
1

Demystifying Energy Consumption Dynamics in
Transiently-powered Computers

SAAD AHMED, Lahore University of Management Sciences (LUMS), Pakistan
MUHAMMAD NAWAZ, Lahore University of Management Sciences (LUMS), Pakistan
ABU BAKAR, Lahore University of Management Sciences (LUMS), Pakistan
NAVEED ANWAR BHATTI, Air University, Pakistan
MUHAMMAD HAMAD ALIZAI, Lahore University of Management Sciences (LUMS), Pakistan
JUNAID HAROON SIDDIQUI, Lahore University of Management Sciences (LUMS), Pakistan
LUCA MOTTOLA, Politecnico di Milano, Italy and RI.Se SICS, Sweden

Transiently-powered computers (TPCs) form the foundation of the battery-less Internet of Things, using
energy harvesting and small capacitors to power their operation. This kind of power supply is characterized
by extreme variations in supply voltage, as capacitors charge when harvesting energy and discharge when
computing. We experimentally find that these variations cause marked fluctuations in clock speed and power
consumption. Such a deceptively minor observation is overlooked in existing literature. Systems are thus
designed and parameterized in overly-conservative ways, missing on a number of optimizations.

We rather demonstrate that it is possible to accurately model and concretely capitalize on these fluctuations.
We derive an energy model as a function of supply voltage and prove its use in two settings. First, we develop
EPIC, a compile-time energy analysis tool. We use it to substitute for the constant power assumption in
existing analysis techniques, giving programmers accurate information on worst-case energy consumption
of programs. When using EPIC with existing TPC system support, run-time energy efficiency drastically
improves, eventually leading up to a 350% speedup in the time to complete a fixed workload. Further, when
using EPIC with existing debugging tools, it avoids unnecessary program changes that hurt energy efficiency.
Next, we extend the MSPsim emulator and explore its use in parameterizing a different TPC system support.
The improvements in energy efficiency yield up to more than 1000% time speedup to complete a fixed workload.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems;

Additional Key Words and Phrases: transiently powered computers, intermittent computing, energy modelling

ACM Reference Format:
Saad Ahmed, Muhammad Nawaz, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid
Haroon Siddiqui, and Luca Mottola. 2020. Demystifying Energy Consumption Dynamics in Transiently-
powered Computers. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2020), 25 pages. https:
//doi.org/10.1145/3391893

Authors’ addresses: Saad Ahmed, saad.ahmed@lums.edu.pk, Lahore University of Management Sciences (LUMS), Lahore,
Pakistan, 54792; Muhammad Nawaz, 15030025@lums.edu.pk, Lahore University of Management Sciences (LUMS), Lahore,
Pakistan, 54792; Abu Bakar, abubakar@lums.edu.pk, Lahore University of Management Sciences (LUMS), Lahore, Pakistan,
54792; Naveed Anwar Bhatti, naveed.bhatti@mail.au.edu.pk, Air University, Islamabad, Pakistan; Muhammad Hamad Alizai,
Lahore University of Management Sciences (LUMS), Lahore, Pakistan, 54792, hamad.alizai@lums.edu.pk; Junaid Haroon
Siddiqui, Lahore University of Management Sciences (LUMS), Lahore, Pakistan, 54792, junaid.siddiqui@lums.edu.pk; Luca
Mottola, Politecnico di Milano, Italy and RI.Se SICS, Sweden, luca.mottola@polimi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1539-9087/2020/1-ART1
https://doi.org/10.1145/3391893

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3391893
https://doi.org/10.1145/3391893
https://doi.org/10.1145/3391893

1:2 Ahmed et al.

1 MHz

8 MHz

16 MHz

1 2 3 4-100-200-300-400

1.41%

3.42%

2.48%

Percentage change in single power cycle (%)

(3.6V – 1.8V)

(3.6V – 2.2V)

(3.6V – 2.9V)

-363.36%

-213.96%

-64.35%

Clock Speed

Power Consumption

Fig. 1. Impact of supply voltage variations on MSP430G2553 clock speed and power consumption in a single
power cycle. Existing tools typically ignore these behaviors when modeling the energy consumption of TPC.

1 INTRODUCTION
Transiently-powered computers (TPCs) may rely on a great variety of energy harvesting mecha-
nisms, often characterized by strikingly different performance and unpredictable dynamics across
space and time [10]. As much as using solar cells may yield up to 240𝑚W, but only at specific times
of the day and certain environmental conditions [23], harvesting energy from RF transmissions
solely produces up to 1𝜇Wwhenever the transmitter is sufficiently close [3].
Hardware and software must be dimensioned and parameterized according to these dynamics.

Capacitors are used as ephemeral energy buffers. Smaller capacitors yield smaller device footprints
and quicker recharge times, at the expense of smaller overall energy storage. The microcontroller
units (MCUs) also feature numerous configuration parameters. For example, lower clock frequencies
allow one to exploit larger operating ranges in supply voltage, but slow down execution. The
MSP430-series MCUs run with supply voltages as low as 1.8V at 1 MHz, but are unable to run any
lower than 2.9V at 16 MHz.
As TPCs increasingly employ separate capacitors to power the MCU or peripherals [25], the

ability to accurately forecast the energy cost of a certain fragment of code is key to decide on the
size of capacitors powering the MCU and on its frequency settings. Peripheral operations may
often be postponed if their capacitors have insufficient energy [25], whereas the MCU coordinates
the functioning of the entire system. Accurate energy forecast information aids the efficient
placement of systems calls that checkpoint the MCU state on non-volatile memory to cross periods
of energy unavailability [5, 8, 43]. Programmers may alternatively rely on task-based programming
abstractions that offer transactional semantics [16, 36, 38]. Thus, they need to know the worst-case
energy costs of given task configurations to ensure completion within a single capacitor charge, or
forward progress may be compromised.
Observation.Modeling energy consumption of TPCs is an open challenge [17, 26, 35]. Existing
tools are mainly developed for battery-powered embedded devices, which typically enjoy consistent
energy supplies for relatively long periods. In contrast, capacitors on TPCs may discharge and
recharge several times during a single application run. A single iteration of a CRC code may require
up to 17 charges and consequent discharges when harvesting energy from RF transmissions [43].
Single executions of even straightforward algorithms thus correspond to a multitude of rapid
sweeps of an MCU’s operating voltage range [8, 43].

We experimentally observe that such a peculiar computing pattern causes severe fluctuations in
an MCU’s energy consumption. Fig. 1 shows example fluctuations we measure on an MSP430G2553
MCU running at 1 MHz in a single power cycle, that is, as it goes from the upper to the lower
extreme of the operating voltage range. Power consumption varies significantly; it reduces by a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:3

En
er

gy
 p

er

M
C

U
 c

yc
le

=
1

.5
9

 n
J

En
er

gy
 p

er

M
C

U
 c

yc
le

=
0

.3
3

 n
J

Power Consumption

Clock Speed

Fig. 2. Impact of supply voltage variations on MSP430G2553 power consumption and clock speed. Energy
being a product of power (red dotted line) and execution time, which is a function of clock speed (black solid line),
the energy cost of a single MCU cycle varies by up to ≈5× depending on the instantaneous supply voltage.

factor of up to 363.36%. Clock speed also changes; it increases by a factor of up to 3.42%. This means
the same instruction takes different times depending on the supply voltage.

The combined fluctuations of power and clock in Fig. 1 cause the energy cost of each MCU cycle
to drop by up to 5× in a power cycle. Fig. 2 shows this behavior as a function of supply voltage,
again in a single power cycle. Even for a single application run, as mentioned earlier, the system
may require thousands of power cycles; the net effect thus accumulates in the long run.

Unlike dynamic frequency or voltage scaling [41, 42] in mainstream platforms, these dynamics
happen regardless of the current system workload and the software layers have no control on them.
Fluctuations in power consumption are exclusively due to the dynamics in supply voltage and
clock speed. In turn, the latter are due to the design of the digitally-controlled oscillators (DCOs)
that equip TPCs such as the MSP430-based ones. In fact, TI designers confirm that many of their
MSP430-series MCUs employ DCOs that cause the clock speed to increase as the supply voltages
approaches the lower extreme1 [31]. This yields better energy efficiency at these regimes, at the
cost of varying execution times.
Reasoning on such dynamic behavior is not trivial. For simplicity, a vast fraction of existing

literature overlooks these phenomena [8, 17, 20, 43]. Many systems are designed and parameterized
in overly-conservative ways, by considering a constant power consumption no matter the supply
voltage, and fixed clock speeds. We argue, however, that considering these dynamics is crucial, as
their impact magnifies for TPCs with rapid and recurring power cycles.
Contribution.We demonstrate that it is practically possible to accurately model and concretely
capitalize on these dynamics. As a result, we obtain significant performance improvements in a
range of situations, exclusively enabled by considering phenomena that are normally not accounted
for. Following background material in Sec. 2, our contribution is three-pronged:
(1) We empirically measure the impact of varying voltage supplies on clock speed and power

consumption for all possible clock configurations, and derive an accurate energy model,
described in Sec. 3. Analytically modeling these dynamics is difficult. Clock speed varies
as a result of the DCO design, discussed earlier. Power consumption varies according to a

1We verified this observation on three MSP430 models: G2553, G2452, and FR5969.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Ahmed et al.

nonlinear current draw by the MCU, caused by inductive and capacitative reactance of the
clock module that uses internal resistors to control the clock speed.

(2) Our energy model enables the design and implementation of EPIC2, an automated tool that
provides accurate compile-time energy information, described in Sec. 4. EPIC first augments
the source code with energy information at basic-block granularity. It then allows developers
to tag a piece of code to determine best- and worst- case energy consumption.

