
On Accurate Automatic Verification of
Publish-Subscribe Architectures

Luciano Baresi, Carlo Ghezzi, and Luca Mottola
Dipartimento di Elettronica e Informazione - Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano (Italy)
{baresi|ghezzi|mottola}@elet.polimi.it

Abstract

The paper presents a novel approach based on Bogor for
the accurate verification of applications based on Publish-
Subscribe infrastructures. Previous efforts adopted stan-
dard model checking techniques to verify the application
behavior, but they introduce strong simplifications on the
underlying infrastructure to cope with the state space ex-
plosion problem and make automatic verification feasible.

Instead of building on top of existing model checkers, our
proposal embeds the asynchronous communication mech-
anisms of Publish-Subscribe infrastructures within Bogor.
This way, Publish-Subscribe primitives become part of the
specification language as additional, domain-specific, con-
structs. Accurate models become feasible without incurring
in state space explosion problems, thus enabling the auto-
mated verification of applications on top of realistic com-
munication infrastructures.

1 Introduction

Pervasive computing, autonomic systems, and ubiqui-
tous applications are pushing for highly dynamic and flex-
ible software environments. The components of a given
application, along with their interactions, are not set once
and forever. The dynamism of these systems requires that
components be able to federate spontaneously: the seam-
less integration of elements is one of the key requirements
for these applications.

If we tackle the problem at architectural level, the
Publish-Subscribe interaction style [11] provides an ap-
pealing solution for these highly dynamic applications.
In Publish-Subscribe applications, components subscribe
to message (event) patterns and get notified when other
components publish messages matching their subscriptions.
Its asynchronous, implicit, and multi-point communication
style is particularly amenable to those applications in which

components can be added or removed unpredictably, and
the communication must be decoupled both in time and
space [11]. Based on these features, Publish-Subscribe in-
frastructures have been developed for a wide range of appli-
cation scenarios, from wide-area notification services [8] to
wireless sensor networks [17].

Despite the clear advantages brought by Publish-
Subscribe infrastructures, flexibility hampers their valida-
tion. The verification of applications developed using this
paradigm is a challenging task. We can easily reason on
components in isolation, but the global picture is much
more complex. Components are often written indepen-
dently of the way they are federated and their interactions
can change dynamically. Moreover, the Publish-Subscribe
paradigm can be instantiated in very different ways. The
key features are preserved, but specific guarantees vary
from infrastructure to infrastructure. For example, different
message delivery policies, reliability guarantees, or concur-
rency models can easily change the global behavior of the
system and thus the final outcome of the verification effort.

Among the many attempts to analyze Publish-Subscribe
applications, model checking techniques have been pro-
posed as possible solution, but existing works (e.g., [6,
13, 23]) underestimate the different guarantees provided by
the underlying Publish-Subscribe infrastructure. The num-
ber of alternatives makes the aforementioned characteriza-
tion non-trivial per se. The problem becomes even harder
if we want to model these features by means of existing
model checkers (e.g., SPIN [15]): detailed models cause
the well-known state space explosion problem, which in-
herently leads to the inability to verify accurate models. The
consequence is that all these approaches adopt simplified or
partial models to limit the number of states generated during
verification.

In this paper we argue that a fine-grained verification
of applications based on Publish-Subscribe architectures re-
quires a different approach. We flip the “classical” solution:
instead of building on top of a given model checker, we
embed the Publish-Subscribe communication mechanisms



within Bogor [20], and export this functionality as primi-
tive constructs of the model checker. This approach enables
domain-experts to exploit their specific knowledge to bet-
ter control the state space explosion, obtain verifiable fine-
grained characterizations of the different guarantees, and
thus achieve more efficient verification mechanisms.

To achieve this, we employ our knowledge of Publish-
Subscribe architectures and the different guarantees they
provide to implement domain-specific state abstraction
mechanisms. Based on the semantics of Publish-Subscribe
infrastructures, we can regard states that a standard model-
checker would consider different as identical and hide state
information not affecting the Publish-Subscribe semantics.

The proposed approach, which is an evolution of the
work presented in [23], provides designers with a paramet-
ric model of the Publish-Subscribe infrastructure, and lets
them model their application components with finite state
automata. The designer can choose the guarantees provided
by the Publish-Subscribe infrastructure by setting the pa-
rameters of our Bogor extension, which is then used to ver-
ify the application of interest. This way, developers are free
to explore the trade-off between the assumptions made on
the underlying middleware system, and the mechanisms ex-
plicitly implemented at the application level.

