
1

Fast and Energy-efficient State Checkpointing for
Intermittent Computing

SAAD AHMED, Lahore University of Management Sciences (LUMS), Pakistan
NAVEED ANWAR BHATTI, Air University, Pakistan
MUHAMMAD HAMAD ALIZAI, Lahore University of Management Sciences (LUMS), Pakistan
JUNAID HAROON SIDDIQUI, Lahore University of Management Sciences (LUMS), Pakistan
LUCA MOTTOLA, Politecnico di Milano, Italy and RISE, Sweden

Intermittently-powered embedded devices ensure forward progress of programs through state checkpointing
in non-volatile memory. Checkpointing is, however, expensive in energy and adds to the execution times. To
minimize this overhead, we present DICE, a system that renders differential checkpointing profitable on these
devices. DICE is unique because it is a software-only technique and efficient because it only operates in volatile
main memory to evaluate the differential. DICE may be integrated with reactive (Hibernus) or proactive
(MementOS, HarvOS) checkpointing systems, and arbitrary code can be enabled with DICE using automatic
code-instrumentation requiring no additional programmer effort. By reducing the cost of checkpoints, DICE
cuts the peak energy demand of these devices, allowing operation with energy buffers that are one-eighth of
the size originally required, thus leading to benefits such as smaller device footprints and faster recharging
to operational voltage level. The impact on final performance is striking: with DICE, Hibernus requires one
order of magnitude fewer checkpoints and one order of magnitude shorter time to complete a workload in
real-world settings.

CCS Concepts: • Computer systems organization→ Embedded systems;

Additional Key Words and Phrases: transiently powered computers, intermittent computing, differential
checkpointing

ACM Reference Format:
Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola.
2020. Fast and Energy-efficient State Checkpointing for Intermittent Computing. ACM Trans. Embedd. Comput.
Syst. 1, 1, Article 1 (January 2020), 25 pages. https://doi.org/10.1145/3391903

1 INTRODUCTION
Energy harvesting allows embedded devices to mitigate, if not to eliminate, their dependency on
traditional batteries. However, energy harvesting is generally highly variable across space and
time [9]. This trait clashes with the increasing push to realize tiny devices enabling pervasive
deployments. Energy storage facilities, such as capacitors, are used to ameliorate fluctuations in
energy supplies and need to be miniaturized as well, as they often represent a dominating factor

Authors’ addresses: Saad Ahmed, saad.ahmed@lums.edu.pk, Lahore University of Management Sciences (LUMS), Lahore,
Punjab, Pakistan, 54792; Naveed Anwar Bhatti, naveed.bhatti@mail.au.edu.pk, Air University, Islamabad, Pakistan; Muham-
mad Hamad Alizai, Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan, 54792, hamad.alizai@
lums.edu.pk; Junaid Haroon Siddiqui, Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan, 54792,
junaid.siddiqui@lums.edu.pk; Luca Mottola, Politecnico di Milano, Italy and RISE, Sweden, luca.mottola@polimi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1539-9087/2020/1-ART1 $15.00
https://doi.org/10.1145/3391903

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3391903
https://doi.org/10.1145/3391903

1:2 Ahmed et al.

in size. System shutdowns due to energy depletion are thus difficult to avoid. Computing then
becomes intermittent [52, 63]: periods of normal computation and periods of energy harvesting
come to be unpredictably interleaved [37].
Problem. System support exists to enable intermittent computing, employing a form of checkpoint-
ing to let the program cross periods of energy unavailability [7, 51]. This consists in replicating the
application state over non-volatile memory (NVM) in anticipation of power failures, where it is
retrieved back once the system resumes with sufficient energy.

Due to the characteristics of NVM, checkpoints are extremely costly in energy and time. When
using flash memories, for example, the energy cost is orders of magnitude larger than most system
operations [8, 45]. FRAM improves these figures; still, checkpoints often represent the dominating
factor in an application’s energy and time profile [7, 10]. As the cost of checkpoint is subtracted
from the energy for useful computations, taming this overhead is crucial.
To that end, differential techniques are commonly employed when providing fault tolerance

in operating systems [32] and when maintaining consistency in distributed databases and trans-
actions [33, 49].In Sec. 3, we analytically scrutinize existing approaches. While some of these are
simply not applicable in embedded systems due to lack of requisite hardware support, we observe
that the energy cost of existing software-based approaches is often not worth the benefit on energy
constrained platforms. Therefore, newer techniques must be established to reap the benefits of
differential checkpointing in intermittently-powered systems.
Contribution. To cater for the specific challenges of intermittently-powered devices, we design
DICE (DIfferential ChEckpointing), a system that efficiently evaluates the differential between the
previous checkpoint data and the volatile application state. DICE uses this information to limit the
checkpoint operation to a slice of NVM data, namely, the one corresponding to changed application
state. The fundamental contribution of DICE rests in identifying an efficient design point that
allows the notion of differential checkpointing to be profitable in intermittently-powered systems,
as elaborated in Sec. 4.

To that end, as described in Sec. 4, the design of DICE integrates three contributions:
1) unlike previous attempts [3, 8] that access NVM to compute differentials, DICE maintains

differential information only in main memory and access to NVM is limited to updating existing
checkpoint data; we achieve this through an automatic code instrumentation step.

2) DICE capitalizes on the different memory write patterns by employing different techniques
to track changes in long-lived global variables as opposed to short-lived variables local to
functions; the code instrumentation step identifies these patterns and accordingly selects the
most appropriate tracking technique.

3) in the absence of hardware support to track changes in main memory, which is too energy-
hungry for intermittently-powered devices, our design is entirely implemented in software
and ensures functional correctness by prudently opting for worst-case assumptions in tracking
memory changes; we demonstrate, however, that such a choice is not detrimental to performance.

We design DICE as a plug-in complement to existing system support. This adds a further
challenge. Systems such as Hibernus [6, 7] operate in a reactive manner: an interrupt is fired that
may preempt the application at any point in time. Differently, systems such as MementOS [51] and
HarvOS [10] place explicit function calls to proactively decide whether to checkpoint. Knowledge
of where a checkpoint takes place influences what differentials need to be considered, how to track
them, and how to configure the system parameters triggering a checkpoint. Sec. 5 details the code
instrumentation of DICE, together with the different techniques we employ to support reactive and
proactive systems.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:3

Benefits. DICE reduces the amount of data to be written on NVM by orders of magnitude with
Hibernus, and by a fraction of the original size with MementOS or HarvOS.

This bears beneficial cascading effects on a number of other key performance metrics. It reduces
the peak energy demand during checkpoints and shifts the energy budget from checkpoints to
useful computations. Reducing the peak demand enables a reduction of up to one-eighth in the size
of energy buffer necessary for completing a given workload, cutting charging times and enabling
smaller device footprints. This is crucial in application domains such as biomedical wearables [16]
and implants [5]. Furthermore, DICE yields up to one order of magnitude fewer checkpoints to
complete a workload. Sparing checkpoints lets the system progress farther on a single charge,
cutting down the time to complete a workload up to one order of magnitude.
Following implementation details in Sec. 6, our quantitative assessment in this respect is two-

pronged. Sec. 7 reports on the performance of DICE based on three benchmarks across three
existing systems (i.e., Hibernus, MementOS, and HarvOS), two hardware platforms, and synthetic
power profiles that allow fine-grained control on executions and accurate interpretation of results.
Sec. 8 investigates the impact of DICE using power traces obtained from highly diverse harvesting
sources. We show that the results hold across these different power traces, demonstrating the
general applicability of DICE and its performance impact.

2 BACKGROUND AND RELATEDWORK
We elaborate on how intermittent computing shapes the problem we tackle in unseen ways; then
proceed with discussing relevant works in this area.

2.1 Mainstream Computing
The performance trade-offs in mainstream computing are generally different compared to ours.
Energy is not a concern, whereas execution speed is key, being it a function of stable storage
operations or message exchanges on a network. Systems are thus optimized to perform as fast as
possible, not to save energy by reducing NVM operations, as we do.
Differential checkpointing for multi-processing OSes and virtual machines exist. Here, check-

points are mainly used for fault tolerance and load balancing. Systems use specialized hardware
support to compute differentials [48], including memory management units (MMUs), which would
be too energy-hungry for intermittently-powered devices. Moreover, updates happen at page gran-
ularity, say 4 KBytes. This is a tiny fraction of main memory in a mainstream computing system,
but a large chunk of it in an intermittently-powered one, thus motivating different techniques.
Checkpointing in databases and distributed systems [29, 43, 50] is different in nature. Here,

checkpoints are used to ensure consistency across data replicas and against concurrently-running
transactions. Moreover, differential checkpointing does not require any tracking of changes in
application state, neither in hardware nor in software, because the data to be checkpointed is
explicitly provided by the application.

Differential checkpoints are also investigated in autonomic systems to create self-healing software.
Enabling this behavior requires language facilities rarely available in embedded systems, let apart
intermittently-powered ones. For example, Fuad et al. [18] rely on Java reflection, whereas Java is
generally too heavyweight for intermittently-powered devices.

Our compile-time approach shares some of the design rationalewith that of Netzer andWeaver [44],
who however target debugging long-running programs, which is a different problem. Further, our
techniques are thought to benefit from the properties of proactive checkpointing and to ensure
correctness despite uncertainty in checkpoint times in reactive checkpointing. We apply distinct
criteria to record differentials depending on different memory segments, including the ability of
allowing cross-frame references along an arbitrary nesting of function calls.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Ahmed et al.