(3) We present MSPsim++ in Sec. 5, an integration of our energy model with MSPsim [20], a
widely used instruction set emulator based on static power and clock models. This is to cater
for the several systems that leverage run-time information. MSPsim++ emulates the dynamic
behaviors of supply voltage, clock speed, and power consumption on a per-instruction basis.
This is the finest possible granularity without resorting to real hardware.

Benefits. We demonstrate the use of EPIC in two diverse scenarios. On one hand, we integrate
EPIC with HarvOS [8], an existing system support for TPCs. HarvOS decides on the placement
of system calls that possibly trigger a checkpoint to save the state on non-volatile memory until
new energy is available. The accurate energy estimates of EPIC—used in place of the assumption
of constant clock speed and power consumption in the original HarvOS—allow given workloads
to complete with up to 50% fewer checkpointing interruptions. The energy saved from reducing
checkpoints is then shifted to useful computation, resulting in up to ≈350% speedup in workload
completion times. In specific cases, EPIC even indicates that the code may complete on a single
charge with no need for checkpointing; this completely spares the corresponding overhead, which
often surpasses the energy required by the application itself.
Next, we plug EPIC within CleanCut [17], a tool supporting task-based programming [17, 38].

Such programming abstractions ensure transactional semantics; tasks are either completed when-
ever energy is sufficient, or their partial execution has no effects. However, tasks might accidentally
be defined so that their worst-case energy cost exceeds the maximum available energy, impeding
forward progress. Programmers use CleanCut to detect these cases, so they can, for example, split
tasks into smaller units. Using EPIC with CleanCut to replace the assumption of constant clock
and power allows one to ascertain that many of these warnings are, in fact, bogus. Programmers
may thus avoid unnecessary program changes that ultimately hurt performance.
Conversely, we use MSPsim++ instead of the original MSPsim in MementOS [43], a different

system support for TPCs. MementOS uses MSPsim to determine the most efficient system-wide
voltage threshold when to trigger a checkpoint. The voltage threshold identified with MSPsim++ is
typically much smaller, as it is aware of the increase in energy efficiency as the supply voltage drops.
For example, when running RSA encryption, MSPsim++ recommends a checkpointing threshold
of 2.4V instead of 3.4V, resulting in up to one order of magnitude fewer checkpoints to complete
its execution. The energy saved from sparing checkpoints is again shifted to useful computations,
yielding up to more than 1000% speedup in workload completion time.

We conclude the paper by discussing limitations of our work in Sec. 6, by surveying related work
in Sec. 7 and with concluding remarks in Sec. 8.

2 BACKGROUND
Wedescribe the factors that concur to determining the energy consumption of TPCs at a fundamental
level, to investigate the dependencies affected by the dynamics of supply voltage.
Calculating energy. Fig. 3 graphically depicts the dependencies among the relevant quantities.
Predicting energy consumption relies on precise values of both power consumption and execu-
tion time, as their impact is multiplicative. In embedded MCUs, energy consumption is typically
2Energy Prediction for Intermittent Computing

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:5

Energy = Power x Time

Voltage Current Clock

Capacitor RSELx DCOx MODx

MS P 4 3 0

Fig. 3. Dependencies among quantities determining energy consumption. The direction of the arrows depict the
direction of dependency. Power consumption depends upon the input voltage and the current draw. The execution
time depends on clock speed. As the supply voltage rapidly varies, additional dependencies are created, shown by
black arrows, that perturb an otherwise constant behavior.

estimated by deriving the execution time from the number of clock cycles taken, while power
consumption is calculated by multiplying a supposedly constant voltage supply with the current
draw for a given MCU resistance.
Supply voltage, however, depends on the charge of the energy storage facility, which is most

often a capacitor in TPCs. Due to their extensive usage in electronics, the accuracy of existing
capacitor models—related to (dis)charging behavior of the capacitor and voltage drop between the
plates—is well studied [27].

The current drawn by the MCU depends on both the supply voltage and the clock speed. While
the former dependency is straightforward (V=IR), the latter stems from internal resistance typically
controlled through a clock-control register. Sec. 3 further discusses this aspect for MSP430-class
MCUs. These are arguably de-facto standard on TPCs [25, 44] and represent the only case of
commercially-available embedded MCU with non-volatile main memory, which aids saving state
across power cycles.
The time factor used to calculate the energy consumption depends on the actual clock speed.

Embedded MCUs offer specific parameters to configure the clock speed. For example, MSP430-series
MCUs provide three parameters, called RSELx, DCOx, and MODx, as explained in Sec. 3.
No More Constant Power × Time. Existing energy estimation tools [20, 46] do model the de-
pendencies shown by grey arrows in Fig. 3. For simplicity, they tend to overlook the dependencies
indicated by black arrows and consider constant values for the involved factors.

The same observation applies to many system solutions in TPCs [43]. As extensively discussed
in Sec. 3, we experimentally observe that the assumption of constant power and execution time is
actually not verified in TPCs. The impact of this is significant in TPCs, as the supply voltage may
potentially traverse the whole operational range multiple times during a single application run.

As the supply voltage varies wildly, a ripple effect creates that spreads the variability over time
to clock speed and, in turn, to current draw. This essentially means that the phenomena traverse
the dependencies in Fig. 3 backward, eventually impacting both power consumption and execution
time. As a result, these figures are no longer constant, but their values change as frequently as the
supply voltage delivered by a capacitor. Nevertheless, both figures ultimately concur to determine
energy consumption.
In the next section, we describe the empirical derivation of an energy model that accounts for

these phenomena.

3 ENERGY MODEL
We describe the methodology to derive models accounting for the dependencies shown by black
arrows in Fig. 3. First, we discuss modeling the dependency between supply voltage and clock speed.
Next, we describe the case of clock speed and current, which ultimately impact power consumption.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Ahmed et al.

DCO

RSELx

V

DCOx MODx

Clock

XTAL
32 kHz 16

1

0.1

RSELx=15

1 2 3 4 5 6 7 8
D

C
O

 F
re

q
u

en
cy

 (
M

H
z)

DCOx

RSELx=7

RSELx=0

3

2

1

0

M
O

D
x

Lower DCO
Tap Frequency

fDCO

Upper DCO
Tap Frequency

fDCO+1

31

(a) MSP430’s DCO mod-
ule.

DCO

RSELx

V

DCOx MODx

Clock

XTAL
32 kHz 16

1

0.1

RSELx=15

1 2 3 4 5 6 7 8

D
C

O
 F

re
q

u
en

cy
 (

M
H

z)
DCOx

RSELx=7

RSELx=0

3

2

1

0

M
O

D
x

Lower DCO
Tap Frequency

fDCO

Upper DCO
Tap Frequency

fDCO+1

31

(b) RSELx steps and DCOx
range.

DCO

RSELx

V

DCOx MODx

Clock

XTAL
32 kHz 16

1

0.1

RSELx=15

1 2 3 4 5 6 7 8

D
C

O
 F

re
q

u
en

cy
 (

M
H

z)
DCOx

RSELx=7

RSELx=0

3

2

1

0

M
O

D
x

Lower DCO
Tap Frequency

fDCO

Upper DCO
Tap Frequency

fDCO+1

31

(c) Modulator pattern.

Fig. 4. Impact of DCO parameters on clock.

𝑓𝑒𝑥𝑡

𝑓𝐷𝐶𝑂
A

B

Fig. 5. Clock frequency measurements. The number of clock cycles (𝑓𝐷𝐶𝑂) are counted between A and B, namely,
two consecutive low to high transitions of the external crystal oscillator 𝑓𝑒𝑥𝑡 .

0 1 2 3 4 5

Difference (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Frequency.

0 50 100 150

Difference (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Current.

1x 2x 3x 4x

Difference (x)

0

0.2

0.4

0.6

0.8

1

C
D

F

(c) Power.

Fig. 6. Impact of voltage supply variations on clock, current, and power for all DCO configurations. The
x-axis shows the difference in the corresponding factor when the voltage drops from one extreme of the MCU’s
operational voltage range to the other.

To make the discussion concrete, we target MSP430-class MCUs as arguably representative of
TPC platforms, although our methodology applies more generally and has a foundational nature.
These MCUs employ a 16-bit RISC instruction-set architecture with no instruction or data-cache,
while application data always resides in and fetched from main-memory.

Once an energy model is derived for other MCUs, the design of the tools we describe in the
remainder of the paper remains the same. The quantitative discussion that follows refer to the
energy model we obtain for MSP430G2553 MCU, ; we find our conclusions to be equally valid for
MSP430G2xxx MCUs, based on repeating the same modeling procedures.

3.1 Modeling Clock Drift
We first describe the basic operation of the clock module on MSP430 MCUs.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

DCOx

1.2

1.45

1.7

1.95

2.2

2.45

2.7

2.95

3.2

3.45

F
re

qu
en

cy
 (

M
H

z) RSEL = 8

RSEL = 9

1.0%

1.54%

2.82%
1.65%

2.24%

3.53%
3.6 V
1.8 V

(a) Sensitivity of clock to voltage

0 2 4 6 8 10

of Power Cycles

0

2000

4000

6000

8000

10000

12000

U
nr

ep
re

se
nt

ed
 C

lo
ck

 C
yc

le
s

(b) Unrepresented clock cycles @ 8 MHz

Fig. 7. Clock behavior. (a) The sensitivity of clock to voltage increases for a given RSELx when the value of
DCOx is increased, as well as across increasing RSELx values. The percentage values represent the difference in
frequency between the two extremes of the operational voltage range; (b) The cup-shaped segments, with each cup
corresponding to a single power cycle, show that the number of unrepresented cycle increases with the decreasing
voltage of the capacitor. Charging times are omitted for brevity.