The properties against which modeled systems are veri-
fied are expressed in LTL (Linear Temporal Logic, [1]). We
do not concentrate on how to provide the designer with an
easier and higher level formalism to express properties, but
scenario based notations, for instance, can be easily trans-
formed into LTL expressions.

The first results on customizing Bogor to verify Publish-
Subscribe systems were presented in [2], which mainly in-
troduced the problem and compared the state spaces ob-
tained with our and other known approaches. This paper
thoroughly motivates and describes the extensions to Bo-
gor for the different guarantees, gives insights into how we
exploited our domain-specific knowledge in embedding the
Publish-Subscribe extensions in Bogor, and demonstrates
them on a realistic case study.

The rest of the paper is organized as follows. Section
2 introduces Publish-Subscribe systems and identifies a set
of significant guarantees to characterize them. Section 3
briefly presents Bogor and Section 4 describes our exten-
sions to embed the Publish-Subscribe primitives into the
model checker. Section 5 exemplifies the approach on a
case study, Section 6 surveys related proposals, and Section
7 concludes the paper.

2 Publish-Subscribe Architectures

Publish-Subscribe is an asynchronous communication
paradigm where application components do not interact di-
rectly. Instead, their communications are mediated by an

additional logical layer, called dispatcher. Components de-
clare the messages they are interested in by means of sub-
scriptions. These are collected by the dispatcher in a suit-
able data structure, called subscription table. When a com-
ponent publishes a message, the dispatcher matches this
against existing subscriptions, and delivers the message to
all those application components that issued matching sub-
scriptions. This process is usually referred to as message
filtering. Using this style of interaction, the sender does not
know the identity of the receivers: it is the dispatcher that
identifies them dynamically. As a consequence, new com-
ponents can join a federation, become immediately active,
and cooperate with the others without requiring any recon-
figuration of the architecture.

Guarantee Choices
Message Reliability Absent, Present
Message Ordering Random, Pair-wise FIFO,

System-wide FIFO, Causal
Order, Total Order

Filtering Precise, Approximate
Real-Time Guarantees None, Soft RT, Hard RT
Subscription Propagation Delay Absent, Present
Repliable Messages Absent, Present
Message Priorities Absent, Present, Present w/

Scrunching
Queue Drop Policy None, Tail Drop, Priority

Drop

Table 1: Publish-Subscribe guarantees.

Both commercial products [21] and advanced research
prototypes [8] implement the Publish-Subscribe paradigm,
but they differ in a number of significant characteristics, as
well as in the guarantees they support. To provide fine-
grained verification of Publish-Subscribe infrastructures,
we studied existing literature to devise a possible classifica-
tion of the different characteristics. Table 1 summarizes the
results of this investigation, and shows the dimensions along
which existing Publish-Subscribe systems can be classified
and the instantiations we found reasonable to consider.

Message reliability refers to the fact that the Publish-
Subscribe infrastructure can either guarantee that all mes-
sages are eventually delivered, or some may be lost. Mes-
sage ordering defines the policy with which the dispatcher
delivers messages: random order, pair-wise FIFO order, to
deliver messages to a given subscriber in FIFO order with
respect to publish operations from the same component,
system-wide FIFO order, to deliver messages in the same or-
der as publish operations also across different components,
causality chain among messages, or total order, to mean
that all the components with the same set of subscriptions
deliver the same set of messages in the same order. Message
filtering can be either precise, i.e., components only receive
the messages they are subscribed to, or approximate, where
components can receive messages they are not subscribed to



(false positives), or miss events in which they are interested
(false negatives)1. Real-time guarantees describe the abil-
ity of the Publish-Subscribe infrastructure to deliver mes-
sages within soft or hard real-time constraints, or without
considering time at all. Subscription propagation identi-
fies the ability of the dispatcher in setting up subscriptions
immediately, or with some propagation delay, after which
they actually start to be matched against published mes-
sages. Repliable messages account for the possible support
for replies to published messages, which are hence guaran-
teed to arrive to the requesting node, as opposed to systems
where subscriptions must be used to convey the replies, and
there is no guarantee that these are active before publish-
ing the reply. Message priorities deal with the capabil-
ity of the infrastructure to prioritize the order of delivered
messages, and possibly support queue scrunching to avoid
starvation of low-priority messages. Queue drop policy
describes how the dispatcher identifies the messages to be
dropped in the presence of queues of finite length, i.e., ei-
ther considering their order of arrival (messages arriving to
a full queue are immediately discarded), or looking at their
priorities (message dropping starts from low priorities).