2.2 Intermittent Computing

Device Architectures

In
te

rm
it

te
n

t
C

o
m

p
u

ti
n

g
So

lu
ti

o
n

s

DINO
(2015)

Chain
(2016)

Alpaca
(2017)

eM-map
(2017)

Non-volatile Main Memory

QuickRecall
(2015)

Ratchet
(2016)

Clank
(2017)

Volatile Main Memory

Hibernus
(2014)

MementOS
(2012)

Hibernus++
(2015)

HarvOS
(2017)

D
IC
E

C
o

p
y-

if
-C

h
an

ge
 (

2
0

1
6

)

Chinchilla
(2018)

Fig. 1. Intermittent computing solutions. DICE targets
traditional device architectures with volatile main mem-
ory and seamlessly integrates with all the corresponding
solutions.

We can effectively divide the literature in three
classes, depending on device architectures.
Non-volatile main memories. As shown in
Fig. 1, solutions exist that target device ar-
chitectures that employ non-volatile proces-
sors [34, 57, 62] or non-volatile main mem-
ory [24], normally FRAM. The former relieve
the system from checkpoints altogether, yet re-
quire dedicated processor designs still far from
massive production. Device employing non-
volatile main memories trade increased energy
consumption and slower memory access for
persistence [24]. When using FRAM as main
memory withMSP430, for example, energy con-
sumption increases by 2-3× and the device may
only operate up to half of the maximum clock
frequency [36].
The persistence brought by non-volatile

main memory also creates data consistency issues due to repeated execution of non-idempotent
operations that could lead to incorrect executions. Solutions exist that tackle this problem through
specialized compilers [60] or dedicated programming abstractions [15, 37, 39]. The former may add
up to 60% run-time overhead, whereas the latter require programmers to learn new language con-
structs, possibly slowing down adoption. An open research question is what are the conditions—for
example, in terms of energy provisioning patterns—where the trade-off exposed by these platforms
play favorably.
NVM for checkpoints.We target devices with volatile main memories and external NVM facilities
for checkpoints [26, 35, 40, 46]. Existing literature in this area focuses on striking a trade-off between
postponing the checkpoint as long as possible; for example, in the hope the environment provisions
new energy, and anticipating the checkpoint to ensure sufficient energy is available to complete it.
Hibernus [7] and Hibernus++ [6] employ specialized hardware support to monitor the energy

left. Whenever it falls below a threshold, both systems react by firing an interrupt that preempts
the application and forces the system to take a checkpoint. Checkpoints may thus take place at any
arbitrary point in time. Both systems copy the entire memory area—including unused or empty
portions—onto NVM. We call this strategy copy-all.
MementOS [51] and HarvOS [10] employ compile-time strategies to insert specialized system

calls to check the energy buffer. Checkpoints happen proactively and only whenever the execution
reaches one of these calls. During a checkpoint, every used segment in main memory is copied to
NVM regardless of changes since the last checkpoint. We call such a strategy copy-used.
Improving checkpoints. Unlike our approach of proactively tracking changes in application state,
solutions exist that evaluate the differential at checkpoint time; either via hash comparisons [3] or
by comparing main memory against a word-by-word sweep of the checkpoint data on NVM [8].
We call these approaches copy-if-change.

Note, however, that these systems are fundamentally incompatible with both the reactive and the
proactive checkpointing systems that DICE aims to complement. The fundamental limitation is the
inability to determine the energy cost of a checkpoint a priori, which is mandatory to decide when
to trigger a checkpoint and is necessary input to all of the aforementioned systems. DICE provides

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:5

an estimate of the actual cost of a checkpoint at any moment in execution, allowing to dynamically
update system parameters triggering a checkpoint.

Compared to copy-if-change, DICE also minimizes accesses to NVM. We achieve this through a
specialized code instrumentation step. This inserts functionality to track changes in application
state that exclusively operates in main memory. Operations on NVM are thus limited to updating the
relevant blocks when checkpointing, with no additional pre-processing or bookkeeping required.
The checkpoint data is then ready to be reloaded when computation resumes, with no further
elaboration.
3 SCRUTINIZING DIFFERENTIAL CHECKPOINTING TECHNIQUES
Checkpointing system state is widely used to achieve fault tolerance and data consistency in
mainstream computing. For example, OS checkpoints are used to recover the system to a stable
state after a faulty update [21], distributed system checkpoints are used to combat communication
and node failures [59], and database checkpoints are used to maintain a backup at a known good
point before applying changes from the log [33]. Although these systems typically do not suffer
from limitation of resources such as computation, memory and power, evaluating state differentials
is still preferred to spend minimum of these useful resources during checkpoint operations, which
restrain the system from doing useful work.

Before embarking on our journey to develop a differential checkpointing solution for resource-
constrained embedded devices, we want to scrutinize the existing work for making informed design
choices. We discard solutions that rely on specialized hardware support because of their high power
requirements, which is prohibitive in energy-constrained platforms. For instance, processors with
MMUs expose the state differentials via dirty-bits in page tables, clearly specifying the pages altered
in a process address space. This information can be exploited to incrementally checkpoint the
process state. However, such information is not accessible in embedded MCUs, which usually lack
MMU support due to energy limitations [14]. Software-only solutions for differential checkpointing
also exist that may provide a plausible lead into resolving this limitation of embedded MCUs.
We categorize existing software-only approaches in three broad categories and analyze their

suitability for resource constrained platforms, specifically in the context of intermittently-powered
ones.
3.1 Hashing
A hashing based approach computes hashes over memory chunks of equal sizes [1, 3, 17]. Since the
hash is a function of memory content, a change in memory content of a specific region modifies its
hash value. At the time of checkpoint, the current and previous hash values of the target memory
region are compared. If these values are different, the corresponding checkpoint in secondary
storage is updated along with the newly computed hash. An unmodified hash value indicates
that the memory region has not been updated since the last checkpoint, and hence ignored in
the interest of reducing expensive write operations in the secondary storage. Multidimensional
hashes [19] can also be used to group multiple memory chunks and representing them with a single
hash value, which is a function of the hash values of each individual chunk.

Although hashing is a compute-intensive operation, this approach has still proven to be profitable
in main stream computing as it avoids checkpointing significant portions of a typically very large
main memory. Whether or not this tradeoff plays favorably in embedded systems, remains to be
seen.

3.2 Tracking
A dynamic, tracking based approach proactively tracks write accesses in main memory. This is often
achieved through specialized function calls instrumented in the code at compile time [44]. These

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Ahmed et al.

function calls capture the memory addresses being modified and records them in a separate data
structure. At the time of checkpoint, only the content of recorded memory addresses are updated
in secondary storage. If a fault occurs, the last stored checkpoint is used to roll back the process
state. This approach is particularly useful for long running programs as it avoids re-execution of
the entire program by rolling the state back to the nearest known good point.
Deciding what and when to track plays a key role in defining the granularity of differential

analysis and, thus, the number of instructions required to be re-executed to reach the original state.
A fine-grained analysis requires fewer instructions to be replayed to reach the correct program
state at the cost of high runtime overhead. On the contrary, a coarse-grained analysis incurs smaller
runtime overhead but increases the re-execution overhead. Thus, the frequency of faults can be a
defining factor in determining the tracking granularity.

Tracking changes in memory is apparently less compute-intensive than computing hashes. How-
ever, memory access patterns of an application may be crucial in establishing the feasibility of this
approach in embedded systems. For example, in applications with frequent memory access opera-
tions, the tracking overhead may eventually surpass the benefits accrued from smaller checkpoint
data.

3.3 Static analysis
To mitigate the runtime cost of tracking approaches, static analysis can be used to identify variables
that are modified by different program execution paths [11, 12, 58]. A key-value data structure is
used to create a mapping between different paths and their variables, where the key is the unique
path identity and the value is all the variables modified on that path. The runtime only needs to
track the execution of paths, and checkpoint all the variables on the executed paths obtained from
the key-value data structure.

This approach reduces energy and computational costs as tracking is limited to coarse-grained
program paths instead of per variable. However, the memory overhead may increase exponentially
for applications with large number of paths, resulting in large key-value stores that record the
complete addresses of variables. This approach may be improved by modifying compilers to
intelligently allocate main memory [54, 61], and group variables that are modified on a single
path. As a result, the key-value data structure will only need to store the start and end address
of adjacently allocated group of variables. However, since variables may be modified on multiple
paths, such allocation may not be possible in some applications.

Although this approach is attractive due to its negligible computational requirements at runtime,
the memory overhead is still a matter of concern on platforms with limited memory capacities.

3.4 Comparative Analysis
As an impetus to our quest for developing a differential state-checkpointing solution for resource-
constrained devices, we conduct a “feeler” analysis of these software-based techniques. The ultimate
goal of this analysis is to ascertain at a macro level whether a full-fledged implementation of a
particular approach is worth the effort for embedded devices. We first elaborate on the experimental
settings used for this analysis followed by a one-on-one comparison between different techniques.
Settings. We consider two applications, fast fourier transform (FFT) and activity recognition (AR),
widely used as benchmarks in intermittent computing [20, 22]. Both these applications possess
useful characteristics needed for our analysis. For example, FFT is a signal processing algorithm
that frequently accesses variables in main memory. AR provides large number of paths needed to
evaluate the performance of static analysis technique described in Sec. 3.3.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:7

We execute these applications on an MSP430 platform, which is widely considered as a defacto
standard in energy-harvesting devices [53]. We are interested in different metrics for different ap-
proaches: Since hashing is compute-intensive, we are interested in its computational overhead, that
is, the time needed to compute and compare hashes of different memory regions and in performing
the differential checkpoint operation. Differently, static analysis has a negligible computational
overhead but we need to analyze its memory requirements for saving the key-value data structure,
and whether such requirements can be borne by memory-constrained systems.

1 2 4 8 16 32 64 128 256 512 1024

Checkpointing Interval (ms)

0

50

100

150

200

250

C
he

ck
po

in
tin

g
D

ur
at

io
n

(m
s) Tracking

Hashing

Fig. 2. Computational overhead of dif-
ferential checkpointing techniques in
FFT application.