MSP430 clock module. As shown in Fig. 4(a), MSP430 MCUs employ a digitally controlled oscil-
lator (DCO) that can be configured to deliver frequencies from only a few KHz up to 16 MHz.
DCOs on MSP430 MCUs are configured using three parameters: RSELx, MODx, and DCOx,

which are together hosted in two MCU registers called DCOCTL and BCSCTL1. RSELx stands
for resistor-select and is used to configure the DCO for one of the sixteen nominal frequencies in
the range 0.06 MHz to 16 MHz. DCOx uses three bits to further subdivide the range selected by
RSELx into eight uniform frequency steps as shown in Fig. 4(b). Finally, MODx stands for DCO
modulator, and enables the DCO to switch between the configured DCOx and the next higher
frequency DCOx+1. The five bits of MODx define 32 different switching-frequencies, as depicted
in Fig. 4(c), to achieve fine-grained clock control.
Measurement procedure.Measuring clock speeds is challenging as the oscilloscope probes, when
hooked to the clock pin, perturb the DCO impedance. This results in fluctuating measurements.

We thus employ a verified software-based measurement approach used by Texas Instruments for
DCO calibration [29]. It consists in counting the number of MCU ticks within one clock cycle of an
external crystal oscillator, as shown in Fig. 5. In MSP430 MCUs, the external crystal oscillator is a
very stable clock source offering a frequency of 32.768 KHz. Since the time period of this oscillator
is greater than the time period of MCU ticks, we use it to count the number of MCU ticks during
its period.
We initialize the Capture/Compare register of Timer_A in the MSP430 to Capture mode. The

output of DCO is wired to this register and captures the value of Timer_A when a low-to-high
transition occurs on the reference signal, that is, the external oscillator. The captured value is the
number of clock cycles between two consecutive low-to-high transitions of the reference signal.
Empirical model. To comprehensively model the clock behavior, we sweep the parameter space
and empirically record the range of frequencies generated by different DCO configurations.

Altogether, 4096 discrete DCO frequencies can be generated using all possible combinations of
RSELx, DCOx, and MODx. As observed in Fig. 2, however, the supply voltage impacts the actual
clock speed given a certain clock configuration. For each of these 4096 configurations, we evaluate
this impact for the entire operational range of the MCU at 0.001V intervals, and record over 69,888
unique frequencies. These fine-grained measurements allow us to analyze the sensitivity of the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Ahmed et al.

clock to supply voltage, and ultimately derive an accurate model. Our analysis is centered around
two key question: i) is the sensitivity of changes in clock speed to changes in supply voltage consistent
across all frequencies? and ii) how essential is it to model the clock behavior?
To answer the first question, in Fig. 6(a) we plot the cumulative distribution of the percentage

difference in clock speed when the voltage drops from one extreme of the MCU’s operational voltage
range to the other, across all possible DCO settings that determine a given MCU frequency. The
arc-shaped curve in Fig. 6(a) implies that the sensitivity of changes in clock speed, which ranges
from ≈0% to ≈4.5% (x-axis), is not consistent across all frequencies.

We note, however, that this apparent inconsistency is not the outcome of a random clock behavior,
but a predictable DCO artefact that is observable in most low-power MSP430 MCUs. Fig. 7(a) shows
how clock speed changes for a given RSELx when DCOx increases, as well as across increasing
RSELx values, for the two extremes of the operational voltage range. TI designers confirm this
DCO drift pattern, which is conceded for power conservation and is specified as DCO tolerance.
The exact circuit design causing this behavior is protected by intellectual property [32].

To answer the second question, we quantify the number of clock cycles that a constant clock
model, that is, one that does not incorporate the changes in clock speed as the voltage drops, would
not account for. Fig. 7(b) shows that this figure increases linearly with every power cycle; more
than 10K clock cycles would be unrepresented in only ten power cycles. This could be extremely
critical for correctly designing and dimensioning systems that may undergo countless power cycles
throughout their lifetime.

3.2 Modeling Dynamic Power Consumption
Besides affecting the time component of the energy equation, changes in supply voltage and clock
speed also impact current draw, and hence power consumption. A precise current model is thus
crucial in determining accurate power consumption, as instantaneous power consumption is a
product of voltage and current. While the amount of current drawn by the MCU naturally decreases
with voltage and can be calculated using Ohm’s law, measuring the impact of changes in clock
speed on current draw is not immediate.

In MSP430 MCUs, clock speed is mainly controlled by the DCO impedance, which is controlled
using the parameters described earlier. This results in varying amounts of current drawn at different
frequencies. However, the impedance of the DCO, which can be modeled as an RLC circuit, cannot
be derived theoretically since the values of ohmic resistance and reactance are unknown.
Measurement procedure. Similar to the clock model, we employ an empirical approach to model
the cumulative impact of changes in supply voltage and clock speed on current consumption. Our
measurement setup includes a 0.1𝜇 ampere resolution multimeter, which measures and automati-
cally logs the current drawn by the MCU.

Since the correctness of measurements is critical to derive an accurate model, our approach also
caters for the burden voltage—the voltage drop across the measuring instrument. We add the burden
voltage (𝑉𝑏) to the supply 𝑉𝑠 . However, this leads to the current measurements of the MCU at a
higher voltage (𝑉𝑏+𝑉𝑠), whereas we need the current draw precisely at 𝑉𝑠 . As we know the values
of 𝑉𝑏 and the the current draw (𝐼𝑚), we calculate the resistance (𝑅𝑖) of the measuring instrument.
We then simply calculate the current draw of the MCU as 𝐼𝑚𝑐𝑢 = 𝐼𝑚 − 𝑉𝑏

𝑅𝑖
.

Empirical model. Unlike the sensitivity of clock to changing supply voltage in Fig. 6(a), the
current’s sensitivity to changes in clock speed and supply voltage is quite consistent and above
100% for a large fraction of frequencies, as shown in Fig. 6(b).

The inconsistent behavior for less than 20% observations is due to DCO’s unstable behaviors
for very slow frequency configurations (below 1 MHz), which are typically neither calibrated nor

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:9

Fig. 8. Model representations and their behavior compared to empirical measurements @ 8 MHz. Higher
precision lookup tables follow closely the actual measurements. The polynomial model rests within a 2% error
bound.

used with MSP430 MCUs [28]. Fig. 6(c) highlights the multiplicative impact of changes in supply
voltage and current on an MCU’s power consumption. Power consumption may vary as much as
3.5× within a single power cycle. This demonstrates that existing tools, as they fail to model such
behaviors, tend to be provide inaccurate inputs to the design and dimensioning of TPCs.

3.3 Model Representation
We consider two choices to represent the results of our measurements for either model. Either we
use a lookup table or train a model with RSELx, DCOx, MODx and supply voltage (V𝑠) as inputs.
The former is of course, exhaustive, but unlikely to fit on an embedded MCU with little main
memory, for example, to be used at run-time to implement energy-adaptive behaviors [12, 14]. For
instance, a large lookup table with a precision of three decimal places and a small lookup table with
a precision of one decimal place would consume 28 MB and 288 KB in main memory, respectively.
We thus also explore the derivation of a compact model based on linear regression able to fit

within the limited memory budget of embedded MCUs. We observe that a degree 7 polynomial is
sufficient to fit a model with error bound to ±6%. This can readily be reduced to ±1% with a degree
3 polynomial when used for common DCO frequencies such as 1 MHz, 8 MHz, and 16 MHz.
Figure 8 highlights the behavior of these different representations of the clock model during a

single power cycle. A large lookup table with 0.001V precision accurately follows the measurements,
whereas a small look up table with 0.1V precision predictablymimics a step function. The polynomial
model, in this particular setting, achieves an average error below 2%.

What model representation to employ is, therefore, to be decided depending on desired accuracy
and intended use. Compile-time or off-line analysis may use the lookup table representation, which
faithfully describes the results of our measurements. Whenever the models are to be deployed on an
embedded MCU with little memory, the polynomial model is way easier on memory consumption.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Ahmed et al.

Fig. 9. Dynamic vs. constant energy models @ 8 MHz. Depending on supply voltage, a constant model may
overestimate (shaded blue region) or underestimate (shaded red region) the energy available with a single discharge
of a 10𝜇F capacitor.

3.4 Summary of Findings
We conclude that modeling these dynamic behaviors is essential for designing and dimensioning
TPC systems, as accounting for them may lead to improved performance. Before providing quan-
titative evidence of this in Sec. 4 and Sec. 5, we reason about the general impact of the dynamic
model described above when compared with a range of assumed constant models in Fig. 9.
The green line in the middle shows the accurate prediction of energy consumption during a

single power cycle by our model. The shaded blue region represents the range of constant models
that overestimate energy consumption [8, 17, 20, 43]. Most existing tools lie on the left-most, dashed
blue line as they are designed for worst-case analysis, namely, they compute energy consumption
by assuming a constant input voltage at 3.6V. Systems designed and configured with these models
may significantly under-perform; for example, an overestimation of energy consumption may
lead to overly conservative placements of expensive checkpoint calls in the code [8, 43], as we
demonstrate in both Sec. 4 and Sec. 5.

Differently, the shaded red region below the green line shows the range of constant models that
would underestimate energy consumption, by considering a constant lower voltage within the
MCU’s operational range. TPC systems based on such models may fail; for example, an underesti-
mation of energy may lead to non-termination in task-based systems, where a wrongly-defined
task may require more energy than a capacitor can store [17].