To the best of our knowledge, this kind of fine-grained
classification is new. Table 2 exemplifies how these dif-
ferent dimensions can be used to precisely classify three
deeply different Publish-Subscribe infrastructures. The first
column considers a centralized Publish-Subscribe infras-
tructure implementing the JMS APIs and semantics. In this
case, the dispatcher runs on a single machine, to which pub-
lishers and subscribers connect. With this architecture, the
system trivially provides pair-wise FIFO delivery, as there
is only one path used to route messages towards subscribers.
For the same reason, there is no subscription delay: every-
thing is managed in a centralized fashion. According to the
JMS specifications [21], the system also supports repliable
messages and priorities.

The second column describes the Gryphon middle-
ware [16], which is a Publish-Subscribe architecture geared
towards peer-to-peer and dynamic settings. In this case, the
dispatcher is realized by distributing subscriptions and mes-
sages through a network of servers. Therefore, subscrip-
tions must propagate to all the servers before being active
throughout the whole system. The work in [4] also shows
how to implement reliable total order in this network of
servers.

The third column examines the DSWare system [17],
which is an event detection middleware for wireless sen-
sor networks. In such scenarios, message delivery with pre-
specified time constraints is of paramount importance. A
form of hard real-time delivery is provided, but because of
the severe limitations of the devices for which DSWare is

1Notice that approximate filtering is deterministic, while reliability
problems are in general unpredictable.

Guarantee JMS Gryphon DSWare
Message Reliability Present Present Absent
Message Ordering Pair-wise FIFO Total None
Filtering Precise Precise Precise
Real-Time Guarantees None None Hard RT
Subscription Propaga-
tion Delay

Absent Present Present

Repliable Messages Present Absent Absent
Message Priorities Present Absent Absent
Queue Drop Policy Priority Drop Tail-drop Tail-drop

Table 2: Examples of existing Publish-Subscribe infrastructures
classified along the dimensions of Table 1.

designed, all the remaining features are implemented using
the least resource-consuming approach. For instance, there
is no support for particular message orderings.

3 Bogor

Bogor is a state-of-the-art extensible model checker im-
plemented in Java. Its architecture is designed to let
domain-experts easily customize its input language and
checking engine.

The input language is an evolution of the Bandera Inter-
mediate Language (BIR) [9], initially conceived as an in-
termediate step for translating Java programs into the input
language of existing model checkers. It provides the ba-
sic constructs commonly available in modeling languages
of well-established verification tools, (e.g., Promela in the
case of SPIN [15]), including non-primitives data types
such as records and arrays. Additionally, it supports ad-
vanced constructs such as function pointers, generic types,
and dynamic threads. These features ease the modeling of
dynamic applications using Bogor.

Concurrent processes are modeled as threads. A thread
usually defines a set of local variables, and a number of
locations2 to represent different values for the program
counter inside the thread. The control flow is based on
the interplay between guard expressions and actions. The
former must produce values with no side-effects, and are
normally used to control the transitions between different
locations, whereas the latter actually affect the system state.
Figure 1 illustrates how to model two concurrent threads
that access a shared resource. Thread1 and Thread2
concurrently modify the state of t1, t2, and x. The third
thread (Thread0) checks whether x is equal to a prede-
fined constant. Needless to say, if we run Bogor on this
example, it returns all the interleavings of the thread transi-
tions that falsify the assertion in Thread0.

The internal architecture of Bogor is highly modular
and customizable. Well-defined interfaces allow the user

2Notice that the code associated with locations define atomic actions as
for thread evolution.



system SumToN {
const PARAM { N = 1; }
int x := 1; int t1; int t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread2() {
loc loc0:
do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:
do { assert (x != PARAM.N); }
return;

}
}

Figure 1: Bogor: sample code.

extension GenericRandom
for genericRandom.GenericRandomModule {
typedef type<’a>;
expdef GenericRandom.type<’a>
choose<’a>(GenericRandom.type<’a>,

GenericRandom.type<’a>);
}

(a) language extension for random choice.

package genericRandom;
public class GenericRandomModule implements IModule {
public IMessageStore

connect (IBogorConfiguration bc) {
// Retrieving Bogor hooks

}
public IValue

choose(IextArguments args) {
// Specifies the semantics of choose

}
}

(b) Java excerpt that implements the extension.

Figure 2: Bogor: special-purpose choose.

to customize the verification engine. For instance, one
can replace the module that implements the state space
exploration with a dedicated version to better drive the
search process under particular assumptions. Moreover,
one can also add further primitive constructs (expressions
or actions) as well as data types. Figure 2(a) illus-
trates the Bogor code needed to augment the input lan-
guage with a new expression that takes two instances of
a generic data type, and non-deterministically returns one
of the two. In particular, we must first define an identifier
for the extension —GenericRandom in this case— and
specify the Java class that implements the new constructs
(genericRandom.GenericRandomModule, in this
example). Within the extension body, the typedef con-
struct declares a generic data type, used in the signature of
the choose expression. After these declarations, the addi-
tional constructs defined can be used as if they were primi-
tive ones. For instance, we could use the choose expres-
sion as a guard condition.