Finally, the tracking based approach effects both: it performs
additional computations to track memory accesses as well as
needs a data structure to record modified memory addresses.
For hashing, we use SHA-1 over memory regions of size

256 bytes. Thus, the entire 10 KB memory is divided in 40
hash regions. The static analysis is performed using the LLVM
compiler toolchain to establish a mapping between all pro-
gram paths and the variables modified by each one of them.
We then augment the application with a key-value data struc-
ture representing this information at runtime for differential
checkpointing. For tracking, we use the code instrumentation
technique similar to the one in [44] along with a bit-array data
structure to track modifications in memory, where each bit
represents one byte (or word) in main memory [2].
Computational overhead. Fig. 2 shows the additional time
taken by checkpointing operations in FFT application. We
omit the static analysis approach from this comparison because of its negligible runtime overhead.

Approach Memory
(bytes)

Static analysis 2240
Tracking 150

Table 1. Memory overhead of dif-
ferent techniques in AR applica-
tion

For hashing, this overhead is defined by the time taken for
computing and comparing fresh hash values with the previous
hash values retrieved from the secondary storage, and updating
the checkpoint with modified memory regions. Regardless of
the checkpoint interval, hashing based approach has an almost
constant but high computational overhead, which is dominated
by hash computations.

On the other hand, the tracking based approach has a variable
but low computational overhead. Tracking is comparatively a
lighter operation as it only needs a few cycles to update the in-memory data structure for recording
modified memory locations. Here the computational overhead is dominated by the checkpoint
updates in secondary storage. This overhead understandably increases with checkpointing interval,
as more variables are likely modified when the program executes for longer durations due to fewer
checkpoint interruptions in between.
Memory overhead. Table 1 shows the additional memory required by different techniques in AR
application. This includes the in-memory data structure for recording addresses of modifiedmemory
locations and differentially updating the checkpoint with them. The hashing based approach is
omitted because it only temporarily occupies memory to compute and compare hash values during
checkpoint operations. These hash values are flushed out in secondary storage at the time of
checkpoint, and hence, no additional memory is consumed during normal program execution.
We can see that the static analysis based technique results in unbearable memory overhead:

16× greater than the actual size of application. This overhead is, in principle, a function of the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Ahmed et al.

bss,

data,

heap

call

stack

First

checkpoint

Subsequent

checkpoints

V
o
la

ti
le

 M
a
in

 M
e

m
o

ry

N
o

n
-V

o
la

ti
le

 S
to

ra
g

e

differential

(a) DICE

First

checkpoint

Subsequent

checkpoints

c
o

m
p

le
te

 r
e

w
ri
te

(b) Existing systems

Fig. 3. DICE fundamental operation. DICE updates checkpoint data based on differentials at variable level in
the global context, or with modified stack frames.

number of paths in a program. The more the number of paths in a program, the more the number
of key-value data structures needed to keep path-to-variables mapping.
The tracking based approach performs well in terms of memory overhead as well. The use of

bit-array results in restricting the memory overhead of the tracking based approach to at most
one-eighth of the memory size.
Summary. Our feeler analysis provides useful observations that can guide our pursuit of a differ-
ential checkpointing solution for energy-harvesting devices.

Although the hashing based approach has negligible memory overhead, its heavy computational
requirements far exceed the limitations of energy-harvesting devices typically equipped with
low-end MCUs. Similarly, the static analysis based approach addresses these limitations of hashing,
yet the memory requirements are inconceivable for memory-constrained MCUs. The tracking based
approach evidently gets much closer to the sweet spot in this cost benefit spectrum: it efficiently
controls both the computational and memory overhead needed to evaluate memory differentials
for efficient checkpointing.
While taking note of this feeler analysis, we next present our techniques for differential check-

pointing in energy-harvesting embedded systems, whose foundations are firmly held in a tracking
based approach. However, the specific constraints of these systems demand specialized tracking
techniques based on various memory access patterns and the regions where they occur.

4 DICE IN A NUTSHELL
Fig. 3 describes the fundamental operation of our approach, DICE. Once an initial checkpoint is
available, DICE tracks changes in main memory to only update the affected slices of the existing
checkpoint data, as shown in Fig. 3(a). We detail such a process, which we call recording differentials,
in Sec. 5.
Differentials.We apply different criteria to determine the granularity for recording differentials.
The patterns of reads and writes, in fact, are typically distinct depending on the memory seg-
ment [30]. We individually record modifications in global context, including the BSS, DATA, and
HEAP segments. Such a choice minimizes the size of the update for these segments on checkpoint
data. Differently, we record modifications in the call stack at frame granularity. Local variables of
a function are likely frequently updated during a function’s execution. Their lifetime is also the
same: they are allocated when creating the frame, and collectively lost once the function returns.
Because of this, recording differentials at frame-level amortizes the overhead for variables whose
differentials are likely recorded together.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:9

Technique Handles
heap

Hardware independant
performance

Differential
checkpoints

Minimizes
NVM accesses

MementOS [51] ✗ ✓ ✗ ✗

Hibernus [6, 7] ✓ ✗ ✗ ✗

HarvOS [10] ✗ ✓ ✗ ✗

Copy-if-change [8] ✓ ✓ ✓ ✗

DICE ✓ ✓ ✓ ✓

Table 2. Feature Comparison: DICE and the rest.

I/O write
I/O read

Amount of data written on NVM
E

n
e

rg
y

Copy-if-change

Aouda et al.

Copy-used
(MementOS,

HarvOS)

DICE

Memory Access

Copy-all
(Hibernus,

Hibernus++)

Fig. 4. Qualitative comparison of the
checkpoint techniques. Copy-all has
highest energy costs due to maximum
writes on NVM.Copy-used avoids copy-
ing unused memory areas, reducing the
energy cost. Copy-if-change further re-
duces energy costs, using NVM reads
to compute differentials. DICE records
changes in the stack at frame granular-
ity, but only operates in main memory.

A dedicated precompiler instruments the code to record both
kinds of differentials. For global context, we insert DICE code
to populate an in-memory data structure with information
about modified memory areas. Writes to global variables can
be statically identified, while indirect writes via pointers have
to be dynamically determined. Therefore, we instrument direct
writes to global variables and all indirect writes in the memory
via pointer dereferencing. The precompiler also instruments
the code to record differentials in the call stack by tracking
the changes to the base pointer.

At the time of checkpointing, the in-memory data structures
contain sufficient information to identify what slices of NVM
data require an update. Unlike existing solutions [3, 8], this
means that a checkpoint operation only accesses NVM to
perform the actual updates to checkpoint data, whereas any
other processing happens in main memory.

Our approach is sound but pessimistic, as we overestimate
differentials. Our instrumentation is non-obtrusive as it only
reads program state and records updates in a secluded memory
region that will not be accessed by a well-behaved program.
Similarly, an interrupted execution will be identical to an un-
interrupted one because a superset of the differential is captured at the checkpoint and the entire
program state is restored to resume execution. The differential is correctly captured because the
grammar of the target language allows us to identify all direct or indirect (via pointers) memory
writes. Any writes introduced by the compiler, such as register spilling, are placed on the current
stack frame that is always captured, as described in Sec. 5.
DICE and the rest. Reducing NVM operations is the key to DICE performance. Fig. 4 qualitatively
compares the energy performance of checkpointing solutions discussed thus far.
Hibernus [7] and Hibernus++ [6] lie at the top right with their copy-all strategy. The amount

of data written to NVM is maximum, as it corresponds to the entire memory space regardless of
occupation. Both perform no read operations from NVM during checkpoint, and essentially no
operation in main memory. MementOS [51] and HarvOS [10] write fewer data on NVM during
checkpoint, as their copy-used strategy only copies the occupied portions. To that end, they need to
keep track of a handful of information, such as stack pointers, adding minimal processing in main
memory.
The copy-if-change [8] strategy lies at the other extreme. Because of the comparison between

the current memory state and the last checkpoint data, the amount of data written to NVM is
reduced. Performing such comparison, however, requires to sweep the entire checkpoint data on

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Ahmed et al.

NVM, resulting in a high number of NVM reads. Because write operations on NVM tend to be
more energy-hungry than reads [42], the overall energy overhead is still reduced.

In contrast, DICE writes slightly more data to NVM compared to existing differential techniques,
because modifications in the call stack are recorded at frame granularity. However, recording
differentials only require operations in main memory and no NVM reads. As main memory is
significantly more energy efficient than NVM, energy performance improves. Sec. 7 and Sec. 8 offer
quantitative evidence.

Table 2 provide a basic feature comparison between DICE and other techniques. The performance
of Hibernus [7] is dependant on the underlying hardware, as its copy-all strategy relies on the
availability of FRAM as NVM. Except for the copy-if-change approach [8], none of the other tech-
niques recognize state differentials between checkpoints. DICE recognizes these state differentials
but, unlike copy-if-change, does not require costly access to NVM to compute these differentials.
Minimizing access to NVM offers great performance benefits in DICE-equipped systems, as we
elaborate in Sec. 7.

5 RECORDING DIFFERENTIALS
We describe how we record differentials in global context, how we identify modified stack frames,
and howwe handle pointer dereferencing efficiently, while maintaining correctness. The description
is based on a C-like language, as it is common for resource-constrained embedded platforms.
Note our techniques work based on a well-specified grammar of the target language. We cannot
instrument platform-specific inline assembly code, yet its use is extremely limited as it breaks
cross-platform compatibility [20].

5.1 Global Context
DICE maintains a data structure in main memory, called modification record, to record differentials
in global context. It is updated as a result of the execution of a record() primitive the DICE
precompiler inserts when detecting a potential change to global context. The modification records
are not part of checkpoint data.

void foo(int a){

int var = a,*ptr; //local variables

...

ptr = &var;

record_p(ptr,sizeof(*ptr));

*ptr= a+5; //current stack frame

... //modification

bar(&var);

...

