Towards Fine-grained Automated Verification of
Publish-Subscribe Architectures

Luciano Baresi, Carlo Ghezzi, and Luca Mottola

Dipartimento di Elettronica ed Informazione—Politecni@tidMilano
{baresi, ghezzi, nottola}@let.polim.it

Abstract. The design and validation of distributed applications thoiil top of
Publish-Subscribe infrastructures remain an open prablerevious efforts
adopted finite automata to specify the components’ behaarat model check-
ing to verify global properties. However, existing propissare far from being
applicable in real contexts, as strong simplifications aexied on the underlying
Publish-Subscribe infrastructure to make automatic \eatifbon feasible.

To face this challenge, we propose a novel approach thatasbe asynchronous
communication mechanisms of Publish-Subscribe infragtraswithin the model
checker. This way, Publish-Subscribe primitives beconaélavle to the specifi-
cation of application components as additional, domagesje, constructs of the
modeling language. With this approach, one can develop afimi@ed model of
the Publish-Subscribe infrastructure without incurringstate space explosion
problems, thus enabling the automated verification of apptin components on
top of realistic communication infrastructures.

1 Introduction

The Publish-Subscribe interaction paradigm is rapidly resing as an appealing solu-
tion to the needs of applications designed for highly-dyitanvironments. Using this
paradigm, application componerggbscribeto event patterns and gabtified when
other componentpublishevents matching their subscriptions. Its asynchronous, im
plicit and multi-point communication style is particuladmenable to those scenarios
where application components can be added or removed uofaiel¢f, and the com-
munication must be decoupled both in time and in space [XdaBse of this flexibility,
Publish-Subscribe infrastructures have been developealiode range of application
scenarios, from wide-area notification services to wielEnsor networks.

However, the high degree of decoupling brings also seveealltacks. In partic-
ular, verifying how a federation of independently-writteoftware components inter-
connected in such a loosely-coupled manner is often diffloe¢ause of the absence
of a precise specification of the behavior of the commurdcaitfrastructure. Model
checking has been proposed as a possible solution, buingxisbrks do not propose
a precise characterisation of the different guaranteesnherlying Publish-Subscribe
infrastructure can provide. For instance, different mgesielivery policies, reliability
guarantees or concurrency models can easily change thefitmme of the verifica-
tion effort.

The wide spectrum of deployment scenarios, and the coneegast range of avail-
able systems, makes the aforementioned characterizaifotrivial. In addition, mod-
eling these features using the primitives of existing matielckers inevitably results in
state space explosion problems, thus ultimately hindehagerification effort.

In this paper we argue that a fine-grained Publish-Subsanitidel requires a dif-
ferent approach to the problem. We propose to augment atingximodel-checker
with domain-specific constructs able to expose Publishs&tiire primitives as con-
structs of the modeling language. This way, the mechanisaded to implement the
Publish-Subscribe interaction style can be embeddtiin the model-checker, and one
can achieve a fine-grained characterization of the diftegearantees of the Publish-
Subscribe system without incurring in state space exphgsioblems.

The rest of the paper is structured as follows. Section Zlpiseirveys the existing
approaches, and highlights how they miss important cheriatits of existing Publish-
Subscribe infrastructures. Section 3 proposes our solaim reports on some initial
results demonstrating how our approach better scales tplearaystems than existing
ones. Finally, Section 4 concludes the paper with an outtwokur current and future
research plans.

2 Modeling Publish-Subscribe Systems

The identification of the different guarantees provided bplRh-Subscribe infrastruc-
tures is a challenging task. This becomes even harder whemsder those charac-
teristics that would impact the verification of applicataninning on top. To this end,
Table 1 summarizes a set of QoS dimensions provided by regigtublish-Subscribe
infrastructures that could affect the outcome of the veaifan process. We claim that
the majority of available systems can be precisely class#dieng these different di-
mensions. However, existing proposals for automated eatifin of Publish-Subscribe
infrastructures fail to capture many of these differentrabteristics.

The work in [2, 3] is limited to the CORBA Communication Mod€ICM) as mid-
dleware. Similarly, [4] concentrates on the addition of &li&in-Subscribe notification
service to an existing groupware protocol. On the other hgmedvork in [5] develops a
compositional reasoning based on an assume-guaranteedoktyy. The technique is
shown to be applicable to particular instances of Publighs8ribe middleware. In all
these cases, the proposed solution addresses just a veawsaenario, i.e., a particular
instance of Publish-Subscribe system.