4 EPIC
Based on our energy models, we develop EPIC: a compile-time analysis tool that accurately pre-
dicts energy consumption of arbitrary code segments. Existing solutions employ time-consuming
laboratory techniques [8], and yet they overlook the impact of variations in supply voltage. EPIC
provides this information in an automated fashion and by explicitly accounting for such dynamics.

4.1 Workflow
EPIC is implemented in two Java modules, the mapper and the analyzer, as shown in Fig. 10.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:11

Mapper

Analyzer

Source Code

Control Flow

Graph

Energy

Model

Assembly

Energy

Profile

get_sign:
SUB.W #4, R1
MOV.W #100, 2(R1)
MOV.W #1, @R1
CMP.W #100, 2(R1)
JNE .L3
MOV.B #1, R12
CMP.W @R1, R12
JL .L3
ADD.W #-5, 2(R1)
MOV.W 2(R1), R12
ADD.W R12, R12

1 …
2 void get_sign(){
3 int k = 100;
4 int x = 1;
5 if (k == 100 && x < 2){
6 k=k-5;
7 k=k*2;
8 k=k+3;
9 }
10 }
11 void main(){
12 get_sign();
13 }

"block_id" : “B1",
"starting_line" : 3,
"ending_line" : 5,
"1.9" : [5.3, 6.9],
...
"3.6" : [21.6, 28.0]

} {
"block_id" : "B2",
"starting_line" : 6,
"ending_line" : 8,
"1.9" : [5.6],
...

"3.6" : [22.9]

Voltage trace

/ Capacitor

Model

Energy

Consumption

(best/worst case)

En
ergy

co
n

su
m

p
tio

n
 (n

J)

V
o

lt
ag

e

Fig. 10. EPIC code instrumentation process. The mapper maps the assembly instructions to the corresponding
basic blocks in the source code and outputs a CFG and energy profile based on the models of Sec. 3. The analyzer
traverses the CFG to compute best- and worst-case estimates for a given fragment of code and capacitor size.

Mapper. Inputs for the mapper module are the empirical energy model, a portion of the source
code marked by developers for analysis, and the corresponding assembly code generated for a
specific platform. Instructing the compiler to include debugging symbols in the assembly allows the
mapper to establish a correspondence between each assembly instruction and the corresponding
source code line [34, 46]
The mapper initially analyzes the assembly code to find the basic blocks at the level of source

code that corresponds to a given set of assembly instructions. Using this mapping and information
on the number of MCU cycles required by each assembly instructions, EPIC computes the total
number of MCU cycles per basic block at the level of source code. Such a mapping process is
non-trivial; we defer a more detailed discussion to Sec. 4.2.
Next, the mapper relies on the empirical energy model to predict the energy consumption of

each basic block. The output of this step is a separate file, called energy profile, which contains the
energy consumption of each basic block at arbitrary supply voltages within the operational range
of the target MCU. We store this information in JSON format to facilitate parsing by compile-time
tools relying on the output of EPIC. Finally, the mapper also generates the control-flow-graph
(CFG) of the code using ANTLR.
Analyzer. The goal of the analyzer is to determine best- and worst-case estimates of energy
consumption for each node in the CFG. To that end, the analyzer takes as input the energy profile
output by the mapper and a trace of supply voltage values used to determine which value to choose
from the energy profile for a particular basic block. Two choices are available for this: either using
a capacitor model that simulates the underlying physics and specific (dis)charging behaviors, or
relying on a user-provided energy trace that indicates the state of capacitor’s charge over time.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Ahmed et al.

Similar to other compile-time tools, the best- and worst-case energy consumption estimates
are the best output EPIC can provide. Nevertheless, there are cases where these estimates depend
on run-time information; for example, in the presence of loops whose number of iterations is not
known at compile time. If a user-specified piece of code also includes any of these programming
constructs, EPIC prompts the user for ascertaining the number of loop iterations to be considered
in a given analysis.

4.2 Finding MCU Cycles per Basic Block
Established techniques exist to determine a mapping between basic blocks at the level of source
code and assembly instructions, for example, as used in simulation tools such as PowerTOSSIM [46]
and TimeTOSSIM [34]. These techniques, however, do not accurately handle cases where a given
basic block of source code may correspond to the execution of a variable number of instructions
in assembly; therefore, a single node in the CFG is translated into multiple basic blocks at the
assembly level. Short-circuit evaluation, for loops, and compiler-inserted libraries are examples
where issues manifest that may cause a loss of accuracy in energy estimates.

To handle these cases, EPIC further dissects the mapping process to extract additional information
useful to reason on the energy consumption of a given basic block, as described below.
Short-circuit evaluation. These include arbitrary concatenations of logical operators, such as
“&&” or “| |”, where the truth value of a pre-fix determines the truth value of the whole expression,
independent of the truth value of the post-fix. In these cases, the assembly code generated by the
compiler skips the evaluation of the post-fix part of the expression as soon as the pre-fix determines
the truth value of the whole expression.
To handle these cases, the mapper reports the energy consumption of all possible evaluations

of the statement involving these operators. This is shown in the energy profile of Fig. 10 for the
if statement at line 5 of the source code. Two separate values are reported for the corresponding
basic block (B1), one for only the pre-fix and one for the complete evaluation of the expression.

This information is then useful for the analyzer module, which may choose the appropriate value
depending upon the type of analysis required. For example, when considering the best-case energy
consumption, the analyzer considers the energy consumption for executing the minimal pre-fix
that determines the truth value. Differently, the analyzer accounts for the energy consumption of
executing every sub-expression when computing the worst case.
Loops using for. The execution of these loops may incur a different number of MCU cycles at
the first or at intermediate iteration(s). This is because the initialization of the loop variable is only
performed at the first iteration, whereas all other iterations incur the same number of MCU cycles
as they always perform the same operations; for example, incrementing a counter and checking its
value against a threshold.

The mapper accurately identifies the set of instructions needed for these two different types
of execution of the for(;;) statements, and reports them in the energy profile as two separate
entries for the corresponding basic block. The analyzer then utilizes this information to accurately
calculate the energy consumption of different loop iterations.
Compiler-inserted functions. For programming constructs that are not supported natively in
hardware, such asmultipliers and floating point support, compilers insert their own library functions
to emulate the desired functionality in software. However, the execution-time of these library
functions depends on their arguments. Since there are only a handful of such library functions
typically, we address this problem by profiling these with arbitrary inputs as function arguments
and record their best- and worst-case energy consumption.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:13

Table 1. EPIC accuracy.

Voltage Measured Energy Predicted Energy ErrorApplications (V) (𝜇J) (𝜇J) (%)
2.3 0.9016 0.9014 -0.03
2.5 1.0332 1.0354 0.21
3.0 1.5538 1.5556 0.12Bubble Sort

3.5 2.1960 2.1956 -0.02
2.3 0.3709 0.3697 -0.31
2.5 0.4267 0.4248 -0.45
3.0 0.6389 0.6382 -0.12CRC

3.5 0.9027 0.9007 -0.22
2.3 12.9904 13.0194 0.22
2.5 14.9520 14.9554 0.02
3.0 22.4640 22.4695 0.02FFT

3.5 31.5952 31.7129 0.37
2.3 37.3888 37.5609 0.46
2.5 42.9240 43.1463 0.52
3.0 64.3968 64.8247 0.66AES

3.5 90.9664 91.4920 0.58

These specific design choices enables EPIC to make only a single pass of the entire application
code to predict energy consumption. This improves scalability, as EPIC’s runtime only increases
linearly with the application size. Assessing the utility of EPIC for complex architectures, such as
MCUs with instruction pipelines and caches, is a potential challenge of unknown complexity and
we leave it as a future work.

We next evaluate the accuracy of energy profile information returned by EPIC across four
benchmark applications, before employing the entire EPIC workflow for compile-time analysis in
two concrete cases.

4.3 Microbenchmarks
We first investigate the accuracy of the energy profile information returned by the mapper module in
EPIC. In turn, this depends on i) the accuracy of the empirical energy model described in Sec. 3, and
ii) the effectiveness of the mapping techniques between source code and assembly code illustrated
in Sec. 4.2. Understanding whether the energy profiles are accurate is a stepping stone to investigate
the use of EPIC in a concrete case study.

Our benchmarks include open-source implementations of Bubblesort, CRC, FFT, and AES, which
are often employed for benchmarking embedded systems [22], and specifically system support for
TPCs [5, 33, 43]. We run each application on real hardware at different supply voltages and record
a per-basic-block trace of execution time and current draw to compute the energy consumption.

Table 1 compares the results returned by the mapper module of EPIC at different supply voltages
with the empirically measured ones on an MSP430G2553 running at 8 MHz. The error is generally
well below 1%. The results demonstrate that the information to the analyzer module is accurate, as
a result of the accuracy of the empirical model and the mapping between source code and assembly
we adopt.

4.4 EPIC with HarvOS
We integrate EPIC with HarvOS [8], an existing system support for TPCs. HarvOS relies on compile-
time energy estimates to insert system calls—termed triggers—that possibly execute a checkpoint
whenever a device is about to exhaust the available energy. The triggers include code to query the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Ahmed et al.

(a) HW setup.

Time (ms) #104
0 0.5 1 1.5 2 2.5

V
ol

ta
ge

 (
V

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Excerpt of the indoor light voltage trace.