}

void bar(int *lptr){

int a = 5; //local variables

...

record_p(lptr,sizeof(*lptr));

*lptr = a + 5; //previous stack frame

... //modification

}

int var,*ptr; //global variables

...

record(&var,sizeof(var));

var++;

...

record(&ptr,sizeof(*ptr));

ptr = &var;

Fig. 5. Example instrumented code.

Fig. 5 shows an example. The record() primitive simply
takes as input a memory address and the number of bytes
allocated to the corresponding data type. This information is
sufficient to understand that the corresponding slice of the
checkpoint data is to be updated. How to inline the call to
record() depends on the underlying system support.
Reactive systems. In Hibernus [6, 7], an interrupt may pre-
empt the execution at any time to take a checkpoint. This
creates a potential issue with the placement of record().
If the call to record() is placed right after the statement modifying global context and the

system triggers a checkpoint right after such a statement, but before executing record(), the
modification record includes no information on the latest change. The remedy would be atomic
execution of the statement changing data in global context and record(); for example, by
disabling interrupts. With systems such as Hibernus [6, 7], however, this may delay or miss the
execution of critical functionality.
Because of this, we choose to place calls to record() right before the relevant program

statements, as shown in Fig. 6(b). This ensures that the modification record is pessimistically
updated before the actual change in global context. If a checkpoint happens right after record(),

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:11

(a) Before instrumentation (b) After instrumentation (reactive) (c) After instrumentation (proactive)

Fig. 6. Example instrumentation for reactive or proactive checkpoints.With reactive checkpoints, each statement
possibly changing global context data is preceded by a call to record(). With proactive checkpoints, code
locations where a checkpoint may take place are known, so calls to record() may be aggregated to reduce
overhead.
the modification record might tag a variable as updated when it was not. This causes an unnecessary
update of checkpoint data, but ensures correctness.
If a checkpoint happens right after record(), however, the following statement is executed

first when resuming from checkpointed state. The corresponding changes are not tracked in the
next checkpoint, as record() already executed before. We handle this by re-including in the
next checkpoint the memory region reported in the most recent record() call. We prefer this
minor additional overhead for these corner cases, rather than atomic executions.
Proactive systems. MementOS [51] and HarvOS [10] insert systems calls called triggers in
the code. Based on the state of the energy buffer, the triggers decide whether to checkpoint before
continuing. This approach exposes the code to further optimizations.
As an example, Fig. 6(c) shows the same code as Fig. 6(a) instrumented for a proactive system.

For segments without loops, we may aggregate updates to the modification record at the basic
block level or just before the call to trigger(), whichever comes first1. The former is shown in
line 8 to 14, where however we cannot postpone the call to record() any further, as branching
statements determine only at run-time what basic block is executed.

In the case of loops over contiguous memory areas, further optimizations are possible. Consider
lines 20 to 23 in Fig. 6: a call to record() inside the loop body, necessary in Fig. 6(b) for every
iteration of the loop, may now be replaced with a single call before the call to trigger(). This
allows DICE to record modifications in the whole data structure at once, as shown in Fig. 6(c) line
24.
Certain peculiarities of this technique warrant careful consideration. For instance, loops may,

in turn, contain branching statements. This may lead to false positives in the modification record,
which would result in an overestimation of differentials. Fine-grained optimizations may be possible
in these cases, which however would require to increase the complexity of instrumentation and/or
1The aggregation of updates does not apply to pointers: if a single pointer modifies multiple memory locations, only the
last one will be recorded.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Ahmed et al.

SP,

BP,

ST F1

BP

SP

ST

F2

F1

F2

BP

SP

F3STF3

F1

F2 BP

SP

ST

Update

stack

frames

Checkpoint #

startup 1 2 3

Fig. 7. Identifying possibly modified stack frames. The stack tracker (ST) is reset to the base pointer (BP) when
the system resumes or at startup. ST does not follow BP as the stack grows, but it does so as the stack shrinks. The
dark grey region between ST and the stack pointer (SP) is possibly modified.

to ask for programmer intervention. We opt for a conservative approach: we record modifications
on the entire memory area that is possibly, but not definitely modified inside the loop.

5.2 Call Stack
Unlike data in global context, we record differentials of variables local to a function at frame level,
as these variables are often modified together and their lifetime is the same. To this end, DICE
monitors the growth and shrinking of the stack without relying on architecture support as in
Clank [25].
Normally, base pointer (BP) points to the base of the frame of the currently executing function,

whereas the stack pointer (SP) points to the top of the stack. DICE only requires an additional
pointer, called the stack tracker (ST), used to track changes in BP between checkpoints. We proceed
according to the following four rules:
R1: ST is initialized to BP every time the system resumes from the last checkpoint, or at startup;
R2: ST is unchanged as long as the current or additional functions are executed, that is, ST does
not follow BP as the stack grows;
R3: whenever a function returns that possibly causes BP to point deeper in the stack than ST, we
set ST equal to BP, that is, ST follows BP as the stack shrinks;
R4: at the time of checkpoint, we save the memory region between ST and SP, as this corresponds
to the frames possibly changed since the last checkpoint.
Fig. 7 depicts an example. Say the system is starting with an empty stack. Therefore, ST, SP,

and BP point to the base of the stack as per R1. Three nested function calls are executed. While
executing F3, BP points to the base of the corresponding frame. Say a checkpoint happens at this
time, as shown under checkpoint #1 in Fig. 7: the memory region between ST and SP is considered
as a differential since the initial situation, due to R4.
When resuming from checkpoint #1, ST is equal to BP because of R1. Function F3 continues

its execution; no new functions are called and no functions return. According to R2, ST and BP
remain unaltered. The next checkpoint happens at this time. As shown for checkpoint #2 in Fig. 7,
R4 indicates that the memory region to consider as a differential for updating the checkpoint
corresponds to the frame of function F3. In fact, the execution of F3might still alter local variables,
requiring an update of checkpoint data.
When the system resumes from checkpoint #2, F3 returns. Because of R3, ST is updated to

point to the base of the stack frame of F2. If a checkpoint happens at this time, as shown under
checkpoint #3 in Fig. 7, R4 indicates the stack frame of function F2 to be the differential to update.
This is necessary, as local variables in F2 might have changed once F3 returns control to F2 and
the execution proceeds within F2.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:13

Note that the efficiency of recording differentials at frame level also depends on programming
style. If function calls are often nested, the benefits brought by this technique likely amplify
compared to tracking individual local variables. Similarly, multiple frames may enter and exit the
stack without checkpointing in between. In such cases, tracking individual local variables may
introduce redundant overhead.

5.3 Pointer Dereferencing

void foo(int a){

int var = a,*ptr; //local variables

...

ptr = &var;

record_p(ptr,sizeof(*ptr));

*ptr= a+5; //current stack frame

... //modification

bar(&var);

...

}

void bar(int *lptr){

int a = 5; //local variables

...

record_p(lptr,sizeof(*lptr));

*lptr = a + 5; //previous stack frame

... //modification

}

int var,*ptr; //global variables

...

record(&var,sizeof(var));

var++;

...

record(&ptr,sizeof(*ptr));

ptr = &var;

Fig. 8. Example instrumented code to record
local variables that are passed by reference.

Special care is required when tracking changes in main
memory through dereferencing pointers. We use a sep-
arate record_p() primitive to handle this case.
With record_p(), we check if the pointer is cur-

rently accessing the global context (i.e., a global scalar
or heap) or a local variable inside a stack frame. In the
former case, the modification record is updated as de-
scribed in Sec. 5.1. Otherwise, there are two possibilities
depending on whether the memory address pointed to
lies between ST and SP. If so, the corresponding change
is already considered as part of the checkpoint updates,
as per R4 above. Otherwise, we find ourselves in a case
like Fig. 8 and update ST to include the frame being ac-
cessed. As a result, we include the memory changes in
the update to existing checkpoint data at the next check-
point, as per R4 above. This ensures correctness of our
approach even if local variables are passed by reference along an arbitrary nesting of function calls
or when using recursion.

6 IMPLEMENTATION
We describe a few implementation highlights for DICE, which are instrumental to understand our
performance results.
Precompiler. We implement the DICE precompiler targeting the C language using ANTLR [47].
The precompiler instruments the entire code, including the run-time libraries, for recording modifi-
cations in the global context as described in Sec. 5.1, depending on the underlying system support,
and for identifying modified regions of the stack, as explained in Sec. 5.2.
As a result of this instrumentation, DICE captures modifications in main memory except for

those caused by peripherals through direct memory access (DMA), which bypass the execution of
the main code. In embedded platforms, DMA buffers are typically allocated by the application or
by the OS, so we know where they are located in main memory. We may either always consider
these memory areas as modified, or flag them as modified as soon as the corresponding peripheral
interrupts fire, independent of their processing.
The record() function.We implement record() as a variable argument function. In the case
of proactive systems, this allows us to aggregate multiple changes in main memory with a single
call, as shown in Fig. 6(c).
Among the many data structures available to store the modification records, we choose to

employ a simple bit-array, where each bit represents one byte in main memory as modified or not.
This representation is particularly compact, causing little overhead in main memory. Crucially,
it allows record() to run in constant time, as it supports direct access to arbitrary elements.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Ahmed et al.

This is key to prevent record() from changing the application timings, which may be critical on
resource-constrained embedded platforms [64].
Such a data structure, however, causes no overhead on NVM, as it does not need to be part of

the checkpoint. Every time the system resumes from the previous checkpoint, we start afresh with
an empty set of modification records to track the differentials since the time system restarts.
Checkpoint procedures. We also need to replace the existing checkpoint procedures with a
DICE-specific one.

Hibernus [7] and Hibernus++ [6] set the voltage threshold for triggering a checkpoint to match
the energy cost for writing the entire main memory on NVM, as they use a copy-all strategy.
HarvOS [10] bases the same decision on a worst-case estimate of the energy cost for checkpointing
at specific code locations, as a function of stack size.

