
Towards Fine-grained Automated Verification of
Publish-Subscribe Architectures

Luciano Baresi, Carlo Ghezzi, and Luca Mottola

Dipartimento di Elettronica ed Informazione—Politecnicodi Milano
{baresi,ghezzi,mottola}@elet.polimi.it

Abstract. The design and validation of distributed applications built on top of
Publish-Subscribe infrastructures remain an open problem. Previous efforts
adopted finite automata to specify the components’ behavior, and model check-
ing to verify global properties. However, existing proposals are far from being
applicable in real contexts, as strong simplifications are needed on the underlying
Publish-Subscribe infrastructure to make automatic verification feasible.
To face this challenge, we propose a novel approach that embeds the asynchronous
communication mechanisms of Publish-Subscribe infrastructureswithin the model
checker. This way, Publish-Subscribe primitives become available to the specifi-
cation of application components as additional, domain-specific, constructs of the
modeling language. With this approach, one can develop a fine-grained model of
the Publish-Subscribe infrastructure without incurring in state space explosion
problems, thus enabling the automated verification of application components on
top of realistic communication infrastructures.

1 Introduction

The Publish-Subscribe interaction paradigm is rapidly emerging as an appealing solu-
tion to the needs of applications designed for highly-dynamic environments. Using this
paradigm, application componentssubscribeto event patterns and getnotified when
other componentspublishevents matching their subscriptions. Its asynchronous, im-
plicit and multi-point communication style is particularly amenable to those scenarios
where application components can be added or removed unpredictably, and the com-
munication must be decoupled both in time and in space [1]. Because of this flexibility,
Publish-Subscribe infrastructures have been developed for a wide range of application
scenarios, from wide-area notification services to wireless sensor networks.

However, the high degree of decoupling brings also several drawbacks. In partic-
ular, verifying how a federation of independently-writtensoftware components inter-
connected in such a loosely-coupled manner is often difficult because of the absence
of a precise specification of the behavior of the communication infrastructure. Model
checking has been proposed as a possible solution, but existing works do not propose
a precise characterisation of the different guarantees theunderlying Publish-Subscribe
infrastructure can provide. For instance, different message delivery policies, reliability
guarantees or concurrency models can easily change the finaloutcome of the verifica-
tion effort.



The wide spectrum of deployment scenarios, and the consequent vast range of avail-
able systems, makes the aforementioned characterization non-trivial. In addition, mod-
eling these features using the primitives of existing modelcheckers inevitably results in
state space explosion problems, thus ultimately hinderingthe verification effort.

In this paper we argue that a fine-grained Publish-Subscribemodel requires a dif-
ferent approach to the problem. We propose to augment an existing model-checker
with domain-specific constructs able to expose Publish-Subscribe primitives as con-
structs of the modeling language. This way, the mechanisms needed to implement the
Publish-Subscribe interaction style can be embeddedwithin the model-checker, and one
can achieve a fine-grained characterization of the different guarantees of the Publish-
Subscribe system without incurring in state space explosion problems.

The rest of the paper is structured as follows. Section 2 briefly surveys the existing
approaches, and highlights how they miss important characteristics of existing Publish-
Subscribe infrastructures. Section 3 proposes our solution and reports on some initial
results demonstrating how our approach better scales to complex systems than existing
ones. Finally, Section 4 concludes the paper with an outlookon our current and future
research plans.

2 Modeling Publish-Subscribe Systems

The identification of the different guarantees provided by Publish-Subscribe infrastruc-
tures is a challenging task. This becomes even harder when weconsider those charac-
teristics that would impact the verification of applications running on top. To this end,
Table 1 summarizes a set of QoS dimensions provided by existing Publish-Subscribe
infrastructures that could affect the outcome of the verification process. We claim that
the majority of available systems can be precisely classified along these different di-
mensions. However, existing proposals for automated verification of Publish-Subscribe
infrastructures fail to capture many of these different characteristics.

The work in [2,3] is limited to the CORBA Communication Model(CCM) as mid-
dleware. Similarly, [4] concentrates on the addition of a Publish-Subscribe notification
service to an existing groupware protocol. On the other hand, the work in [5] develops a
compositional reasoning based on an assume-guarantee methodology. The technique is
shown to be applicable to particular instances of Publish-Subscribe middleware. In all
these cases, the proposed solution addresses just a very narrow scenario, i.e., a particular
instance of Publish-Subscribe system.