Fig. 11. Voltage trace from indoor light using a mono-crystalline solar panel.

state of the energy buffer for deciding whether or not to checkpoint. Checkpoints are costly in
energy and additional execution time. Nonetheless, regardless of whether a checkpoint takes place,
these calls represent an overhead, as merely querying the energy buffer consumes energy [43].
In HarvOS [8], the placement of trigger calls is based on an efficient strategy that requires

a worst-case estimate of the energy consumption of each node in the CFG. Similar to existing
literature, HarvOS normally employs a manual instrumentation process based on a static energy
consumption model, namely, overlooking the dynamic behavior of power consumption and clock
speeds. We use EPIC to substitute for such manual instrumentation process.
Setup. We use two applications: i) an Activity Recognition (AR) application that recognizes human
activity based on sensor values, often utilized for evaluating TPC solutions [16, 36], and ii) an
implementation of the Advanced Encryption Standard (AES), which is one of the benchmarks used
in HarvOS to investigate its efficiency [8]. We execute EPIC by relying on two different types of
voltage traces as an input to the analyzer module.

First, we use a fundamental voltage trace often found in existing literature [7, 33, 43, 51]. The
device boots with the capacitor fully charged, and computes until the capacitor is empty again. In
the meantime, the environment provides no additional energy. Once the capacitor is empty, the
environment provides new energy until the capacitor is full again and computation resumes. This
energy provisioning pattern generates executions that are highly intermittent, namely, executions
that most paradigmatically differentiate TPCs from other embedded and mainstream platforms.
Further, this profile is representative of a staple class of TPC applications based on wireless energy
transfer [9]. With this technology, devices are quickly charged with a burst of wirelessly-transmitted
energy until they boot. Next, the application runs until the capacitor is empty again. The device
rests dormant until another burst of wireless energy comes in. We call this trace the decay trace.

Second, we use a voltage trace collected using a mono-crystalline high-efficiency solar panel [48],
placed on a desk and harvesting energy from light in an indoor lab environment, as shown in Fig. 11.
We use an Arduino Nano [4] to log the voltage output across the load, equivalent to the resistance
of an MSP430G2553 in active mode, attached to the solar panel. We call this trace the light trace.
Results. By comparing the features and the performance of HarvOS-instrumented code using the
manual energy profiling technique in the original HarvOS or EPIC, based on an MSP430G2553
running at 8MHz, we draw the following observations:
(1) Using EPIC, the number of trigger calls inserted by HarvOS in the original code reduces;
(2) Amore accurate code instrumentation due to EPIC leads to fewer checkpointing interruptions.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:15

Table 2. Features and performance of HarvOS-instrumented code with and without EPIC.

of
trigger calls

of
checkpoints

Speedup in
completion

Application Manual EPIC Manual EPIC time (%)
Decay Trace

AR 2 1 85 42 51.66
AES 3 0 2 0 354.97

Light Trace
AR 2 1 64 32 49.35
AES 3 0 1 0 203.31

The first two columns in Table 2 show the results of the instrumentation process when using the
smallest capacitor size needed to complete the given workloads. We consider this as TPCs typically
prefer smaller capacitors as energy buffer, because they reach the operating voltage more quickly
and yield smaller device footprints. However, if the capacitor is too small, a system may be unable
to complete checkpoints, ending up in a situation where applications cannot make any progress.

For the AR application, Table 2 indicates that EPIC’s accurate energy estimates halve the number
of trigger calls that HarvOS places in the code. This reduction occurs due to EPIC’s ability to
accurately model the varying number of clock cycles at different voltages that a static model would
not consider. As the voltage of the capacitor decreases, the speed of the clock increases. This results
in more clock cycles becoming available per unit of time at lower supply voltages. Not accounting
for such dynamic behavior significantly underestimates the number of clock cycles available within
a single time unit in conditions with low supply voltages.
The results for AES instrumentation are revealing: based on the energy estimates provided by

EPIC, HarvOS decides to place no trigger calls. This means EPIC indicates that the energy provided
by the capacitor is sufficient for the AES implementation to complete in a single power cycle,
and thus no checkpoints are ever necessary. This sharply contrasts the outcome of the HarvOS
compile-time analysis whenever based on the assumption of constant power consumption and
clock speed. In that case, HarvOS would still place three trigger calls within the AES code, uselessly
incurring the corresponding overhead. This shows how not accounting for the dynamic behaviors
represented by our energy model profoundly misguides compile-time analyses.

The impact of the trigger call placement with or without EPIC has marked consequences when
running the instrumented applications. The third and fourth columns in Table 2 show the corre-
sponding results for either voltage trace. The AR application instrumented by HarvOS based on the
energy estimates of EPIC completes the execution with nearly 50% fewer checkpoints. Similarly,
the successful completion of the AES implementation without a single checkpoint confirms the
validity of the energy estimates of EPIC, which prompted HarvOS not to place any trigger call.

Checkpoint operations are extremely energy consuming, as they incur operations on non-volatile
memory. Fewer checkpoints allow the system to spend the corresponding energy budget in useful
computation cycles, which are otherwise wasted due to inaccurate insertion of trigger calls in the
original HarvOS. Thus, the system progresses faster towards the completion of the workload. The
right most column in Table 2 quantifies the benefits in terms of speedup of completion time for the
given workload, primarily enabled by correct dimensioning of HarvOS using EPIC.

Fig. 12 further investigates the execution of either application at increasing capacitor sizes. These
results affirm that the benefits of using EPIC within HarvOS are not just limited to the smallest
capacitor that ensures completion of a given code. The apparent outlier at 40uF in Fig. 12(b) is due
to a specific behavior of HarvOS whenever larger capacitors simultaneously yield a change in the
placement of trigger calls and in their overall number [8]. For the AR application, the corresponding

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Ahmed et al.

Capacitor (uF)
15 20 25 30 35 40 45 50

of

 c
he

ck
po

in
ts

0

20

40

60

80

100

120 Manual
EPIC

(a) AR with decay trace.

Capacitor (uF)
10 20 30 40 50

of

 c
he

ck
po

in
ts

0

20

40

60

80

100

120 Manual
EPIC

(b) AR with light trace.

Capacitor (uF)
5 10 15 20 25 30 35

of

 c
he

ck
po

in
ts

0

1

2

3

4

5

Manual
EPIC

(c) AES with decay trace.

Capacitor (uF)
5 10 15 20 25 30 35

of

 c
he

ck
po

in
ts

0

1

2

3

4

5

Manual
EPIC

(d) AES with light trace.

Fig. 12. HarvOS results. The benefits of using EPIC within HarvOS apply across different capacitor sizes.

speedup in completion time range from 14% at 35uF with the decay trace, to 159% at 40uF using
the light trace. For the AES implementation, the figures in Table 2 already show the performance
range, as no checkpoints are needed using capacitors larger than 20uF.
Finally, Fig. 12 also shows that in a number of situations, the compile-time instrumentation

generated by HarvOSwhen using the energy estimates of EPIC yields an operational system at much
smaller capacitor sizes, as compared with the original HarvOS. The cost for the overly-conservative
estimations in the latter, based on static power consumption and clock speeds, materializes in the
inability to make any progress in these applications when using small capacitors. In contrast, EPIC
captures the dynamic behavior of these figures and offers accurate estimations to HarvOS; this
results in more informed decisions on trigger call placement and on whether to checkpoint when
executing a trigger call.

4.5 EPIC with CleanCut
An alternative to using automated placement of trigger calls is to employ task-based programming
abstractions offering transactional semantics [16, 36, 38]. Programmers are to manually define tasks
that are guaranteed to either complete by committing their output to non-volatile memory or to
have no effect on program state.
CleanCut [17] is a compile-time tool that helps programmers using these abstractions identify

non-termination bugs. These exist whenever a task definition includes execution paths whose
energy cost exceeds the maximum available energy, based on capacitor size. In these cases, if no

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:17

Table 3. CleanCut non-termination bug warnings with and without EPIC.

Application Task
boundaries Paths CleanCut

warnings
EPIC

warnings
AR 4 147 8 0
RSA 4 8 3 0
CF 11 25 0 0
CEM 11 20 0 0

new energy is harvested while the task executes, that may never complete and thus the program
ends up in a livelock situation, always resuming from the task beginning.
CleanCut relies on an energy model obtained through hardware-assisted profiling. The model

estimates the energy consumption of each basic block at near maximum voltage supply, to avoid
underestimations. The estimates are then convoluted across the possible execution paths in a task to
find energy distributions for individual tasks. Based on this, CleanCut returns warnings whenever
it suspects a non-termination bug. Programmers must then defend against these; for example,
by refactoring the code to define shorter tasks. This is not just laborious, but also detrimental to
performance, as every task boundary incurs significant energy overhead due to committing a task’s
output on non-volatile memory.
Colin et al. [17] argue that an analytical model may provide more accurate warnings, but was

out of scope. Using EPIC with CleanCut, we prove this argument. For long execution paths in a task
that use the capacitor to near depletion, the difference between the actual used energy—accurately
modeled by EPIC—and CleanCut’s estimations obtained as described above, can be significant. This
results in false positives, that is, non-termination bugs are suspected for paths that may safely
complete with the given energy budget. Such warnings simply do not appear using EPIC.
Setup.We use the same applications as in CleanCut [17]: i) an Activity Recognition (AR) application
similar to Sec. 4.4, ii) a Cuckoo Filter (CF) that efficiently tests set membership, iii) a Coldchain
Equipment Monitor (CEM) application, and iv) an implementation of the RSA algorithm.
The placement of task boundaries is the one of CleanCut [17]. We then estimate the energy

consumption of every possible execution path in a task using CleanCut with EPIC, compared with
CleanCut using a synthetic model that safely approximates that of CleanCut, whose hardware and
source code are not available. This model follows the recommendation that the energy consumption
of each basic block should be estimated near the maximum voltage to avoid underestimations [17].
We use a 10𝜇F capacitor, which can be found on Intel WISP 4.1 devices, and consider an

MSP430G2553 running at 8 MHz.
Results. Table 3 summarizes our results, which are further detailed in Fig. 13. By comparing how
CleanCut and CleanCut using EPIC build up the energy estimates for a task, we note that the
two start identical, but as paths become longer and nears the capacitor’s limit, CleanCut starts to
overestimate. This is because it uses the same energy model for every basic block, regardless of
where it appears on the path.