When using DICE, due to its ability to limit checkpoints to the slice of the application state that
changed, both approaches are overly pessimistic. We set these parameters based on an estimate of
the actual cost for checkpointing. We obtain this by looking at how many modification records we
accumulate and the positions of ST and BP at a given point in the execution.
Differently, MementOS [51] sets the threshold for triggering a checkpoint based on repeated

emulation experiments using progressively decreasing voltage values and example energy traces,
until the system cannot complete the workload. This processing requires no changes when using
DICE; simply, when using DICE, the same emulation experiments will generally return a threshold
smaller than in the original MementOS, as the energy cost of checkpoints is smaller.

Similar to existing work [37, 51], we also ensure the validity of a checkpoint by adding a canary
value at the beginning and at the end of the checkpoint.

7 BENCHMARK EVALUATION
We dissect the performance of DICE using a combination of three benchmarks across three system
support and two hardware platforms. Based on 107,000+ data points, and compared with existing
solutions on the same workload, our results indicate that the reduction in NVM operations enabled
by DICE allows the system to shift part of the energy budget towards useful computations. This
reflects into:
• up to 97% fewer checkpoints, which is a direct effect of DICE’s ability to use a given energy

budget for computing rather than checkpointing;
• up to one order of magnitude shorter completion time, increasing system’s responsiveness and

despite the overhead of code instrumentation.

In the following, Sec. 7.1 describes the settings, whereas Sec. 7.2 to Sec. 7.5 discuss the results.

7.1 Settings

Benchmarks. We consider three benchmarks widely employed to evaluate system support for
intermittently-powered computing [7, 28, 51, 60]: i) a Fast Fourier Transform (FFT) implementation,
ii) RSA cryptography, and iii) Dijkstra spanning tree algorithm. FFT is representative of signal
processing functionality in embedded sensing. RSA is a paradigmatic example of security support on
modern embedded systems. Dijkstra’s spanning tree algorithm is a staple case of graph processing,
often found in embedded network stacks [27].

These benchmarks offer a variety of different programming structures, data types, memory access
patterns, and processing load. For example, the FFT implementation operates mainly over variables
local to functions and has moderate processing requirements; RSA operates mainly on global data
and demands great MCU resources; whereas Dijkstra’s algorithm mainly handles integer data types

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:15

as opposed to variable-precision ones, but exhibits much deeper levels of nesting due to loops and
function calls. This diversity allows us to generalize our conclusions. All implementations are taken
from public code repositories [41].
Systems and platforms.We measure the performance of DICE with both reactive (Hibernus) and
proactive (MementOS, HarvOS) checkpoints, investigating the different instrumentation strategies
in Sec. 5.1. We consider as baselines the unmodified systems using either the copy-all or copy-used
strategies. We also test the performance of copy-if-change [8] with either of the existing systems. To
make our analysis of MementOS independent of the energy traces used to identify a suitable voltage
threshold, we manually sweep the possible parameter settings with steps of 0.2V, and always use
the best performing one.

We run Hibernus on an MSP430-based TelosB interfaced with a byte-programmable 128 KByte
FRAM chip, akin to the hardware originally used for Hibernus [7]. MementOS and HarvOS run
on a Cortex M3-based ST Nucleo with a standard flash chip, already used to compare MementOS
and HarvOS [10]. Both boards offer a range of hooks to trace the execution, enabling fine-grained
measurements. Further, our choice of platforms ensures direct comparison with existing literature.
In the same way as the original systems [6, 10, 51], our experiments focus on the MCU. Peripherals
may operate through separate energy buffers [23] and dedicated solutions for checkpointing their
states also exist [38, 55].
Metrics.We compute four metrics:
• The update size is the amount of data written to NVM during a checkpoint. This is the key metric

that DICE seeks to reduce: measuring this figure is essential to understand the performance of
DICE in all other metrics.

• The size of the smallest energy buffer is the smallest amount of energy that allows the system to
complete a workload. If too small, a system may be unable to complete checkpoints, ending up
in a situation where the execution makes no progress. However, target devices typically employ
capacitors: a smaller capacitor reaches the operating voltage sooner and enables smaller device
footprints.

• The number of checkpoints is the number of times the system must take a checkpoint to complete
a workload. The more the checkpoints, the more the system subtracts energy from useful
computations. In contrast, reducing NVM operations allows the system to use energy more for
computations than checkpoints, allowing an application to progress further on the same charge.

• The completion time is the time to complete a workload, excluding the recharge times that are
deployment-dependent. DICE introduces a run-time overhead due to recording differentials. On
the other hand, fewer NVM operations reduce both the time required for a single checkpoint
and, because of the above, their number.

For these experiments, we use a foundational power profile often found in existing literature [8,
28, 51, 60]. The device boots with the capacitor fully charged, and computes until the capacitor is
empty again. In the mean time, the environment provides no additional energy. Once the capacitor
is empty, the environment provides new energy until the capacitor is full again and computation
resumes.

This profile generates paradigmatically intermittent executions [7, 28]. Themore the environment
provided energy while the device is computing, therefore postponing the time when a checkpoint is
needed, the more the execution would resemble a traditional one, where no checkpoints are needed.
Besides, this profile is also representative of a staple class of intermittently-powered applications,
namely, those based on wireless energy transfer [13, 51]. With this technology, devices are quickly
charged with a burst of wirelessly-transmitted energy until they boot. Next, the application runs

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Ahmed et al.

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es

0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(a) Hibernus (FFT)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es

0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(b) Hibernus (RSA)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
0 200 400 600 800 1000

of

 b
yt

es

0

200

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(c) Hibernus (Dijkstra)
Trigger Call Locations

TCL1 TCL2 TCL3 TCL4 TCL5 TCL6 TCL7

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20
MementOS+Copy-if-change
MementOS+DICE
MementOS

FFT

22

Dijkstra

19

7

111
2

33
2

1

7

RSA

121212121212

6 6

(d) MementOS
Trigger Call Locations

TCL1 TCL2 TCL3

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20

25

HarvOS+Copy-if-change
HarvOS+DICE
HarvOS

RSAFFT

Dijkstra

3 3

12

6

12

2

19

2

6

(e) HarvOS

Fig. 9. Update size. The size of NVM updates is significantly smaller when using DICE compared to the original
systems. Compared to copy-if-change, it remains the same or marginally larger.

until the capacitor is empty again. The device rests dormant until another burst of wireless energy
comes in.
To accurately compute the metrics above, we trace the execution on real hardware using an

attached oscilloscope along with the ST-Link in-circuit debugger and Kiel 𝜇Vision for the Nucleo
board. This equipment allows us to ascertain the time taken and energy consumption of every
operation during the execution, including checkpoints on FRAM or flash memory. The results are
obtained from 1,000 (10,000) benchmark iterations on the MSP430 (Cortex M3) platform.

7.2 Results → Update Size
Fig. 9 shows the results for reduction in update size enabled by DICE. With Hibernus, the code
location where a checkpoint takes place is unpredictable: depending on the capacitor size, an
interrupt eventually fires prompting the system to checkpoint. Fig. 9(a), 9(b), and 9(c)2 thus report
the average update size we measure during an experiment until completion of the workload, as a
function of the capacitor size. Compared to the original copy-all strategy, DICE provides orders of
magnitude improvements. These gains are a direct result of limiting updates to those determined by
the modification records. On the other hand, using copy-if-change with Hibernus provides marginal
advantages over DICE, because modifications in the call stack are recorded at word-, rather than
frame-granularity.
With the original MementOS and HarvOS, the update size is a function of the location of the

trigger call, because the stack may have different sizes at different places in the code. Fig. 9(d) and
Fig. 9(e)3 show that DICE reduces the update size to a fraction of that in the original copy-used
strategy, no matter the location of the trigger call. The same charts show that the performance of
copy-if-change when combined with MementOS or HarvOS is the same as DICE. This is an effect of
the page-level programmability of flash storage, requiring an entire page to be rewritten on NVM
even if a small fraction of it requires an update.
Overall, the cost for copy-if-change to match or slightly improve the performance of DICE in

update size is, however, prohibitive in terms of energy consumption. Copy-if-change indeed requires
a complete sweep of the checkpoint data on NVM before updating, and even for FRAM, the cost of
reads is comparable to writes [42]. As an example, we compute the energy cost of a checkpoint
with the data in Fig. 9(b) to be 93% higher with copy-if-change than with DICE, on average. For
Hibernus, copy-if-change would result in an energy efficiency worse than the original copy-all
strategy. Similar considerations apply when using the technique of Aouda et al. [3], due to the

2Some data points are missing in the charts for the original design of Hibernus, as it is unable to complete the workload in
those conditions. We investigate this aspect further in Sec. 7.4.
3For MementOS, the trigger call locations refer to the “function call” placement strategy in MementOS [51]. We find the
performance with other MementOS strategies to be essentially the same. We omit that for brevity.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:17

operation of the garbage collector. As energy efficiency is the figure users are ultimately interested
in, we justifiably narrow down our focus to comparing a DICE-equipped system with the original
ones.

7.3 Results → Smallest Energy Buffer

FFT RSA Dijkstra

C
ap

ac
ito

r
(u

F
)

0

100

200

300

400

500

600

700

800

Without DICE
With DICE

500 500

100

400

200

50

(a) Hibernus
Trigger Call Locations

FFT RSA Dijkstra FFT RSA Dijkstra

C
ap

ac
ito

r
(m

F
)

0

10

20

30

40

50

60

70

80 Without DICE
With DICE

60

4040 40

1010 101010

20 20 20

MementOS HarvOS

(b) MementOS and HarvOS

Fig. 10. Smallest capacitor. A DICE-equipped system com-
pletes the workload with smaller energy buffers. This is due
to a reduction in the energy cost of checkpoints, enabled by
the reduction in update size.

