http://www.libelium.com/products/

waspmote/hardware/ (accessed 2018-08-06).
[25] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily

Ruppel. 2017. Intermittent Computing: Challenges and Opportunities.
In Leibniz International Proceedings in Informatics.

[26] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer program-
ming and execution model for intermittent systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation.

[27] Giedrius Lukosevicius, Alberto Rodriguez Arreola, and Alexander
Weddell. 2017. Using Sleep States to Maximize the Active Time of

Transient Computing Systems. In Proceedings of the 5th ACM Inter-
national Workshop on Energy Harvesting and Energy-Neutral Sensing
Systems.

[28] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Inter-
mittent Execution Without Checkpoints. Proceedings of the ACM on
Programming Languages (2017).

[29] Robert Margolies, Maria Gorlatova, John Sarik, Gerald Stanje, Jianxun
Zhu, Paul Miller, Marcin Szczodrak, Baradwaj Vigraham, Luca Carloni,
and Peter Kinget. 2015. Energy-harvesting active networked tags
(EnHANTs): Prototyping and experimentation. ACM Transactions on
Sensor Networks (2015).

[30] mbed. 2017. IoT OS. goo.gl/u918jX.
[31] Kresimir Mihic, Ajay Mani, Manjunath Rajashekhar, and Philip

Levis. 2007. Mstore: Enabling storage-centric sensornet research. In
ACM/IEEE International Conference on Information Processing in Sensor
Networks.

[32] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. Bugnet:
Continuously recording program execution for deterministic replay
debugging. In 32nd International Symposium on Computer Architecture.

[33] Robert HB Netzer and Mark H Weaver. 1994. Optimal tracing and
incremental reexecution for debugging long-running programs. In
PLDI, Vol. 94. 313–325.

[34] Hoang Anh Nguyen, Anna Forster, Daniele Puccinelli, and Silvia Gior-
dano. 2011. Sensor node lifetime: An experimental study. In Pervasive
Computing and Communications Workshops.

[35] Expansion of STM32 Nucleo boards. 2017. Data Sheet: X-
NUCLEO-NFC02A1. https://www.st.com/resource/en/data_brief/
x-nucleo-nfc02a1.pdf (accessed 2018-08-06).

[36] Eunbyung Park, Bernhard Egger, and Jaejin Lee. 2011. Fast and Space-
efficient Virtual Machine Checkpointing. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments.

[37] Terence Parr. 2013. The Definitive ANTLR 4 Reference. goo.gl/RR1s.
[38] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1995. Libckpt:

Transparent Checkpointing Under Unix. In Proceedings of the USENIX
Technical Conference.

[39] Brian Randell, Pete Lee, and Philip C. Treleaven. 1978. Reliability
issues in computing system design. Comput. Surveys (1978).

[40] Benjamin Ransford. 2011. Mementos: System Support for Long-
running Computation on RFID-scale Devices. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems.

[41] B. Ransford. 2013. Transiently Powered Computers. Ph.D. Dissertation.
School of Computer Science, UMass Amherst.

[42] Joshua R. Smith, Alanson P. Sample, Pauline S. Powledge, Sumit Roy,
and Alexander Mamishev. 2006. A Wirelessly-powered Platform for
Sensing and Computation. In Proceedings of the 8th International Con-
ference on Ubiquitous Computing.

[43] Rebecca Smith and Scott Rixner. 2015. Surviving Peripheral Failures
in Embedded Systems.. In USENIX Annual Technical Conference.

[44] IXYS SolarMD. 2018. SLMD481H08L. http://ixapps.ixys.com/ (accessed
2018-02-28).

[45] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Compu-
tation Without Hardware Support or Programmer Intervention. In
Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation.

[46] Guang Yang, Bernard H Stark, Simon J Hollis, and Steve G Burrow.
2014. Challenges for Energy Harvesting Systems Under Intermittent
Excitation. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems (2014).

[47] Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. 2007.
Clairvoyant: A Comprehensive Source-level Debugger for Wireless
Sensor Networks. In Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems.

www.github.com/CMUAbstract/releases#benchmark-applications
www.github.com/CMUAbstract/releases#benchmark-applications
http://www.ti.com/tool/EZ430-RF2500-SEH
https://github.com/PERSISTLab/BatterylessSim/tree/master/traces
https://github.com/PERSISTLab/BatterylessSim/tree/master/traces
http://www.libelium.com/products/waspmote/hardware/
http://www.libelium.com/products/waspmote/hardware/
goo.gl/u918jX
https://www.st.com/resource/en/data_brief/x-nucleo-nfc02a1.pdf
https://www.st.com/resource/en/data_brief/x-nucleo-nfc02a1.pdf
goo.gl/RR1s
http://ixapps.ixys.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Mainstream Computing
	2.2 Intermittent Computing

	3 DICE In A Nutshell
	4 Recording Differentials
	4.1 Global Context
	4.2 Call Stack
	4.3 Pointer Dereferencing

	5 Implementation
	6 Evaluation: Synthetic Power Profiles
	6.1 Settings
	6.2 Results Update Size
	6.3 Results Checkpoints and Energy Buffers
	6.4 Results Completion Time

	7 Evaluation: Variable Power Profiles
	8 Conclusion
	References