The results for the AR application in Fig. 13(a) indicate that CleanCut returns eight false positives,
in that it estimates the energy consumption of those paths to exceed the available capacitor energy.
Developers would then need to break those tasks in smaller units, investing additional design and
programming effort, and causing increased overhead at run-time due to more frequent commits
to non-volatile memory at the end of shorter tasks. This is not the case with CleanCut using
EPIC, which verifies that the same execution paths may complete successfully. This means the
task placement includes no non-termination bugs; therefore, developers need not to spend any

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Ahmed et al.

5 10 15 20

Path

0

10

20

30

40

50

60

E
ne

rg
y

(u
J) 2

2.5

3

3.5 C
ap

ac
ito

r
V

ol
ta

ge
 (

V
)

CleanCut
CleanCut + EPIC
Device Capacity

(a) Activity Recognition (AR).

1 2 3 4 5 6 7 8

Path

0

10

20

30

40

50

60

E
ne

rg
y

(u
J) 2

2.5

3

3.5 C
ap

ac
ito

r
V

ol
ta

ge
 (

V
)

CleanCut
CleanCut + EPIC
Device Capacity

(b) RSA.

0 5 10 15 20 25

Path

0

10

20

30

40

50

60

E
ne

rg
y

(u
J) 2

2.5

3

3.5 C
ap

ac
ito

r
V

ol
ta

ge
 (

V
)

CleanCut
CleanCut + EPIC
Device Capacity

(c) Cuckoo Filter (CF).

5 10 15 20

Path

0

10

20

30

40

50

60

E
ne

rg
y

(u
J) 2

2.5

3

3.5 C
ap

ac
ito

r
V

ol
ta

ge
 (

V
)

CleanCut
CleanCut + EPIC
Device Capacity

(d) CEM.

Fig. 13. CleanCut results. Using EPIC allows CleanCut to avoid false positives when looking for non-termination
bugs.

additional effort and the system runs with better energy efficiency. Similar considerations apply
to the case of the RSA algorithm, wherein CleanCut returns three false positives, as shown in
Fig. 13(b).

In the case of CF, processing is generally lighter compared to AR and RSA. Further, the existing
task definition includes very short tasks already. As a result, the estimates of CleanCut and CleanCut
using EPIC are close to each other, as shown in Fig. 13(c) No warnings for possible non-termination
bugs are returned in either case. Similar considerations apply also to the CEM application, whose
results are shown in Fig. 13(d).

CleanCut also provides a task boundary placer that automatically breaks long tasks. We cannot
evaluate the impact of EPIC there, since the implementation is not available, but we argue that the
benefits would be even higher. In fact, CleanCut’s placer is actively trying to bring task definitions to
their optimal energy point, that is, closer to the capacitor limit. This is precisely where the difference
in estimates between CleanCut and CleanCut with EPIC is maximum. Thus, the probability of
paths landing in the region where CleanCut declares a task to be too long, but CleanCut using
EPIC says the opposite, is likely higher compared to checking a manual placement.

5 MSPsim++
While compile-time analysis is important early on, testing down the road may necessitate cycle-
accurate emulation to understand the run-time behavior.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:19

We demonstrate the role of our energy models in this context within MementOS [43], an
existing system support for TPCs that heavily relies on emulation to determine when a checkpoint
is to be taken. Enabling this investigation is MSPsim++, an extension to the existing MSPsim
emulator [20] for MSP430 MCUs. Our analysis reveals the enormous discrepancies that might arise
in the performance of MementOS-supported applications by disregarding the dynamic behaviors
of power consumption and clock speed.

5.1 Design
MSPsim is a widely used Java-based instruction level emulator for MSP430-based platforms. Its
energy prediction model is based on static power consumption and clock speed. We replace these
with our own energy model, described in Sec. 3, and refer to this extension as MSPsim++. The
capacitor model we use is borrowed from MementOS [43].
Computing the energy figures during an execution proceeds as follows. At the conclusion of

each instruction execution, MSPsim++ subtracts the energy consumed by its execution from the
capacitor. Next, it calculates the new supply voltage based on the capacitor model, and uses the
new supply voltage value as the index into a table-based model representation at 0.1V resolution, as
explained in Sec. 3.3. With the updated power consumption and clock speed, MSPsim++ executes
the next instruction. This means MSPsim++ emulates the dynamic behaviors of supply voltage,
power consumption, and clock speed on a per-instruction basis. In an instruction-level emulator,
this is the finest possible granularity.

Cycle-accurate emulation does not suffer from the potential inaccuracies in mapping source code
to assembly and back, described in Sec. 4.2. MSPsim++ executes the exact same binary instructions
the real hardware executes. Therefore, our model integration in MSPsim++ is inherently more
accurate than then compile-time results illustrated in Table 1.

5.2 MSPsim++ with MementOS
MSPsim++ replaces the original MSPsim inMementOS. UsingMSPsim++, we seek to understand the
impact of modeling the dynamic behaviors of power consumption and clock speed on MementOS-
supported applications.
Setup.MementOS uses checkpointing to protect a program from state losses due to energy depletion.
The decision to checkpoint is based on a voltage threshold obtained through repeated emulation
experiments and user-supplied voltage traces. These experiments use MSPsim to try and execute a
MementOS-supported program with progressively decreasing thresholds to trigger checkpoints.
This procedure returns the lowest threshold leading to completion of the program, with what is
estimated to be the minimum number of required checkpoints.

Our two benchmarks use the same code base as the original MementOS [43], and are3: i) Cyclic
Redundancy Check (CRC) that computes a CRC16-CCITT checksum over a 2 KB region of flash
memory, and ii) RSA cryptography that uses iterative left-to-right modular exponentiation of
multiple-precision integers to encrypt a 64-bit message under a 64-bit public key and 17-bit exponent.
In both cases, the results we discuss next use the “function call” strategy to inline the calls that
possibly checkpoints [43]. We obtain similar results using other MementOS strategies. Similarly,
these two benchmarks provide sufficient insights to generalize our conclusions. Although we
evaluated many other applications, their results did not offer any newer insights.

3The results in [43] are not repeatable because neither the specific hardware platform nor the tools used for integration of
MementOS with MSPsim are supported anymore. We contacted the hardware supplier and the MementOS developers, who
encouraged us to apply the corresponding upgrades in the hardware and software tool-chain.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Ahmed et al.

Table 4. Parameter setting and performance of MementOS applications with MSPsim or MSPsim++.

Vthresh (V) # of
checkpoints

Speedup in
completion

Apps MSPsim MSPsim++ MSPsim MSPsim++ time (%)
Decay Trace

CRC 3.0 2.3 64 9 392.88
RSA 3.4 2.4 42 3 152.76

Light Trace
CRC 3.1 2.4 9 2 715.16
RSA 3.3 2.2 4 0 1037.43

We analyze the behavior of MementOS using either MSPsim or MSPsim++. We expect the voltage
threshold determined at the end of these emulation experiments to be significantly lower using
MSPsim++, since it recognizes the gain in clock speed and reduction in power consumption as the
voltage supply drops. We use the same decay and light traces used in Sec. 4.4 as input.
Results. The outcome of our investigation leads us to the following observations when using an
MSP430G2553 running at 8MHz:
(1) MSPsim++ causes MementOS to use lower voltage thresholds to trigger a checkpoint;
(2) Lower voltage thresholds reduce the run-time checkpointing overhead, shifting the energy

budget to useful computations.
The two left-most columns in Table 4 are obtained by considering the smallest capacitor size

where MementOS using MSPsim or MSPsim++ is operational.
The voltage thresholds confirm our hypothesis; as the original MSPsim does not model the

dynamic behaviors of power consumption and clock speeds, the corresponding thresholds are
overly conservative. Intuitively, with this configuration, MementOS would trigger a checkpoint too
early: the execution might continue and a checkpoint be triggered later, once the supply voltage
dropped further, and still complete successfully. In contrast, MSPsim++ returns lower voltage
thresholds due to a more accurate modeling of energy consumption. A lower threshold means that
part of the energy budget may be shifted from checkpointing operations to useful computations, as
the checkpointing can be delayed until the capacitor voltage reaches a lower value.
This behavior shows in the the next three columns of Table 4. Lower thresholds enable the

system to complete the application execution with up to one order of magnitude fewer checkpoints.
As a result, available energy is rather spent for useful computations, thus making faster progress
towards the completion of the workload. The corresponding speedup reaches more than 1000%.

Fig. 14 confirms that these improvements apply across different capacitor sizes. The difference in
voltage thresholds is less pronounced as the capacitor size increases. A little analogy may help:
say a capacitor is akin to a water reservoir, and voltage represents the vertical level of water.
With bigger capacitors (reservoirs), even a small difference in voltage may correspond to a large
amount of energy (water). Thus, the difference in voltage thresholds derived using MSPsim or
MSPsim++ shrinks. In the tests of Fig. 14, for the CRC implementation, the minimum speedup in
completion time is 51% at 30uF with the light trace, whereas Table 4 shows the maximum. For the
RSA implementation, the speedup range from 279% at 25uF with the decay trace, to 1264% at 30uF
with the light trace.