Garlan et al. [6] provide a set of pluggable modules thatnalanodeler to choose
one possible instance out of a set of possible choices. Haywthe available models
are far from fully capturing the different characteristafsexisting Publish-Subscribe
systems. For instance, application components cannogehtaeir interests (i.e., sub-
scriptions) at run-time, and the event dispatching policgnly characterized in terms
of delivery policy @synchronoussynchronousimmediateor delayed. The approach
is improved in [7] by adding more expressive events, dynateiivery policies and dy-
namic event-method bindings. However, this proposal oeblglwith the specification
of different delivery policies depending on the state ofdkerall model, and still does
not capture finer-grained guarantees such as real-timeraoris.

[QoS Class [Possible Choices [Description |
Message Reliability Absent Notifications can be lost. |
Present Notifications are guaranteed to eventually arrive at ther@stted subscribers.
Message Ordering {None Notifications are delivered in random order.
Pair-wise FIFO Notifications are delivered to a given subscriber in FIFOeomdith respect th

publish operations from the same publisher.

System-wide FIFO

Notifications are delivered to subscribers in the same aadgublish oper
tions, regardless of the component that published the rgessa

Causal Order

Causally related notifications are delivered accordingheo dausality chaif
among them.

Total Order All components subscribed to the same events are notifidteisame order

(which is not necessarily the order in which these eventpaléished).
Filtering Precise Notifications are only delivered for subscribed events.

Approximate Components can be notified on events for which they are netsiled (fals¢
positives), or miss events in which they are interestedti@@ddiow approxi
mate filtering is deterministic, while reliability problenare in general unpre-
dictable.)

Real-Time None Notifications are delivered without time guarantees.
Guarantees

Soft RT On the average, notification are deliveredZintime units after the publigh
operation.

Hard RT Nofifications are guaranteed to be delivered withitime units after the pu-
blish operation.

Subscription Absent Subscriptions are immediately active and deliver everifioations.
Propagation Delay
Present Subscriptions start to deliver event notifications aftearsdom time.

Repliable MessageAbsent

Subscriptions set up to convey replies travel indepengehthe original noti
fication. If subscriptions are delayed, the deliver of th@yés not guarantee

w/ Queue Scrunching

dynamically raises the priority of messages that waiteddag in their orig
inal priority queue. This way, each message is eventuallyated.

Present Subscriptions used to convey replies travel with the odaily messagg.
Therefore, they are guaranteed to be active at the time gigigepublished.
Message Priorities [Absent All notifications are treated in the same way.
Present Notifications are delivered according to specific priosfiao mechanism |s
used to prevent starvation of messages.
Present Notifications are delivered according to specific priostiqueue scrunching

messages up to higher priority messages.

Queue Drop Policy [None Queues are of infinite length.
Tail Drop Given queues of TengtlL, messages exceeding this threshold are dropped
upon arrival.
Priority Drop Given queues of length, messages are dropped starting from Tower priprity

Table 1. Publish-Subscribe QoS dimensions.

Finally, the work in [8] characterizes the Publish-Sulseiinfrastructure in terms

of reliability, event delivery order (the same as publicas, the same as publications
but only referring to the same publisher, or none), and gifittan propagation delay.
Still, it does not consider several of the dimensions listetiable 1.

3 Our Proposal

The definition of all the mechanisms described in Table 1esry unfeasible if one
keeps the traditional approach of expressing both the @tgin components and the
communication infrastructure in terms of the primitivested model checker. Based on
this, we propose a novel approach to augment an existing Ilnobhdeker with Publish-
Subscribe-style constructs. This way, we build the comiation infrastructuréside
the model checker, thus avoiding the aforementioned padace problems.

Our approach leverages off the simplicity of the Publisiibstmibe APIs (composed
of the basic operationgubl i sh(Event) andsubscri be(Event Pattern)),

Scenario [Bogor with embedded Publish-Subscribg SPIN - Promela |

[Memory] Time | Memory] Time |
Causal2Publish [32.8 Mb 103 sec 298.3 Mb >15 min
Causal5Publish [45.6 Mb 132 sec 589.6 Mb >1 hour
Causal7Publish [52.3 Mb 158 sec OutOfMemory NotConcludedl
Causall0Publish [61.1 Mb 189 sec OutOfMemory NotConcludedl
Priorities2Publish| 18.3 Mb 47 sec 192 Mb >10 min
Priorities5Publish| 26.9 Mb 103 sec 471.2 Mb >30 min
Priorities7Publish| 37.9 Mb 134 sec OutOfMemory NotConcludedl
Priorities10Publish49.1 Mb 163 sec OutOfMemory NotConcludedl

Table 2. Comparing our approach with [8].

and makes them available as additional constructs of the lapguage of the model
checker! Before performing the actual verification, the user bindsgieneral Publish-
Subscribe API to a particular combination of the differenaantees highlighted in
Table 1, thus “instantiating” a particular communicatiafrastructure on top of which
the application model is run.