Figure 2(b) presents an excerpt of the Java class that
implements this extension. Bogor provides the necessary
hooks to access its internal mechanisms and influence the
state space search. Using these features, one can actually
implement the semantics required for each expression/ac-
tion defined in the extension. For instance, to model check
a thread by exploiting the choose construct, we must ex-
plore all the possible system executions generated by the
random choice. Therefore, in the body of method choose,
we ask Bogor to generate two different paths in the state
space exploration, and generate two different “next states”
for the two paths, corresponding to the different values re-
turned by the choose expression.

4 A Domain-specific Model Checker

We used the customization features supplied by Bogor
both to augment its input language, with additional con-
structs that mimic Publish-Subscribe functionality, and to
embed a parametric dispatcher within the model-checker it-
self to provide a special-purpose verification engine based
on domain-specific state abstraction mechanisms. The ver-
ification is based on the semantics defined by the particular
combination of selected guarantees.

4.1 Publish-Subscribe Primitives

The Publish-Subscribe infrastructure is repre-
sented as a generic and abstract data type named
PubSubConnection (Figure 3). An instance of
this data type, seen as local variable in each thread,
provides application components with operations to open
a connection to the Publish-Subscribe infrastructure, issue
subscriptions, and publish and receive messages.



typealias MessagePriority int (0,9);
enum DropPolicy {TAIL_DROP, PRIORITY_DROP}

extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
typedef type<’a>;

expdef PubSubConnection.type<’a> register<’a>();
expdef PubSubConnection.type<’a> registerWithDropping<’a>(int, DropPolicy);
actiondef subscribe<’a>(PubSubConnection.type<’a>, ’a -> boolean);
actiondef publish<’a>(PubSubConnection.type<’a>, ’a);
actiondef publishWithPriority<’a>(PubSubConnection.type<’a>, ’a, MessagePriority);
expdef boolean waitingMessage<’a>(PubSubConnection.type<’a>);
actiondef getNextMessage<’a>(PubSubConnection.type<’a>, lazy ’a);

}

Figure 3: Modeling constructs to export the Publish-Subscribe infrastructure in Bogor.

// Message definition
record MyMessage { int value;}
MyMessage receivedEvent := new MyMessage;

// Subscription definition
fun isGreaterThanZero(MyMessage event)

returns boolean = event.value > 0;

active thread Publisher() {
MyMessage publishedEvent;
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup
do {
ps := PubSubConnection.register<MyMessage>();

} goto loc1;

loc loc1: // Publishing a message
do {
publishedEvent := new MyMessage;
publishedEvent.value := 1;
PubSubConnection.

publish<MyMessage>(ps, publishedEvent);
} return;

}

active thread Subscriber() {
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup and subscription
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.

subscribe<MyMessage>(ps, isGreaterThanZero);
} goto loc1;

loc loc1: // Message receive
when PubSubConnection.
waitingMessage<MyMessage>(ps) do {
PubSubConnection.

getNextMessage<MyMessage>(ps, receivedEvent);
} return;

}

Figure 4: Publish-Subscribe extensions in a Bogor model.

Figure 4 shows how these extensions can be used to
model a simple message exchange between two threads.
They both exploit the register operation in location
loc0 to open a connection to the infrastructure and im-
plicitly create a virtually infinite incoming queue. In do-
ing this, they need to specify the kind of messages sent or
received (MyMessage in this case). A further primitive

registerWithDropping is also provided to specify an
incoming queue of finite length and the corresponding drop-
ping policy while registering.

To publish a message, the user creates an instance of a
previously defined data structure, and uses the publish
operation, as illustrated in location loc1 in the pub-
lisher thread. The same message can alternatively be
published according to a given priority, with construct
publishWithPriority. A message is received by
any application component that issued a matching subscrip-
tion. For instance, a component subscribed to messages of
type MyMessage having the data field greater than zero
should receive the message published in location loc1 in
the publisher thread.

Subscriptions are represented as pointers to boolean
functions taking messages as inputs. Notice that this solu-
tion does not constrain the subscription language and format
of messages, that can be defined freely. To issue a subscrip-
tion, the user simply defines the corresponding function and
passes it as parameter to our construct subscribe. This
is exemplified in location loc0 in the subscriber thread.
To receive a message, our extension provides expression
waitingMessage that can be used as a guard condition
for incoming messages. When it evaluates to true, there is
at least a message waiting in the incoming queue of the con-
sidered application thread. The message can be retrieved by
using construct getNextMessage, as illustrated in loca-
tion loc1 in the subscriber thread.