Similar to the investigation of EPIC within HarvOS in Sec. 4, Fig. 14 shows that the energy
estimates of MSPsim++ allow MementOS to become operational using smaller capacitor sizes.
Similar considerations as in Sec. 4.4 apply here.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:21

Capacitor (uF)
5 10 15 20 25 30

of

 c
he

ck
po

in
ts

0

10

20

30

40

50

60

70

MSPsim
MSPsim++

2.4 V
2.5 V

2.6 V

2.7 V

2.5 V

2.3 V
2.3 V 2.3 V 2.3 V 2.3 V

3 V

(a) CRC with decay trace.

Capacitor (uF)
5 10 15 20 25 30

of

 c
he

ck
po

in
ts

0

10

20

30

40

50

60

70

MSPsim
MSPsim++

2.8 V 2.7 V 2.6 V 2.5 V
3.1 V3.5 V

2.5 V 2.4 V 2.3 V 2.3 V 2.3 V

(b) CRC with light trace.

Capacitor (uF)
5 10 15 20 25 30

of

 c
he

ck
po

in
ts

0

10

20

30

40

50
MSPsim
MSPsim++

3.2 V

2.8 V
2.9 V

3.4 V

2.6 V 2.4 V 2.3 V 2.3 V 2.2 V

3.4 V

(c) RSA with decay trace.

Capacitor (uF)
5 10 15 20 25 30

of

 c
he

ck
po

in
ts

0

10

20

30

40

50

MSPsim
MSPsim++

3.3 V 3 V 2.9 V
2.2 V 2.2 V 2.2 V

2.8 V

(d) RSA with light trace.

Fig. 14. MementOS results. Across different capacitor sizes, MSPsim++ constantly indicates lower voltage
thresholds than MSPsim.

6 DISCUSSION
We demonstrate that static models for estimating energy consumption of TPCs lead to overly-
conservative designs and parameter settings, which yield sub-optimal performance. We provide
next due considerations on how our work is cast in the larger TPC domain.
MCUs andperipherals.We focus on theMCU as it coordinates the functioning of the entire system
when using the emerging federated energy architectures [25]. For the MCU, accurately forecasting
the energy cost of a certain fragment of code is key to dimensioning capacitors and setting its
running frequency. Peripheral operation may be postponed when the energy is insufficient, or the
system may impose atomic executions on peripheral operations [16, 38]. Dedicated works exist
that ensures the correct intermittent operation of peripherals [11, 37, 47, 52].
We also model the active mode of the MCU as this is the only mode where the MCU executes

the code [50]. TPCs primarily use this mode to maximize throughput during power cycles that may
be as short as a few ms. Other low-power modes are typically used in battery-powered platforms
for conserving energy when idle.
Voltage regulation. Voltage regulators are commonly found in computer power supplies to
stabilize the supply voltage. Despite the availability of efficient voltage regulators with minimal
dropout [30], they are typically not employed in TPCs [25] because step-up regulators reduce the
power cycle duration and step-down regulators can critically fail some on-chip components.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Ahmed et al.

When deployingMementos [43] on the voltage-regulatedWISP platform, the authors report a 50%
reduction in the duration of power cycles when using a 2.8V step-up regulator, and checkpointing
failures with a 1.8V step-down regulator due to failing to meet the voltage requirements of flash
memory. An open research question is what are the conditions, for example, in terms of energy
provisioning patterns, where the trade-off exposed by dynamic voltage regulation play favorably.
Generality. Our work has, nonetheless, limitations. The empirical evidence we provide is focused
on MSP430-class MCUs. Despite their popularity especially in TPCs, they still represent a specific
instance in a potentially vast landscape.
We maintain, however, that our work does have a foundational nature. The contribution we

provide is ultimately more general than embodied in concrete systems. The measurement method-
ology we employed to derive the empirical model is applicable to other MCUs. Once an energy
model is derived for other MCUs, the design of EPIC and MSPsim++ remains the same.

7 RELATEDWORK
Static models for supply voltage, power consumption, and clock speed tend to prevail in existing
literature. This is particularly true for compile-time tools, simulators, and emulators. These are
often used as input to other systems [8, 43] or to guide the programming activities [16, 36, 38]. The
influence of inaccurate models thus percolates down to the run-time performance.
High-level simulation. Popular network simulators, such as ns3 and OMNeT++, may employ
various energy harvesting models [6, 45, 49]. These tools are, however, unable to capture the node
behavior in a cycle-accurate manner and rather rely on simple approximations, such as coarse-grain
estimations of a node’s duty cycle, to enable analysis of energy consumption. These approximations
do adopt the assumption of static voltage supply.

Alizai et al. [1] extend PowerTOSSIM [46] with a framework that can be plugged-in with different
types of energy harvesting models to simulate networked TPCs. They rely on existing models of
PowerTOSSIM, which are derived from static power consumption measurements of different device
components in different operational modes. This would yield inaccuracies akin to Sec. 5.
Cycle-accurate emulation. SensEH [18] extends the COOJA/MSPsim framework with models of
photovoltaic harvester, obtained using sunlight and artificial light traces from a sensor network
deployment inside a road tunnel. The authors explicitly mention the use of a static power consump-
tion and clock speed models. As it is also based on MSPsim, SensEH may benefit from our work on
MSPsim++ as much as MementOS.

There exist numerous similar efforts for emulating the behavior of energy harvesting in different
environments [13, 19, 39, 40]. Allen et al. [2] compare many of these with each other and discuss
their limitations with regard to the representation of energy harvesting dynamics and power
consumption modeling. They also emphasize the need for more accurate modeling, simulation, and
emulation techniques for TPCs, which we provide here.
Hardware emulation. To improve the accuracy of pre-deployment analysis, existing works
explore the use of direct hardware emulation for TPCs. For example, Ekho [24] is a hardware
emulator capable of recording energy harvesting traces in the form of current-voltage surfaces and
accurately recreating those conditions in the lab. This allows developers to generate harvesting-
dependent program behaviors. Ekho is also shown to integrate with MSPsim to serve as input to
its capacitor model [21] . This integration would suffer from the same issues we point out in Sec. 5
and would similarly benefit from MSPsim++.

Custom hardware debuggers [15] for TPCs also exist. Such tools offer the highest accuracy due
to their direct installation on the target hardware platform. However, they do not offer the level of

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

EPIC 1:23

convenience and automation desired at the early stages of development. Ideally, accurate compile-
time analysis tools such as EPIC and high-fidelity emulators like MSPsim++ should complement
in-field debugging.

8 CONCLUSION
We demonstrated that it is practically possible to capitalize on the dynamic energy consumption
patterns of TPCs. We experimentally built an accurate energy model, accounting for variations
in power consumption and clock speed. The instruments we used to quantify the impact of these
models are: i) EPIC, a compile-time tool based on our energy model that, when used with HarvOS
or CleanCut, allows the former to achieve up to 350% speedup in workload completion times, while
avoiding unnecessary program changes that ultimately hurt energy efficiency with latter, and
ii) MSPsim++, an extension to the popular MSPsim emulator that allows us to show inaccurate
parameter settings in the original MementOS, resulting in more than 1000% speedup in workload
completion times.
Based on the evidence we collect with EPIC and MSPsim++, we conclude that it is possible to

account for the dynamic behaviors of energy consumption without sacrificing simplicity of analysis.
In both cases, the modifications to existing systems were limited to the energy estimation tool, and
did not impact other functionality.
Acknowledgments. This research has been partially supported by the Swedish Foundation for
Strategic Research (SSF).

REFERENCES
[1] Muhammad Hamad Alizai, Qasim Raza, Yasra Chandio, Affan A. Syed, and Tariq M. Jadoon. 2016. Simulating

Intermittently Powered Embedded Networks. In Proceedings of the 2016 International Conference on Embedded Wireless
Systems and Networks (EWSN ’16). Junction Publishing, USA, 35–40.

[2] James Allen, Matthew Forshaw, and Nigel Thomas. 2017. Towards an Extensible and Scalable Energy Harvesting
Wireless Sensor Network Simulation Framework. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion (ICPE ’17 Companion). ACM, New York, NY, USA, 39–42.

[3] Patricia Anacleto, PM Mendes, E Gultepe, and DH Gracias. 2012. 3D small antenna for energy harvesting applications
on implantable micro-devices. In Antennas and Propagation Conference (LAPC). IEEE, 1–4.

[4] ARDUINO. 2018. NANO. https://store.arduino.cc/usa/arduino-nano (accessed 2018-10-28).
[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide Brunelli, and Luca Benini. 2015.

Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting Systems. Embedded Systems
Letters 7, 1 (2015).

[6] David Benedetti, Chiara Petrioli, and Dora Spenza. 2013. GreenCastalia: An Energy-harvesting-enabled Framework
for the Castalia Simulator. In Proceedings of the 1st International Workshop on Energy Neutral Sensing Systems (ENSSys
’13). ACM, New York, NY, USA, Article 7, 6 pages.

[7] Naveed Bhatti and Luca Mottola. 2016. Efficient state retention for transiently-powered embedded sensing. In
International Conference on Embedded Wireless Systems and Networks. 137–148.

[8] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instrumentation for transiently-powered
embedded sensing. In Information Processing in Sensor Networks (IPSN), 2017 16th ACM/IEEE International Conference
on. IEEE, 209–220.

[9] Naveed Anwar Bhatti, Affan Ahmed Syed, and Muhammad Hamad Alizai. 2014. Sensors with Lasers: Building a WSN
Power Grid. In Proc. 13𝑡ℎ Int. Symp. Information Processing in Sensor Networks (IPSN ’14). 261–272.