Garlan et al. [6] provide a set of pluggable modules that allow a modeler to choose
one possible instance out of a set of possible choices. However, the available models
are far from fully capturing the different characteristicsof existing Publish-Subscribe
systems. For instance, application components cannot change their interests (i.e., sub-
scriptions) at run-time, and the event dispatching policy is only characterized in terms
of delivery policy (asynchronous, synchronous, immediateor delayed). The approach
is improved in [7] by adding more expressive events, dynamicdelivery policies and dy-
namic event-method bindings. However, this proposal only deals with the specification
of different delivery policies depending on the state of theoverall model, and still does
not capture finer-grained guarantees such as real-time constraints.



QoS Class Possible Choices Description

Message ReliabilityAbsent Notifications can be lost.
Present Notifications are guaranteed to eventually arrive at the interested subscribers.

Message Ordering None Notifications are delivered in random order.
Pair-wise FIFO Notifications are delivered to a given subscriber in FIFO order with respect to

publish operations from the same publisher.
System-wide FIFO Notifications are delivered to subscribers in the same orderas publish opera-

tions, regardless of the component that published the message.
Causal Order Causally related notifications are delivered according to the causality chain

among them.
Total Order All components subscribed to the same events are notified in the same order

(which is not necessarily the order in which these events arepublished).
Filtering Precise Notifications are only delivered for subscribed events.

Approximate Components can be notified on events for which they are not subscribed (false
positives), or miss events in which they are interested. (Notice how approxi-
mate filtering is deterministic, while reliability problems are in general unpre-
dictable.)

Real-Time
Guarantees

None Notifications are delivered without time guarantees.

Soft RT On the average, notification are delivered inT time units after the publish
operation.

Hard RT Notifications are guaranteed to be delivered withinT time units after the pu-
blish operation.

Subscription
Propagation Delay

Absent Subscriptions are immediately active and deliver event notifications.

Present Subscriptions start to deliver event notifications after a random time.
Repliable MessagesAbsent Subscriptions set up to convey replies travel independently of the original noti-

fication. If subscriptions are delayed, the deliver of the reply is not guaranteed.
Present Subscriptions used to convey replies travel with the originating message.

Therefore, they are guaranteed to be active at the time the reply is published.
Message Priorities Absent All notifications are treated in the same way.

Present Notifications are delivered according to specific priorities, no mechanism is
used to prevent starvation of messages.

Present
w/ Queue Scrunching

Notifications are delivered according to specific priorities, queue scrunching
dynamically raises the priority of messages that waited toolong in their orig-
inal priority queue. This way, each message is eventually delivered.

Queue Drop Policy None Queues are of infinite length.
Tail Drop Given queues of lengthL, messages exceeding this threshold are dropped

upon arrival.
Priority Drop Given queues of lengthL, messages are dropped starting from lower priority

messages up to higher priority messages.

Table 1.Publish-Subscribe QoS dimensions.

Finally, the work in [8] characterizes the Publish-Subscribe infrastructure in terms
of reliability, event delivery order (the same as publications, the same as publications
but only referring to the same publisher, or none), and subscription propagation delay.
Still, it does not consider several of the dimensions listedin Table 1.

3 Our Proposal

The definition of all the mechanisms described in Table 1 is clearly unfeasible if one
keeps the traditional approach of expressing both the application components and the
communication infrastructure in terms of the primitives ofthe model checker. Based on
this, we propose a novel approach to augment an existing model checker with Publish-
Subscribe-style constructs. This way, we build the communication infrastructureinside
the model checker, thus avoiding the aforementioned performance problems.

Our approach leverages off the simplicity of the Publish-Subscribe APIs (composed
of the basic operationspublish(Event) andsubscribe(EventPattern)),



Scenario Bogor with embedded Publish-Subscribe SPIN - Promela
Memory Time Memory Time

Causal2Publish 32.8 Mb 103 sec 298.3 Mb >15 min
Causal5Publish 45.6 Mb 132 sec 589.6 Mb >1 hour
Causal7Publish 52.3 Mb 158 sec OutOfMemoryNotConcluded
Causal10Publish 61.1 Mb 189 sec OutOfMemoryNotConcluded
Priorities2Publish 18.3 Mb 47 sec 192 Mb >10 min
Priorities5Publish 26.9 Mb 103 sec 471.2 Mb >30 min
Priorities7Publish 37.9 Mb 134 sec OutOfMemoryNotConcluded
Priorities10Publish49.1 Mb 163 sec OutOfMemoryNotConcluded

Table 2.Comparing our approach with [8].

and makes them available as additional constructs of the input language of the model
checker.1 Before performing the actual verification, the user binds this general Publish-
Subscribe API to a particular combination of the different guarantees highlighted in
Table 1, thus “instantiating” a particular communication infrastructure on top of which
the application model is run.