Remarkably, the primitives defined as extensions to the
Bogor modeling language mimic the API commonly found
in real Publish-Subscribe infrastructures. We argue that this
ease the transformation of high-level behavioral specifica-
tions into the Bogor (extended) input language, and enables
the use of our approach in existing software developmen-
t/verification processes.



4.2 State Abstraction

The state abstractions supplied by the customized verifi-
cation engine, which embeds the parametric dispatcher, de-
pend on the guarantees assumed with respect to the dimen-
sions of Table 1. To illustrate how this is done, we describe
the state of a Publish-Subscribe system as a tuple:

SysState = 〈T1, T2, ..., Tn,DispState〉 (1)

where the generic Ti represents the state of the Bogor thread
modeling the i th application component, which includes the
state of the connection to the Publish-Subscribe infrastruc-
ture, whereas DispState is the current state of the Publish-
Subscribe dispatcher embedded in the model checker. In
turn, this can be expressed as:

DispState = 〈SbTable,RtData,M1,M2, ...,Mm〉 (2)

where RtData is bookkeeping information to implement
specific features (e.g., causal order delivery), SbTable is the
subscription table, and Mj represents a message in transit
from the publisher node to the matching subscribers.

Space limitations do not allow us to concentrate on the
implementation, which is thoroughly described in [19]. The
mapping from the system state to the Java code we imple-
mented is straightforward. Class PubSubModule is the
main responsible for the implementation of the Publish-
Subscribe dispatcher, whereas the per-thread state of the
Publish-Subscribe connections is modeled with different in-
stances of class PubSubConnection. The former class
is instantiated differently depending on the guarantees the
user wants to assume: a vector with the specific guarantees
selected among the ones in Table 1 is passed as parameter
before the actual verification starts. The verification then
proceeds according to the semantics defined by the partic-
ular combination of selected guarantees. In the following,
we give an overview of the techniques used to implement
the different guarantees —and thus the different state ab-
straction policies— by means of examples.

Publish-Subscribe Connections. Let us consider a generic
Ti in tuple (1). This normally depends on the current value
of the variables local to that particular thread, and on the
program counter3. Our approach considers a connection
to the Publish-Subscribe infrastructure as an instance of
an abstract data type, used by the different threads as a
special-purpose, local variable (ps in Figure 5). The dif-
ferent values of Ti, with respect to the selected guarantees,
are defined by characterizing the semantics of this data type
within the model checker.

For example, if we consider causal order delivery, the
incoming queue of a given thread may receive a message

3This is called location in Bogor terminology.

without being able to deliver it to the application. This may
happen when a causally related message has not been re-
ceived yet. As far as the corresponding application compo-
nent is concerned, the state of the incoming queue remains
unchanged. We can therefore omit to consider the messages
buffered in the incoming queue of a thread when we want
to distinguish different values for Ti, and thus reduce the
number of generated states.

Dispatcher. Let us now consider tuple (2). Using the
proposed approach, we can implement the semantics of
the dispatcher directly, and distinguish different values for
DispState only when the chosen guarantees require that.
This way, we can explicitly control the number of different
tuples (2) we generate.

For example, if we consider message filtering, an appli-
cation component is included in the set of matching com-
ponents if at least one of its subscriptions matches. The
result is not affected by the order in which the different
subscriptions are examined. Based on this observation, we
model the subscription table as a set, and generate differ-
ent values for SbTable in (2) only when the content of the
table changes, regardless of the order in which subscrip-
tions arrive at the dispatcher. This cannot be achieved in
model checkers whose input language lacks native support
for order-insensitive data containers, e.g, [15].

Dispatcher-Connections Interplay. Our approach shows
the biggest advantages when it comes to exploit Publish-
Subscribe as a point-to-multipoint communication mecha-
nism, e.g., when we duplicate messages addressed to dif-
ferent message queues. This message duplications must
be transparent to application components, as this is hidden
by the Publish-Subscribe infrastructure (i.e., the dedicated
component embedded in Bogor). By controlling what influ-
ences tuples (1) and (2), we can avoid to deal with mecha-
nisms and data structures needed to duplicate and distribute
messages from the computation of the system state. This
avoids generating states that should not be perceived as dif-
ferent by the application. To the best of our knowledge,
this form of communication is not natively supported by
any existing model checker. The closest example might be
Promela channels [15], but they are limited to point-to-point
communication. Moreover, once attached to a pair of pro-
cesses, they cannot be detached to serve different processes,
and cannot model advanced features like the ones in Ta-
ble 1 (apart from fixed-size queues). Actually, achieving
multi-point communication using Promela channels is fea-
sible, but highly inefficient in terms of number of generated
states, as we have already shown in [2].