[10] Naveed Anwar Bhatti, Affan Ahmed Syed, Muhammad Hamad Alizai, and Luca Mottola. 2016. Energy Harvesting and
Wireless Transfer in Sensor Network Applications: Concepts and Experiences. ACM Transactions on Sensor Networks
(TOSN) (2016).

[11] Adriano Branco, LucaMottola,MuhammadHamadAlizai, and JunaidHaroon Siddiqui. 2019. Intermittent Asynchronous
Peripheral Operations. In Proceedings of the 17th ACM International Conference on Embedded Networked Sensor Systems
(SenSys).

[12] Michael Buettner, Benjamin Greenstein, and David Wetherall. 2011. Dewdrop: An Energy-Aware Runtime for Compu-
tational RFID. In Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2011, Boston, MA, USA, March 30 - April 1, 2011.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://store.arduino.cc/usa/arduino-nano

1:24 Ahmed et al.

[13] Andrea Castagnetti, Alain Pegatoquet, Cécile Belleudy, and Michel Auguin. 2012. A framework for modeling and
simulating energy harvesting WSN nodes with efficient power management policies. EURASIP J. Emb. Sys. 2012 (2012),
8.

[14] Geoffrey Werner Challen, Jason Waterman, and Matt Welsh. 2010. IDEA: Integrated Distributed Energy Awareness
for Wireless Sensor Networks. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services (MobiSys ’10). ACM, New York, NY, USA, 35–48.

[15] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. 2016. An Energy-interference-free Hardware-
Software Debugger for Intermittent Energy-harvesting Systems. SIGOPS Oper. Syst. Rev. 50, 2 (March 2016), 577–589.

[16] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent Programs. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 514–530. https://doi.org/10.1145/2983990.2983995

[17] Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposition for task-based intermittent
programs. In Proceedings of the 27th International Conference on Compiler Construction. ACM, 116–127.

[18] Riccardo Dall’Ora, Usman Raza, Davide Brunelli, and Gian Pietro Picco. 2014. SensEH: From simulation to deployment
of energy harvesting wireless sensor networks. In IEEE 39th Conference on Local Computer Networks, Edmonton, AB,
Canada, 8-11 September, 2014 - Workshop Proceedings. 566–573.

[19] Amine Didioui, Carolynn Bernier, Dominique Morche, and Olivier Sentieys. 2013. HarvWSNet: A co-simulation
framework for energy harvesting wireless sensor networks. In International Conference on Computing, Networking and
Communications, ICNC 2013, San Diego, CA, USA, January 28-31, 2013. 808–812.

[20] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and Thiemo Voigt. 2007. Mspsim–an extensible
simulator for msp430-equipped sensor boards. In Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Vol. 118.

[21] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber. 2016. Realistic Simulation for Tiny Batteryless Sensors.
In Proceedings of the 4th International Workshop on Energy Harvesting and Energy-Neutral Sensing Systems (ENSsys’16).
ACM, New York, NY, USA, 23–26.

[22] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown. 2001.
MiBench: A free, commercially representative embedded benchmark suite. InWorkload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on. IEEE, 3–14.

[23] Joaquín Gutiérrez, Juan Francisco Villa-Medina, Alejandra Nieto-Garibay, and Miguel Ángel Porta-Gándara. 2014.
Automated irrigation system using a wireless sensor network and GPRS module. IEEE transactions on instrumentation
and measurement 63, 1 (2014), 166–176.

[24] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeatable Experimentation for Tiny
Energy-harvesting Sensors. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems (SenSys
’14). ACM, New York, NY, USA, 1–15.

[25] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys). ACM, 19.

[26] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless, Intermittent, and Awesome. In Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys ’17). ACM, New York, NY, USA, Article 21,
6 pages.

[27] Paul Horowitz and Winfield Hill. 1989. The art of electronics. Cambridge Univ. Press.
[28] Texas Instruments. 2018. Getting Started with the MSP430 LaunchPad. https://goo.gl/6ueTEC (accessed 2018-10-28).
[29] Texas Instruments. 2018. Manual. http://www.ti.com/lit/an/slaa336a/slaa336a.pdf (accessed 2018-03-08).
[30] Texas Instruments. 2018. Power-management integrated chip (PMIC). https://goo.gl/45psWK (accessed 2018-10-28).
[31] Texas Instruments. 2018. TI E2E Coummunity. https://goo.gl/XxrhN3 (accessed 2018-10-28).
[32] Texas Instruments. 2018. TI E2E Coummunity. https://goo.gl/dPbNkJ (accessed 2018-10-28).
[33] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015. QuickRecall: A HW/SW Approach

for Computing Across Power Cycles in Transiently Powered Computers. J. Emerg. Technol. Comput. Syst. 12, 1 (2015).
[34] Olaf Landsiedel, MuhammadHamadAlizai, and KlausWehrle. 2008. When TimingMatters: Enabling Time Accurate and

Scalable Simulation of Sensor Network Applications. In Proceedings of the 7th International Conference on Information
Processing in Sensor Networks, IPSN 2008, St. Louis, Missouri, USA, April 22-24, 2008. 344–355. https://doi.org/10.1109/
IPSN.2008.31

[35] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. 2017. Intermittent Computing:
Challenges and Opportunities. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 8:1–8:14.

[36] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming and Execution Model for Intermittent
Systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (PLDI ’15). ACM, New York, NY, USA, 575–585. https://doi.org/10.1145/2737924.2737978

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2983990.2983995
https://goo.gl/6ueTEC
http://www.ti.com/lit/an/slaa336a/slaa336a.pdf
https://goo.gl/45psWK
https://goo.gl/XxrhN3
https://goo.gl/dPbNkJ
https://doi.org/10.1109/IPSN.2008.31
https://doi.org/10.1109/IPSN.2008.31
https://doi.org/10.1145/2737924.2737978

EPIC 1:25

[37] Giedrius Lukosevicius, Alberto Rodriguez Arreola, and Alex S Weddell. 2017. Using sleep states to maximize the active
time of transient computing systems. In Proceedings of the Fifth ACM International Workshop on Energy Harvesting and
Energy-Neutral Sensing Systems (EnSys). ACM, 31–36.

[38] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent Execution Without Checkpoints. Proc.
ACM Program. Lang. 1, Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Article 96
(Oct. 2017), 30 pages.

[39] Geoff V. Merrett, Neil M. White, Nick R. Harris, and Bashir M. Al-Hashimi. 2009. Energy-Aware Simulation for Wireless
Sensor Networks. In Proceedings of the Sixth Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, SECON 2009, June 22-26, 2009, Rome, Italy. 1–8.

[40] Pieter De Mil, Bart Jooris, Lieven Tytgat, Ruben Catteeuw, Ingrid Moerman, Piet Demeester, and Ad Kamerman. 2010.
Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale
Electronic Shelf-Labeling Wireless Sensor Network. EURASIP J. Wireless Comm. and Networking 2010 (2010).

[41] Kevin J Nowka, Gary D Carpenter, Eric W MacDonald, Hung C Ngo, Bishop C Brock, Koji I Ishii, Tuyet Y Nguyen, and
Jeffrey L Burns. 2002. A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic
frequency scaling. IEEE Journal of Solid-State Circuits 37, 11 (2002), 1441–1447.

[42] Padmanabhan Pillai and Kang G Shin. 2001. Real-time dynamic voltage scaling for low-power embedded operating
systems. In ACM SIGOPS Operating Systems Review, Vol. 35. ACM, 89–102.

[43] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support for Long-running Computation on
RFID-scale Devices. In Proc. 16𝑡ℎ Int. Conf. Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). 159–170.

[44] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, Joshua R Smith, et al. 2008. Design of
an RFID-Based Battery-Free Programmable Sensing Platform. IEEE Transactions on Instrumentation and Measurement
57, 11 (2008).

[45] Antonio Sánchez, Salvador Climent, Sara Blanc, Juan Vicente Capella, and Ignacio Piqueras. 2011. WSN with Energy-
harvesting: Modeling and Simulation Based on a Practical Architecture Using Real Radiation Levels. In Proceedings of
the 6th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks
(PM2HW2N ’11). ACM, New York, NY, USA, 17–24.

[46] Victor Shnayder, Mark Hempstead, Bor-Rong Chen, and Matt Welsh. 2004. PowerTOSSIM: Efficient Power Simulation
for TinyOS Applications. In Proceedings of the ACM Conference on Embedded Network Sensor Systems (SenSys).

[47] Rebecca Smith and Scott Rixner. 2015. Surviving Peripheral Failures in Embedded Systems.. In USENIX Annual Technical
Conference. 125–137.

[48] IXYS SolarMD. 2018. SLMD481H08L. http://ixapps.ixys.com/ (accessed 2018-10-28).
[49] Cristiano Tapparello, Hoda Ayatollahi, and Wendi Heinzelman. 2014. Energy Harvesting Framework for Network

Simulator 3 (Ns-3). In Proceedings of the 2Nd International Workshop on Energy Neutral Sensing Systems (ENSsys ’14).
ACM, New York, NY, USA, 37–42.

[50] TI. 2018. Data Sheet. http://www.ti.com/lit/ds/symlink/msp430g2353.pdf (accessed 2018-02-18).
[51] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation Without Hardware Support or Programmer

Intervention. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 17–32. http://dl.acm.org/citation.cfm?id=3026877.3026880

[52] Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper, Przemyslaw Pawelczak, and Josiah
Hester. 2018. InK: Reactive Kernel for Tiny Batteryless Sensors. In Proceedings of the ACM Conference on Embedded
Network Sensor Systems (SenSys).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://ixapps.ixys.com/
http://www.ti.com/lit/ds/symlink/msp430g2353.pdf
http://dl.acm.org/citation.cfm?id=3026877.3026880