Fig. 10 reports the minimum size of the ca-
pacitor required to complete the given work-
loads. A DICE-equipped system constantly
succeeds with smaller capacitors. With Hi-
bernus, DICE allows one to use a capacitor
that is up to 88% smaller than the one re-
quired with the original copy-all strategy.
Similarly, for MementOS and HarvOS, the
smallest capacitor one may employ is about
half the size of the one required in the orig-
inal designs. Smaller capacitors mean reach-
ing operating voltage faster and smaller de-
vice footprints.

Such a result is directly enabled by the reduction in the update size, discussed in Sec. 7.2. With
fewer data to write on NVM at every checkpoint, their energy cost reduces proportionally. As a
result, the smallest amount of energy the system needs to have available at once to successfully
complete the checkpoint reduces as well. Provided the underlying system support correctly identifies
when to start the checkpoint, the workload can be completed with a smaller capacitor.

7.4 Results → Checkpoints
Fig. 114 depicts the reduction in the number of checkpoints against variable capacitor sizes.

These results are directly enabled by the reduction in update size, discussed in Sec. 7.2. Hibernus
adopts the copy-all strategy to checkpoint entire main memory onto NVM regardless of its occu-
pation, as discussed in Sec. 4. As a result, it ends up spending more energy on checkpoints rather
than program execution. This ultimately results in Hibernus consuming more checkpoints than
MementOS and HarvOS for the same workload, as shown in Fig. 11(a), Fig. 11(d) and Fig. 11(g).
Although MementOS and HarvOS only checkpoint allocated portions of memory, this is still

much larger than the actual change in application state. A DICE-equipped system recognizes these
state differentials, thus minimizing the amount of energy spent on and the number of checkpoints.

Interestingly, a significant area of these charts only shows the performance of the DICE-equipped
systems, as the original ones are unable to complete the workload with small capacitors. As soon
as a comparison is possible, the improvements for DICE with small capacitors are significant and
apply consistently across benchmarks as visible in Fig. 11(a), Fig. 11(b) and Fig. 11(c).

With fewer data to write on NVM at every checkpoint, the energy cost of this operation reduces
proportionally. This has two direct consequences. First, the smallest amount of energy the system
needs to have available at once to complete the checkpoint reduces as well. Smaller capacitors
mean reaching operating voltage faster and smaller device footprints. Second, the system can invest
the available energy to compute rather than checkpointing, improving the overall energy efficiency.
In this setting, DICE provides the greatest advantages.

4For MementOS, we tag every data point with the minimum voltage threshold that allows the system to complete the
workload, if at all possible, as it would be returned by the repeated emulation runs [51].

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Ahmed et al.

Capacitor (uF)
0 200 400 600 800 1,000

of

 c
he

ck
po

in
ts

101

102

103

104

105

106

Hibernus
Hibernus+DICE

(a) Hibernus (FFT)

Capacitor (uF)
0 200 400 600 800 1,000

of

 c
he

ck
po

in
ts

101

102

103

104

105

106

Hibernus
Hibernus+DICE

(b) Hibernus (RSA)

Capacitor (uF)
0 200 400 600 800 1,000

of

 c
he

ck
po

in
ts

101

102

103

104

105

Hibernus
Hibernus+DICE

(c) Hibernus (Dijkstra)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS

MementOS+DICE

2.2

2.0

1.8
1.8 1.8 1.81.8

2.4
2.2

1.81.81.8
2.0

1.8
1.8

(d) MementOS (FFT)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

2.2

2.0
1.8

1.8
1.8

1.8
1.8

1.8

2.4
2.2

2.0
1.8 1.8

(e) MementOS (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

2.2

1.8
1.8

1.8
1.8

1.8
1.81.8

1.8

2.2
2.4

2.2
2.02.0

(f) MementOS (Dijkstra)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(g) HarvOS (FFT)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(h) HarvOS (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(i) HarvOS (Dijkstra)

Fig. 11. Number of checkpoints necessary against varying capacitor sizes.With smaller capacitors, highly-
intermittent executions greatly benefit from DICE.

With larger capacitors, the improvements in Fig. 11 are smaller, but still appreciable5. This
is expected: the larger is the capacitor, the more the application progresses farther on a single
charge, thus executions are less intermittent and checkpoints are sparser in time. As a consequence,
modifications since the previous checkpoint accumulate as a result of increased processing times.
The state of main memory then becomes increasingly different than the checkpoint data, and
eventually DICE updates a significant part of it.

5Note the log scale on the Y axis of Fig. 11.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:19

FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
s)

0

5

10

15

20

Without DICE
With DICE

0.32 0.008

8.17

1.93

20

1.78

(a) Hibernus
FFT RSA Dijkstra FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s)

0

100

200

300

400

500

600

Without DICE
With DICE

MementOS
501.1

HarvOS

59.5
33.14

103.5

69.2

30.1
7.1

205.3

34.1

82.7

11.2 7.4

(b) MementOS and HarvOS

Capacitor (mF)
0 200 400 600 800 1000

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
s)

1

2

3

4

5

6

7

8

9

Hibernus
Hibernus+DICE

(c) Hibernus (RSA)

Capacitor (mF)
0 20 40 60 80 100

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s)

0

100

200

300

400

500

600
MementOS (RSA)
MementOS+DICE (RSA)
HarvOS (RSA)
HarvOS+DICE (RSA)

(d) MementOS and HarvOS
(RSA)

Fig. 12. Completion time including checkpoints. The run-time overhead due to DICE is overturn by reducing
size and number of checkpoints, ultimately resulting in shorter completion times.

Fig. 13 provides a summary view on these results, plotting the percentage reduction unlocked by
DICE against variable capacitor sizes and across systems.

Capacitor (uF)
0 200 400 600 800 1000#

of
 c

he
ck

po
in

ts
 r

ed
uc

ed
 (

%
)

0

20

40

60

80

100

FFT
RSA
Dijkstra

System does
not work

without DICE

(a) Hibernus

Capacitor (mF)
0 20 40 60 80 100#

of
 c

he
ck

po
in

ts
 r

ed
uc

ed
 (

%
)

0

20

40

60

80

100
MementOS+DICE (FFT)
MementOS+DICE (RSA)
MementOS+DICE (Dijkstra)
HarvOS+DICE (FFT)
HarvOS+DICE (RSA)
HarvOS+DICE (Dijkstra)

System
does

not work
without

DICE

(b) MementOS and HarvOS

Fig. 13. Improvement at different capacitor sizes enabled
by DICE. The improvements are larger in highly-intermittent
executions.

A significant part of the chart is empty
as no comparison is possible, because the
workload cannot be completed in the origi-
nal designs. When a comparison is possible,
improvements are largest with smaller ca-
pacitors, topping above 80% in most cases.
The curves ultimately tend to flatten with
larger capacitors for the aforementioned rea-
sons.
This performance also allow systems to

reduce the time invested in checkpoint op-
erations, because of a reduction in the time
taken for single checkpoints due to fewer
NVM operations and in their number. In turn, this reduces the time to complete the workload, as
we investigate next.
7.5 Results → Completion Time

FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
/o

 c
he

ck
po

in
ts

 (
s)

0

0.5

1

1.5

2

Without DICE
With DICE

0.005 0.008

1.69
1.802 1.72

1.81

(a) Hibernus
FFT RSA Dijkstra FFT RSA Dijkstra

C
om

pl
et

io
n

tim
e

w
/o

 c
he

ck
po

in
ts

 (
m

s)

0

10

20

30

40

50

60

70
Without DICE
With DICE

HarvOSMementOS

27.27 27.38

5.41

51.82

4.74 5.38

51.63

27.3327.23

4.75

51.66 51.87

(b) MementOS and HarvOS

Fig. 14. Completion time without concrete checkpoints.
The additional run-time overhead due to code instrumenta-
tion is limited.

DICE naturally imposes a cost for the ben-
efits reported thus far. Such a cost material-
izes as run-time overhead due to recording
differentials, which may increase the time
to complete a given workload. On the other
hand, based on the above results, DICE en-
ables more rapid checkpoints as it reduces
NVM operations. In turn, this allows the
system to reduce their number as energy
is spent more on completing the workload
than checkpoints. Both factors should re-
duce the completion time.
Fig. 14 investigates this aspect in a sin-

gle iteration of the benchmarks where the
code executes normally, but we skip the ac-
tual checkpoint operations. This way, we observe the net run-time overhead due to executing
record(). The chart shows that this overhead is generally limited. This is valid also for reactive

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Ahmed et al.

checkpoints in Hibernus, despite the conservative approach at placing record() calls due to the
lack of knowledge of where the execution is preempted.

Fig. 12 includes the time required for checkpoint operations with the smallest capacitor allowing
both the DICE-equipped system and the original one to complete the workload, as per Fig. 10. The
overhead due to executing record() calls is not only compensated, but actually overturn by
fewer, more rapid checkpoints. Using these configurations, DICE allows the system to complete
the workload much earlier, increasing the system’s responsiveness.

Differently, Fig. 12(c) and Fig. 12(d) provide an example of the trends in completion time against
variable capacitor sizes. The improvements are significant in a highly-intermittent computing setting
with smaller capacitors. Similar to Fig. 11, two factors contribute to the curves in Fig. 12(c)and
Fig. 12(d) approaching each other. Larger capacitors allow the code to make more progress on a
single charge, so the number of required checkpoints reduces. As more processing happens between
checkpoints, more modifications occur in application state, forcing DICE to update a larger portion
of the checkpoint data. Eventually, these two factors compensate each other.

8 APPLICATION EVALUATION

Time (ms) #104
0 0.5 1 1.5 2 2.5

V
ol

ta
ge

 (
V

)

0

1

2

3

4

5

6

7 RF
Solar Outdoor Moving (SOM)
Solar Outdoor Rest (SOR)
Solar Indoor Moving (SIM)
Solar Indoor Rest (SIR)

(a) Voltage traces excerpt. (b) Device setup.

Fig. 15. Example voltage traces and device setup.