A further example is total order delivery. To achieve
this, one needs to augment messages with timestamps, and
have the dispatcher enforcing the proper order of message
delivery by keeping track, for each application component,



of published or received messages. This processing does
not affect the application behavior. To implement total or-
der, the dispatcher must store bookkeeping information in
data structures that are modified each time a message is pub-
lished or delivered. In our approach, these are not part of (1)
or (2). Therefore, they cannot be responsible for generating
further system states. Standard model checkers, in contrast,
would generate these states even when they are not needed.
For instance, a message matching no subscription can be
ignored, as far as the total order is concerned.

5 Case Study

To assess the effectiveness of our approach, here we re-
port on the verification process adopted while developing an
embedded, safety-critical application on top of a Publish-
Subscribe infrastructure. We first describe the scenario
and highlight the corresponding application requirements,
which also represent the properties we want to verify. Then,
we illustrate our experience in checking the system model
to demonstrate how the proposed approach effectively en-
ables fine-grained verification.

5.1 Scenario and Model

An application for fire monitoring in a tunnel comprises
the following components:

• A set of temperature and smoke sensors installed along
the tunnel to obtain environmental data;

• A central control station that periodically gathers data
from the temperature sensors;

• A set of actuators to control the ventilation inside the
tunnel and the traffic lights at the entrances;

• RFID readers to monitor the trucks that enter the tun-
nel that may transport dangerous materials (whose
characteristics are encoded in the tags themselves);

• An external fire brigade ready for intervention in case
of emergency.

The proposed scenario is not just an academic exercise: re-
searchers are investigating the use of similar solutions for
real deployments, while some of the authors are involved
in a EU-funded project4, that is taking similar settings as
motivating scenarios. In similar systems, the goal is to im-
plement a decentralized control-loop able to tolerate the dy-
namics of components failing or joining the system. Be-
cause of this, the Publish-Subscribe interaction paradigm
turns out to be well suited to these applications.

4www.ist-runes.org
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Figure 5: System architecture for fire control in a tunnel.

The system must be designed to cope with normal and
emergency situations inside the tunnel. Some of the high-
level requirements can be described as follows:

R1 When a truck enters the tunnel carrying hazardous ma-
terials, the nodes controlling the ventilation must pre-
ventively increase the air exchange.

R2 As soon as an increase in temperature is detected at
the central station, smoke sensors must be queried to
detect the possible presence of smoke.

R3 In the same situation (increase of temperature), the
sensor must contact the fire brigade, which in turn re-
ports the anomaly to the control station as soon as it
arrives. The report from the brigade must match the
information received from the sensor directly.

R4 The messages sent from the control station to com-
mand the traffic lights at the tunnel entrances must be
delivered with a maximum delay of five time units.

We used Bogor to develop our system model, whose
components and relationships in terms of exchanged data
are depicted in Figure 5. The different message routes are
expressed according to the interests of the application com-
ponents, that is, in terms of subscriptions. Notice that the
fire brigade is normally not part of the system. It is only
involved under emergency conditions.

To verify each of the aforementioned requirements, we
considered example scenarios triggering specific system ex-
ecutions. For instance, to check requirement R3, we assume
that the component representing a temperature sensor sud-
denly reports a value above the safety threshold, and we ver-
ify if the rest of the system behaves correctly. Each of these
requirements can be expressed by defining suitable predi-
cates on the internal states of the application components,
and by making use of LTL temporal operators to constrain
event sequences.



For instance, if we consider requirement R1, we can de-
fine predicates HazardEntering and VentilationIncreased
to describe a read of a tag on a truck carrying dangerous ma-
terial, and an increase in the tunnel ventilation, respectively.
Using these definitions, requirement R1 can be verified by
checking the following LTL expression5:

�(HazardEntering =⇒ ♦VentilationIncreased) (3)

5.2 Verification Effort

Our approach allows system designers to explore the
trade-offs between the assumptions made on the underly-
ing middleware system and the mechanisms explicitly im-
plemented at application level. This analysis can proceed
along two different, yet parallel, dimensions. For each re-
quired characteristic, the developer can either pose new re-
quirements on the Publish-Subscribe infrastructure to sat-
isfy the desired properties (hence increasing the number
of guarantees assumed on the underlying middleware), or
maintain the same assumptions on the Publish-Subscribe
infrastructure, and implement required mechanisms at ap-
plication level.