To implement our approach, we are currently embedding aghiBiubscribe com-
munication mechanisms —with the various guarantees tgtdd in Table 1— within
the model checker Bogor [9]. Its open architecture makessly ¢0 add domain-specific
mechanisms to the model checker. To check our additions ewisetl a wide range of
test cases. Every test is represented by a set of Bogor pescesgpressed in BIR (Bo-
gor Intermediate Language), which make use of the aforaored Publish-Subscribe
API as any other BIR construct.

The solution we propose impacts on two orthogonal asperly-it enables au-
tomated verification of application components on top ofiséa communication in-
frastructures. This way, the gap between the system modkkiearly design phases
and the actual implementation can be narrowed down, anahf@teroblems caught
in advance. Secondly, it eases the translation of the behaf/application components
—usually expressed in a given specification formalism— th#input language of the
model checker, since the application components and theehubecker rely on the
same communication primitives.

3.1 Early Results

To substantiate our claims, we report some initial resultsgathered by comparing
our approach with the solution in [8], which uses SPIN andiiia. We designed a
set of possible interactions among five different proceasisthe only goal of making
processes coordinate by exchanging messages. We chaedttine different scenar-
ios by means of the number of publish operations to be peddrmon a per-process
basis— during each run of the test application. On the aegtalf of the processes are
subscribed to published events and receive the correspgnadiifications. The prop-
erties we are interested in are simple assertions, whogegoal is to make sure that
messages are delivered according to the chosen policyili.eausal order or accord-
ing to the respective priorities). In a sense, these aesartierify that the implemented
mechanisms are semantically correct.

! Notice how the Publish-Subscribe APIs we consider expficieal with subscriptions to gen-
eral patterns of events, therefore overcoming the lintitetiof existing proposals (e.g., [6]).

Table 2 illustrates the performance of the two approachas, in terms of mem-
ory consumption and time needed to complete the verificgtiooess. The experiments
were executed on a Pentium 4 with 1 Gb RAM. Our approach ofaypes the one based
on SPIN in all cases. When the number of publish operatiareases, our solution al-
lows the verification effort to terminate where SPIN would rmut of memory. This
clearly highlights how the requirement of realistically deting the communication in-
frastructure cannot be addressed by using only the priesifprovided by conventional
model checkers.

4 Conclusions and Future Work

This paper presents a novel approach to the automated aédfiof applications built
on top of fine-grained and realistic models of Publish-Stibe@rchitectures. We argue
that such a level of detail cannot be achieved by means ofedional model checkers.
Our proposal flips the problem and augments the input largyoégn existing model
checker with the primitives of Publish-Subscribe commatian infrastructures. The
first results summarized in this paper are encouraging anivate further work.

We plan to conclude the implementation in Bogor of the défgrguarantees illus-
trated in Table 1, and further evaluate the effectivenessinapproach with meaningful
test cases. However, our ultimate objective is the devetopiiof a tool to enable auto-
mated verification of applications built on top of PublishbScribe systems.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarred.A The many faces of pu-
blish/subscribe. ACM Comput. Sur85(2) (2003)

2. Deng, X., Dwyer, M.B., Hatcliff, J., Jung, G.: Model-chéng middleware-based event-driven
real-time embedded software. In: Proc. of tié Int. Symposium on Formal Methods for
Components and Objects. (2002)

3. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath,Cadena: an integrated develop-
ment, analysis, and verification environment for compoitesed systems. In: Proc. of the
25" Int. Conf. on Software Engineering (ICSE03). (2003)

4. Beek, M.H., Massink, M., Latella, D., Gnesi, S., Forghiér, Sebastianis, M.: A case study
on the automated verification of groupware protocols. ImcPof the27'" Int. Conf. on
Software engineering (ICSE05). (2005)

5. Caporuscio, M., Inverardi, P., Pelliccione, P.: Comfiosal verification of middleware-based
software architecture descriptions. In: Proc. of 18" Int. Conf. on Software engineering
(ICSEO04). (2004)

6. Garlan, D., Khersonsky, S.: Model checking implicitémation systems. In: Proc. of the*"
Int. Workshop on Software Specification and Design. (2000)

7. Bradbury, J.S., Dingel, J.: Evaluating and improving dbéomatic analysis of implicit invo-
cation systems. In: Proc. of t19&" European software engineering Conf. (2003)

8. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to modedl @alidate publish/subscribe
architectures. In: Proc. of the SAVCBS’03 Workshop. (2003)

9. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensibledamghly-modular software model
checking framework. In: Proc. of tHE" European software engineering Conf. (2003)