We investigate the impact of DICE in a full-
fledged application, using a variety of dif-
ferent power profiles. We build the same
activity recognition (AR) application used
for evaluating several support systems for
intermittent computing [15, 37, 39, 51], in-
cluding relying on the same source code [20].
We use an MSP430F2132 MCU, that is, the
MCU used in theWISP platform [53] for run-
ning the same AR application. The rest of
the setup is as for Hibernus in Sec. 7.
We focus on number of checkpoints and

completion time, as defined in Sec. 7.1, in a
single application iteration.
Traces. We consider five power traces, obtained from diverse energy sources and in different
experimental settings.

One of the traces is the RF trace from MementOS [31, 51], recorded using the RF front end of the
WISP 4.1. The black curve in Fig. 15(a) shows an excerpt of this trace, plotting the instantaneous
voltage reading at the energy harvester over time. The curve is oscillating as it was recorded by a
person carrying the WISP while walking around an RFID reader within about eight feet of range.

We collect four additional traces using a mono-crystalline high-efficiency solar panel [56], shown
in Fig. 15(b), in different settings. The solar panel has high efficiency (≈ 20%) with good response to
both indoor and outdoor lightning. We use an Arduino Nano [4] to measure the voltage output
across a 30kOhm load, roughly equivalent to the resistance of an MSP430F2132 in active mode,
attached to the solar panel.

Using this device setup, we experiment with different settings. We attach the device to the wrist
of a student to simulate a fitness tracker. The student roams in the university campus for outdoor
measurements (SOM), and in our research lab for indoor measurements (SIM). Alternatively, we
keep the device on the ground right outside the lab for outdoor measurements (SOR), and at desk
level in our research lab for the indoor measurements (SIR). The curves other than the black one in
Fig. 15(a) exemplify the trends.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:21

Traces
RF SOM SOR SIM SIR

of

 c
he

ck
po

in
ts

0

100

200

300

400

500

600
Without DICE
With DICE

(a) Number of checkpoints.
Traces

RF SOM SOR SIM SIR

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s) #105

0

0.5

1

1.5

2

2.5
Without DICE
With DICE

(b) Completion time.

0 50 100 150 200 250 300 350 400 450 500

Time (ms)

0

0.5

1

1.5

2

2.5

3

3.5

V
ol

ta
ge

 (
V

)

Solar outdoor Moving Trace with DICE
Solar outdoor Moving Trace without DICE

(c) Voltage Variation

Fig. 16. Performance of the AR application running on Hibernus with a 50uF capacitor. Performance gains are
observed across diverse power traces obtained from different energy sources.

Overall, Fig. 15(a) visually demonstrates the extreme variability and considerable differences
among the power traces we consider. For example, the RF power trace often reaches a 0V output, due
to multipath loss worsened by RF harvester mobility. Conversely, the solar traces always maintain
a non-zero output, yet with crucial differences. When operating outdoor, the output voltage rarely
falls below the operating voltage of the hardware we use, whereas this happens frequently in an
indoor setting. Orthogonal to this, mobility induces substantial variations in the voltage output,
due to shadows and occlusions, whereas the output is nearly constant in a static setup.
Results. Across all power traces, we find out that a 10uF capacitor is sufficient for a DICE-equipped
Hibernus to complete an iteration of the AR application. Without DICE reducing the size of
checkpoints, and thus their energy cost and time, Hibernus needs a five times larger capacitor to
complete the same workload.

Fig. 16 shows the performance with a 50uF capacitor, where both the original Hibernus and the
DICE-equipped one can complete the workload. The number of required checkpoints diminishes by
one order of magnitude using DICE, as shown in Fig. 16(a), and we appreciate similar improvements
for completion time as well, as shown in Fig. 16(b). Fewer checkpoints and shorter completion times
mean better energy efficiency and increased reactivity to external events, ultimately providing
increased quality of service to end users.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Ahmed et al.

Traces
RF SOM SOR SIM SIR

of

 c
he

ck
po

in
ts

0

10

20

30

40

50
Without DICE
With DICE

(a) Number of checkpoints.
Traces

RF SOM SOR SIM SIR

C
om

pl
et

io
n

tim
e

w
ith

 c
he

ck
po

in
ts

 (
m

s) #104

0

1

2

3

4

5
Without DICE
With DICE

(b) Completion time.

Fig. 17. Performance of the AR application running on Hibernus with a 100uF capacitor. Compared with
Fig. 16, and as seen in Sec. 7, performance improvements are larger with more intermittent executions.

RF SOM SOR SIM SIR
Traces

0

0.5

1

1.5

2

2.5

O
ff

T
im

e
(m

s)

105

Without DICE
With DICE

(a) Off time for 50uF.

RF SOM SOR SIM SIR
Traces

0

1

2

3

4

5

O
ff

T
im

e
(m

s)

104

Without DICE
With DICE

(b) Off time for 100uF.

Fig. 18. Performance of the AR application running on Hibernus with a 50uF and 100uF capacitors. Reduced
off-time is observed across diverse power traces obtained from different energy sources.

Best absolute performance in Fig. 16 is obtained with the outdoor solar power trace in a static
setup, as expected in that it supplies the largest energy. However, DICE constantly improves
over the original Hibernus, regardless of which of the diverse power traces is considered. This
performance evidently originates from the ability of DICE to abate the energy costs of and time
taken for checkpoints. We achieve this by limiting NVM operations to updating the relevant slices
depending on changes in the application state, as described in Sec. 4. This observation is confirmed
also by looking at the voltage threshold Hibernus uses with DICE: on average, checkpoints start at
2.07V, rather than 2.8V as required in the original Hibernus as shown in 16(c).
The trends we discuss in Sec. 7 with larger capacitors are confirmed here. Fig. 17 plots the

performance using a 100uF capacitor. Improvements are reduced compared with Fig. 16: applications
progress farther on a single charge, checkpoints are sparser, and DICE records more changes to the
application state between checkpoints. This reflects also in the voltage threshold used for triggering
a checkpoint: the DICE-equipped Hibernus triggers a checkpoint at 1.93V, whereas the original
Hibernus starts checkpoints at 2.4V.

We also analyze the impact of reduced checkpoint size on off-time, the total amount of time the
device spends in recharging the buffer. It reflects on device’s ability to react to external events,
network on time, and quality of service in general. Fig. 18(a) shows the off-time on a 50uF capacitor.
A DICE equipped system achieves significantly smaller off-times as compared to original Hibernus,
as shown in Fig. 18. This ability stems from DICE’s ability to reduce the number of checkpoints

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

DICE 1:23

and, therefore, the number of recharge cycles needed to complete the workload. Fig. 18(b) plots the
performance using a 100uF capacitor. Improvements are reduced compared with Fig. 18(a) as the
larger capacitor also benefits the original systems.

9 CONCLUSION
DICE is a set of compile-time techniques for intermittently-powered computers to reduce the
amount of NVM operations during checkpoints. To do so, our compile-time instrumentation tracks
changes in application state and records them in main memory. Based on this, DICE updates the
existing checkpoint data by limiting NVM operations to those strictly necessary, helping existing
systems complete a given workload with i) fewer checkpoints, thus better energy efficiency, and ii)
shorter times, thus increased reactiveness and better quality of service.

Our benchmark evaluation, based on a combination of three benchmarks across three different
existing system support and two different hardware platforms, provides quantitative evidence. For
example, using DICE, HarvOS can complete the execution of the RSA algorithm with 86% fewer
checkpoints, resulting in better overall energy utilization and a 34% reduction in completion time.
These improvements are confirmed in concrete applications, yielding better energy efficiency and
increased reactivity to external events. Experiments based on an activity recognition application
show order of magnitudes improvements when using Hibernus and against power traces as diverse
as RF-based wireless energy transfer and solar radiation.
Acknowledgments. This research has been partially supported by the Swedish Foundation for
Strategic Research (SSF).

REFERENCES
[1] Saurabh Agarwal, Rahul Garg, Meeta S Gupta, and Jose E Moreira. 2004. Adaptive incremental checkpointing for

massively parallel systems. In Proceedings of the 18th annual international conference on Supercomputing. ACM, 277–286.
[2] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2019.

Efficient intermittent computing with differential checkpointing. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems. ACM, 70–81.

[3] Faycal Ait Aouda, Kevin Marquet, and Guillaume Salagnac. 2014. Incremental checkpointing of program state to
NVRAM for transiently-powered systems. In 9th International Symposium on Reconfigurable and Communication-Centric
Systems-on-Chip. IEEE, 1–4.

[4] ARDUINO. 2018. NANO. https://store.arduino.cc/usa/arduino-nano ((accessed 2018-02-28)).
[5] Satu Arra, Jarkko Leskinen, Janne Heikkila, and Jukka Vanhala. 2007. Ultrasonic power and data link for wireless

implantable applications. In 2nd International Symposium on Wireless Pervasive Computing.
[6] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Davide Brunelli, Bashir M Al-Hashimi,

Geoff V Merrett, and Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive system for transiently-powered
embedded devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2016), 1968–1980.

[7] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide Brunelli, and Luca Benini. 2015.
Hibernus: Sustaining computation during intermittent supply for energy-harvesting systems. IEEE Embedded Systems
Letters (2015), 15–18.

[8] Naveed Bhatti and Luca Mottola. 2016. Efficient state retention for transiently-powered embedded sensing. In
International Conference on Embedded Wireless Systems and Networks. 137–148.

[9] Naveed Anwar Bhatti, Muhammad Hamad Alizai, Affan A Syed, and Luca Mottola. 2016. Energy harvesting and
wireless transfer in sensor network applications: Concepts and experiences. ACM Transactions on Sensor Networks
(2016), 24.

[10] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instrumentation for transiently-powered
embedded sensing. In Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor
Networks. ACM, 209–219.

[11] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking path explosion in constraint-based test
generation. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
351–366.