To implement our approach, we are currently embedding a Publish-Subscribe com-
munication mechanisms —with the various guarantees highlighted in Table 1— within
the model checker Bogor [9]. Its open architecture makes it easy to add domain-specific
mechanisms to the model checker. To check our additions, we devised a wide range of
test cases. Every test is represented by a set of Bogor processes expressed in BIR (Bo-
gor Intermediate Language), which make use of the aforementioned Publish-Subscribe
API as any other BIR construct.

The solution we propose impacts on two orthogonal aspects. Firstly, it enables au-
tomated verification of application components on top of realistic communication in-
frastructures. This way, the gap between the system model inthe early design phases
and the actual implementation can be narrowed down, and potential problems caught
in advance. Secondly, it eases the translation of the behavior of application components
—usually expressed in a given specification formalism— intothe input language of the
model checker, since the application components and the model checker rely on the
same communication primitives.

3.1 Early Results

To substantiate our claims, we report some initial results we gathered by comparing
our approach with the solution in [8], which uses SPIN and Promela. We designed a
set of possible interactions among five different processeswith the only goal of making
processes coordinate by exchanging messages. We characterized the different scenar-
ios by means of the number of publish operations to be performed —on a per-process
basis— during each run of the test application. On the average, half of the processes are
subscribed to published events and receive the corresponding notifications. The prop-
erties we are interested in are simple assertions, whose only goal is to make sure that
messages are delivered according to the chosen policy (i.e., in causal order or accord-
ing to the respective priorities). In a sense, these assertions verify that the implemented
mechanisms are semantically correct.

1 Notice how the Publish-Subscribe APIs we consider explicitly deal with subscriptions to gen-
eral patterns of events, therefore overcoming the limitations of existing proposals (e.g., [6]).



Table 2 illustrates the performance of the two approaches, both in terms of mem-
ory consumption and time needed to complete the verificationprocess. The experiments
were executed on a Pentium 4 with 1 Gb RAM. Our approach outperforms the one based
on SPIN in all cases. When the number of publish operations increases, our solution al-
lows the verification effort to terminate where SPIN would run out of memory. This
clearly highlights how the requirement of realistically modeling the communication in-
frastructure cannot be addressed by using only the primitives provided by conventional
model checkers.

4 Conclusions and Future Work

This paper presents a novel approach to the automated verification of applications built
on top of fine-grained and realistic models of Publish-Subscribe architectures. We argue
that such a level of detail cannot be achieved by means of conventional model checkers.
Our proposal flips the problem and augments the input language of an existing model
checker with the primitives of Publish-Subscribe communication infrastructures. The
first results summarized in this paper are encouraging and motivate further work.

We plan to conclude the implementation in Bogor of the different guarantees illus-
trated in Table 1, and further evaluate the effectiveness ofour approach with meaningful
test cases. However, our ultimate objective is the development of a tool to enable auto-
mated verification of applications built on top of Publish-Subscribe systems.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pu-
blish/subscribe. ACM Comput. Surv.35(2) (2003)

2. Deng, X., Dwyer, M.B., Hatcliff, J., Jung, G.: Model-checking middleware-based event-driven
real-time embedded software. In: Proc. of the1

st Int. Symposium on Formal Methods for
Components and Objects. (2002)

3. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath,V.: Cadena: an integrated develop-
ment, analysis, and verification environment for component-based systems. In: Proc. of the
25

th Int. Conf. on Software Engineering (ICSE03). (2003)
4. Beek, M.H., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: A case study

on the automated verification of groupware protocols. In: Proc. of the27
th Int. Conf. on

Software engineering (ICSE05). (2005)
5. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of middleware-based

software architecture descriptions. In: Proc. of the19
th Int. Conf. on Software engineering

(ICSE04). (2004)
6. Garlan, D., Khersonsky, S.: Model checking implicit-invocation systems. In: Proc. of the10th

Int. Workshop on Software Specification and Design. (2000)
7. Bradbury, J.S., Dingel, J.: Evaluating and improving theautomatic analysis of implicit invo-

cation systems. In: Proc. of the9th European software engineering Conf. (2003)
8. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate publish/subscribe

architectures. In: Proc. of the SAVCBS’03 Workshop. (2003)
9. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software model

checking framework. In: Proc. of the9th European software engineering Conf. (2003)