We analyzed the system for fire control in a tunnel start-
ing from a coarse-grained model of the various application
components and from the features guaranteed by a Publish-
Subscribe middleware for embedded sensing environments
like DSWare (whose guarantees are described in Table 2).
The design choices driven by our approach are:

Step 1 - Message Reliability. Our initial model implicitly
took message reliability for granted. Indeed, all the proper-
ties we wanted to verify fail immediately in all the system
executions where messages are lost. For instance, require-
ment R1 trivially fails if the message published by the RFID
reader never reaches the ventilation controller. Message re-
liability is an active topic of research in the embedded net-
working community (e.g., [22]). Therefore, we decided to
customize the Publish-Subscribe infrastructure with some
form of message reliability, and did not modify the applica-
tion at this stage.

Step 2 - Causal Order Delivery. To verify requirement
R3, the data regarding an emergency must be available at
the control station at the time the fire brigade publishes its
report. Our verification failed in checking this requirement
when the fire brigade reports on a fire in the tunnel and the
control center does not know anything about it. This hap-
pens in those systems in which causal order delivery is vi-
olated at the control center. According to this delivery pol-
icy, the message from the temperature sensor carrying the
too high value should arrive at the control station before the
firefighters’ report, which is indeed caused by the former.

5The verification of LTL expressions uses the Bogor LTL plug-in [5].

Since causal order is key to relate the occurrence of events
at different processes —a characteristic of paramount im-
portance in our scenario— we decided to push the causal
order delivery guarantee in the Publish-Subscribe middle-
ware, and again did not modify the application.

Step 3 - Subscription delays. Despite causal order, re-
quirement R3 keeps failing in systems where, because of
delays in propagating subscriptions, the fire brigade pub-
lishes a report before the corresponding subscription issued
by the control station is active. This is caused by the fire
brigade that dynamically joins the system at unpredictable
times, which implies a non null setup time for the related
subscriptions. Differently from before, it is unreasonable to
assume that subscriptions propagate instantaneously in such
a distributed environment. Therefore, we modified the ini-
tial design of the application to let the fire brigade repeat
the publish operation of the report until an acknowledge-
ment from the control station is received. If subscriptions
propagate within a finite time frame, the message from the
fire brigade is eventually delivered.

Step 4 - Replies. We initially customized the Publish-
Subscribe middleware not to support repliable messages.
Since requirement R2 requires a query-reply form of in-
teraction, we issued subscriptions at the control station to
convey the reply from the smoke sensors when the former
needs to query the latter. However, if subscriptions do not
propagate instantaneously, there is no guarantee to receive
needed replies, as pointed out in Section 2. For this reason,
the verification of requirement R2 fails. However, the sup-
port to query-reply message can be imposed in the kind of
environments we are considering, as dedicated mechanisms
exist in the literature, e.g., [18]. We therefore continue the
verification of our system by imposing a further guarantee
provided by the Publish-Subscribe infrastructure.

Step 5 - Real-time. requirement R4 demands for a timed
system6 able to deliver messages within strict time con-
straints. This feature is at the core of any application tar-
geted to control and monitoring since actions in response
to sensed events must be performed when gathered data are
still valid. We already imposed this guarantee since the be-
ginning of our verification effort7. Indeed, it was already
part of the features of DSWare, which we took as starting
point. Based on this guarantee, requirement R4 can be ver-
ified without modification to the existing architecture.

These example steps show that our approach enables
fine-grained analysis on the application components, allow-
ing the designer to investigate the interplay between the
guarantees provided by the Publish-Subscribe infrastructure

6If needed, application components deal with time-related constraints
by means of dedicated local variables.

7Notice that our implementation of real-time guarantees is a “light”
interpretation of what proposed in [10].



Requirement Memory (Mb) States Time
Requirement R1 96.38 786 133 sec
Requirement R2 126.72 1098 287 sec
Requirement R3 261.1 2067 547 sec
Requirement R4 503.98 2854 9,33 min

Table 3: Performance of the extended checking engine (with all
the guarantees adopted in steps 1-5).
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Causal1 2 32.8 98 103 sec 298.3 364 >15 min
Causal2 5 45.6 133 132 sec 589.6 604 >1 hour
Causal3 7 52.3 213 158 sec OM NC NC
Causal4 10 61.1 301 189 sec OM NC NC
Priority1 2 18.3 75 47 sec 192 259 >10 min
Priority2 5 26.9 125 103 sec 471.2 467 >30 min
Priority3 7 37.9 166 134 sec OM NC NC
Priority4 10 49.1 207 163 sec OM NC NC

OM = Out of Memory - NC = Not Concluded

Table 4: Comparing the Bogor-based approach with [23] (taken
from [2]).

and the mechanisms implemented within the application.
This witness the advantages brought by our approach from
a qualitative, process-oriented standpoint.