[12] Florian Brandner, Benoit Boissinot, Alain Darte, Benoît Dupont De Dinechin, and Fabrice Rastello. 2011. Computing
Liveness Sets for SSA-Form Programs. Research Report RR-7503. INRIA. 25 pages. https://hal.inria.fr/inria-00558509

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://store.arduino.cc/usa/arduino-nano
https://hal.inria.fr/inria-00558509

1:24 Ahmed et al.

[13] Michael Buettner, Benjamin Greenstein, and David Wetherall. 2011. Dewdrop: An Energy-Aware Runtime for Compu-
tational RFID. In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. USENIX
Association, 197–210.

[14] Hsung-Pin Chang, Yen-Ting Liu, and Shang-Sheng Yang. 2014. Surviving sensor node failures by MMU-less incremental
checkpointing. Journal of Systems and Software 87 (2014), 74–86.

[15] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable intermittent programs. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, 514–530.

[16] Canan Dagdeviren, Pauline Joe, Ozlem L Tuzman, Kwi-Il Park, Keon Jae Lee, Yan Shi, Yonggang Huang, and John A
Rogers. 2016. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting,
sensing and actuation. Extreme Mechanics Letters (2016), 269–281.

[17] Kurt B Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian Arnold. 2011. libhashckpt: hash-based
incremental checkpointing using gpu’s. In European MPI Users’ Group Meeting. Springer, 272–281.

[18] M. Muztaba Fuad and Michael J. Oudshoorn. 2007. Transformation of Existing Programs into Autonomic and Self-
healing Entities. In Proceedings of the 14th Annual IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems. IEEE Computer Society, 133–144.

[19] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2003. Caches and Hash Trees
for Efficient Memory Integrity Verification. In HPCA. IEEE Computer Society, 295–306.

[20] Abstract Research Group. 2018. Benchmark Applications. www.github.com/CMUAbstract/releases#
benchmark-applications ((accessed 2018-02-28)).

[21] Berkin Güler and Öznur Özkasap. 2018. Efficient checkpointing mechanisms for primary-backup replication on the
cloud. Concurrency and Computation: Practice and Experience 30, 21 (2018), e4707.

[22] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown. 2001.
MiBench: A free, commercially representative embedded benchmark suite. In WWC. IEEE, 3–14.

[23] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the coulombs: Federating energy storage for tiny,
intermittently-powered sensors. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems.
ACM, 5–16.

[24] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. ACM, Article Article 19, 13 pages.

[25] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computation. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. 228–240.

[26] Texas Instruments. 2013.MSP430 Solar Energy Harvesting Development Tool. http://www.ti.com/tool/EZ430-RF2500-SEH
(accessed 2018-08-03).

[27] Oana Iova, Pietro Picco, Timofei Istomin, and Csaba Kiraly. 2016. RPL: The Routing Standard for the Internet of
Things... Or Is It? IEEE Communications Magazine (2016), 16–22.

[28] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015. Quick Recall: A HW/SW Approach
for Computing across Power Cycles in Transiently Powered Computers. ACM Journal on Emerging Technologies in
Computing Systems (2015), 8.

[29] Richard Koo and Sam Toueg. 1987. Checkpointing and Rollback-recovery for Distributed Systems. IEEE Transactions
on Software Engineering (1987), 23–31.

[30] Phil Koopman. 2010. Better Embedded System Software. CMU Press.
[31] PERSIST Lab. 2018. RF Trace. https://github.com/PERSISTLab/BatterylessSim/tree/master/traces ((accessed 2018-02-

28)).
[32] Eunji Lee, Seunghoon Yoo, Jee-Eun Jang, and Hyokyung Bahn. 2012. Shortcut-JFS: A write efficient journaling file

system for phase change memory. In 28th Symposium on Mass Storage Systems and Technologies. IEEE, 1–6.
[33] Juchang Lee, Kihong Kim, and Sang Kyun Cha. 2001. Differential logging: A commutative and associative logging

scheme for highly parallel main memory database. In Proceedings 17th International Conference on Data Engineering.
IEEE, 173–182.

[34] Fuyang Li, Keni Qiu, Mengying Zhao, Jingtong Hu, Yongpan Liu, Yong Guan, and Chun Jason Xue. 2018. Checkpointing-
Aware Loop Tiling for Energy Harvesting Powered Nonvolatile Processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38, 1 (2018), 15–28.

[35] Libelium. 2017. Waspmote. http://www.libelium.com/products/waspmote/ (accessed 2017-10-02).
[36] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. 2017. Intermittent Computing:

Challenges andOpportunities. In 2nd Summit on Advances in Programming Languages. Leibniz International Proceedings
in Informatics.

[37] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and execution model for intermittent
systems. Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

www.github.com/CMUAbstract/releases#benchmark-applications
www.github.com/CMUAbstract/releases#benchmark-applications
http://www.ti.com/tool/EZ430-RF2500-SEH
https://github.com/PERSISTLab/BatterylessSim/tree/master/traces
http://www.libelium.com/products/waspmote/

DICE 1:25

575–585.
[38] Giedrius Lukosevicius, Alberto Rodriguez Arreola, and Alexander Weddell. 2017. Using Sleep States to Maximize the

Active Time of Transient Computing Systems. In ENSsys (with SenSys). ACM.
[39] KiwanMaeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent ExecutionWithout Checkpoints. Proceedings

of the ACM on Programming Languages 1, Article 96 (2017), 30 pages.
[40] R. Margolies et al. 2013. Demo: An Adaptive Testbed of Energy Harvesting Active Networked Tags (EnHANTs)

Prototypes. In IEEE INFOCOM’13.
[41] mbed. 2017. IoT OS. goo.gl/u918jX.
[42] Kresimir Mihic, Ajay Mani, Manjunath Rajashekhar, and Philip Levis. 2007. Mstore: Enabling storage-centric sensornet

research. In IPSN. Citeseer, 1–8.
[43] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. Bugnet: Continuously recording program execution

for deterministic replay debugging. In ACM SIGARCH Computer Architecture News, Vol. 33. IEEE Computer Society,
284–295.

[44] Robert HB Netzer and Mark HWeaver. 1994. Optimal tracing and incremental reexecution for debugging long-running
programs. In PLDI, Vol. 94. ACM, 313–325.

[45] Hoang Anh Nguyen, Anna Forster, Daniele Puccinelli, and Silvia Giordano. 2011. Sensor node lifetime: An experimental
study. In IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).
IEEE, 202–207.

[46] Expansion of STM32 Nucleo boards. 2017. Data Sheet: X-NUCLEO-NFC02A1. www.st.com (accessed 2017-10-02).
[47] Terence Parr. 2013. The Definitive ANTLR 4 Reference. goo.gl/RR1s.
[48] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1995. Libckpt: Transparent Checkpointing Under Unix. In

Proceedings of the USENIX 1995 Technical Conference Proceedings. USENIX Association, 18–18.
[49] Xiongpai Qin, Yanqin Xiao, Wei Cao, and Shan Wang. 2008. A parallel recovery scheme for update intensive main

memory database systems. In Ninth International Conference on Parallel and Distributed Computing, Applications and
Technologies. IEEE, 509–516.

[50] Brian Randell, Pete Lee, and Philip C. Treleaven. 1978. Reliability issues in computing system design. ACM Computing
Surveys (CSUR) 10, 2 (1978), 123–165.

[51] Benjamin Ransford. 2011. Mementos: System Support for Long-running Computation on RFID-scale Devices. In Proc.
16𝑡ℎ Int. Conf. Architectural Support for Programming Languages and Operating Systems. Association for Computing
Machinery, 159–170.

[52] B. Ransford. 2013. Transiently Powered Computers. Ph.D. Dissertation. School of Computer Science, UMass Amherst.
[53] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and Joshua R Smith. 2008. Design of

an RFID-based battery-free programmable sensing platform. IEEE transactions on instrumentation and measurement 57,
11 (2008), 2608–2615.

[54] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. 2012. LLBT: An LLVM-based Static Binary Translator.
In CASES. ACM, 51–60.

[55] Rebecca Smith and Scott Rixner. 2015. Surviving Peripheral Failures in Embedded Systems. In Proceedings of the 2015
USENIX Annual Technical Conference. USENIX Association, 125–137.

[56] IXYS SolarMD. 2018. SLMD481H08L. http://ixapps.ixys.com/ ((accessed 2018-02-28)).
[57] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vijaykrishnan Narayanan. 2017. Nonvolatile

processors: Why is it trending?. In 2017 Design, Automation and Test in Europe Conference and Exhibition. IEEE,
966–971.

[58] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-flow Analysis in LLVM. In Proceedings of the 25th
International Conference on Compiler Construction. ACM, 265–266.

[59] Florin Sultan, Thu Nguyen, and Liviu Iftode. 2000. Scalable fault-tolerant distributed shared memory. In Proceedings of
the 2000 ACM/IEEE Conference on Supercomputing. IEEE, 20–20.

[60] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation without Hardware Support or Programmer
Intervention.. In OSDI. USENIX Association, 17–32.

[61] Ramakrishnan Venkitaraman and Gopal Gupta. 2004. Static Program Analysis of Embedded Executable Assembly
Code. In CASES. ACM, 157–166.

[62] Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu, and Chun Jason Xue. 2015. Fixing the broken time
machine: Consistency-aware checkpointing for energy harvesting powered non-volatile processor. In DAC. 1–6.

[63] Guang Yang, Bernard H Stark, Simon J Hollis, and Steve G Burrow. 2014. Challenges for Energy Harvesting Systems
Under Intermittent Excitation. IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2014).

[64] Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. 2007. Clairvoyant: a comprehensive source-level
debugger for wireless sensor networks. In Proceedings of the 5th international conference on Embedded networked sensor
systems. ACM, 189–203.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.

goo.gl/u918jX
www.st.com
goo.gl/RR1s
http://ixapps.ixys.com/