To complement this description, Table 3 provides some
experimental data related to the verification of the differ-
ent requirements we discussed. All considered properties
can be checked within reasonable time, and by consuming
an amount of memory normally available on conventional
desktop PCs. This quantitatively assesses the feasibility of
our approach.

Finally, for the sake of completeness, Table 4 reports a
more detailed version of the data already presented in [2],
to highlight the gains enabled by our approach with respect
to the one in [23] while verifying a set of synthetic execu-
tions. These simply perform a number of publish operations
(second column) according to causal order and pre-specified
priorities, to stress the underlying model checker. While not
being meaningful per se, these system executions provide a
measure of the gains enabled by our approach with respect
to existing solutions. Our solution achieves gains in the or-
der of 500% in terms of consumed memory, while reducing
the time needed to carry out the verification process by two
orders of magnitude. Most importantly, it allows conclud-
ing the verification effort, while the original approach runs
out of memory. More information can be found in [2].

6 Related Work

The work presented in this paper extends previous ef-
forts of some of the authors [2,23]. With respect to [23], we
acknowledge the need for a radically different approach to
the provision of fine-grained verifiable models of Publish-
Subscribe architectures. In particular, [23] still models the
Publish-Subscribe infrastructure using the primitives made
available by the SPIN model checker. In contrast, this
work reverts that approach by providing a domain-specific
model checker that exports the Publish-Subscribe API as
constructs of the modeling language. Furthermore, [23]
characterizes the Publish-Subscribe infrastructure in terms
of reliability, message delivery order, and subscription prop-
agation delay. Therefore, it does not consider several of the
dimensions listed in Table 1. Conversely, the work in [2] in-
troduces our novel approach, and illustrates an initial, quan-
titative analysis of the gains in terms of verification time
and consumed memory on a set of synthetic scenarios. The
goal was to foster further investigation, whose results are
presented here with the details of the mechanisms we im-
plemented and an assessment of the effectiveness of our ap-
proach on a realistic case study.

Model checking for Publish-Subscribe architectures is
also investigated by Garlan et al. in [12], where they provide
a set of pluggable modules that allow the modeler to choose
one possible configuration out of a set of possible choices.
However, available models are far from fully capturing the
different characteristics of existing Publish-Subscribe sys-
tems. For instance, application components cannot change
their subscriptions at run-time, and the message dispatching
mechanism is only characterized in terms of delivery policy
(asynchronous, synchronous, immediate or delayed). The
same approach is extended in [6] by adding more expres-
sive events, dynamic delivery policies and dynamic event-
method bindings. These features are then used in [24] to
implement a transformational framework that, starting from
a dedicated programming language, produces XML data for
model checking as well as executable artifacts for testing.
The resulting approach only deals with the specification of
different delivery policies depending on the overall state of
the model, and still does not capture fine-grained guarantees
such as real-time constraints.

Techniques applicable to specific Publish-Subscribe
middleware systems have been considered in [3, 7, 10, 14].
Beek et al. [3] concentrate on the addition of a Publish-
Subscribe notification service to an existing groupware pro-
tocol, and reports on the improvements in user awareness
of the development status achieved in this way. Caporus-
cio et al. [7] develop a compositional reasoning technique
based on an assume-guarantee methodology. The method-
ology is applied on a specific case study, i.e., on developing
a file sharing system on top of the Siena Publish-Subscribe



middleware [8]. The proposals in [10, 14] describe an ap-
proach similar to ours based on an early version of Bogor.
The authors focus on modeling the real-time features of the
CORBA Communication Model (CCM). Their time model
is certainly more detailed than ours. All the aforementioned
approaches lose generality in that they do not allow users to
customize the checking engine to model Publish-Subscribe
systems that provide various guarantees.

7 Conclusions

The paper presents a novel approach based on Bogor
for the fine-grained verification of applications based on
Publish-Subscribe architectures. Our approach does not
build on top of an existing model checker, but extends both
the input language and the verification engine of Bogor
with Publish-Subscribe primitives and guarantees to supply
a domain-specific model checker. To assess the correctness
of our extensions we devised a wide set of test cases and we
thoroughly used benchmark applications.

The approach allows the designer to balance the guar-
antees demanded to the Publish-Subscribe infrastructure
adopted with the functionality embedded in the application
components. Besides the flexibility, the results presented in
the paper demonstrate the gain in terms of computational
time and memory use. This means that models that would
be too heavy for “conventional” model checkers become an-
alyzable with our approach.
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