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ABSTRACT
Thanks to the sharp decoupling it fosters, the Publish-Subscribe
paradigm is particularly suited to the implementation of dynamic
applications where components join and leave the system unpre-
dictably, and their distributed interactions change over time. Al-
though this feature represents an asset during the implementation
phases, it is usually difficult to reason on the global behavior at de-
sign time. The problem is exacerbated by the variety of Publish-
Subscribe systems available that greatly differ in the guarantees
provided, e.g., in terms of message reliability or delivery order.

Some of the authors already tackled the problem with a domain-
specific model checker, whose internals are customized depending
on the guarantees assumed on the communication infrastructure.
However, we essentially disregarded the timing aspects, which are
nonetheless pivotal in many applications exploiting a Publish-Sub-
scribe infrastructure. In this paper we augment our tool to verify
temporal properties, and explore the interplay between time and
different Publish-Subscribe semantics through a case study. More-
over, we report on an effort to formally verify the correctness of the
temporal extension, in an attempt to provide a strong foundation
for the results obtained using our tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; D.2.11 [Software Engineering]: Software Ar-
chitectures—Patterns

General Terms
Modeling, verification, distributed architectures.

Keywords
Model checking, Publish-Subscribe, time.

1. INTRODUCTION
In recent years, the rise of pervasive and embedded applications

has increasingly demanded for highly dynamic and reconfigurable
software architectures. In these scenarios, the application compo-
nents require the ability to federate spontaneously, and dynami-
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Figure 1: P/S architecture.

cally change the nature of their interactions as new requirements
arise. As a result, traditional architectural paradigms (e.g., client-
server) are ill-suited to the requirements at hand. In contrast, the
Publish-Subscribe (P/S) [13] paradigm provides an asynchronous,
implicit, and multi-point communication style that well adapts to
dynamic scenarios. As illustrated in Figure 1, in a P/S system
components subscribe to specific message (event) patterns, and are
notified when other components publish messages matching their
subscriptions. A dispatcher mediates the communication by stor-
ing subscriptions in a dedicated table, and matching them against
published messages. Based on this interaction pattern, P/S systems
have been developed for a wide range of scenarios, from wide-area
notification services [8] to wireless sensor networks [18].

Although the P/S paradigm makes it easier to implement dy-
namic applications, the strong decoupling it fosters renders the glo-
bal interactions among components difficult to capture and to rea-
son about. This ultimately hinders the verification and validation
of the overall federation. Moreover, available P/S systems provide
radically different guarantees that may affect the outcome of the
verification effort. For instance, different message delivery order-
ings may have an impact on a component’s execution flow, which
may reflect in a different system-wide behavior.

To address these issues, model checking has been proposed as
a tool to analyze the behavior of applications built on top of P/S
infrastructures, e.g., as in [14]. These approaches, however, do not
capture many of the guarantees provided by existing P/S systems,
thus limiting their applicability. In [2], we proposed a novel ap-
proach to the problem: instead of using standard tools, we leverage
off the extensible model checker Bogor [19], and augment its in-
put language and internal mechanisms to include P/S operations as
primitive constructs. By doing so, we can model the various P/S
guarantees within the checking engine, and customize the verifi-
cation based on a specific incarnation of the P/S paradigm. This
approach, summarized in Section 2, allows us to achieve a domain-
specific, state abstraction mechanism, which dramatically reduces
the cost of performing the verification.

In this paper, we make a step forward by adding a notion of time
to our tool. Our temporal model, illustrated in Section 3, is in-



Guarantee Choices
Message Reliability Absent, Present
Message Ordering Random, Pair-wise FIFO,

System-wide FIFO,
Causal Order, Total Order

Filtering Precise, Approximate
Subscription Propagation Delay Absent, Present
Repliable Messages Absent, Present
Message Priorities Absent, Present,

Present w/ Scrunching
Queue Drop Policy None, Tail Drop,

Priority Drop
Table 1: P/S guarantees.

spired by the work on real-time event-based middleware by Deng
et al. [10]. In their work, however, time was still tied to a partic-
ular incarnation of the P/S paradigm, namely the CORBA Event
Service. Furthermore, they did not account explicitly for message
delays, that may also impact the execution flow of a component. As
such, their work cannot be reused as is. In our approach we bring
time as an additional dimension next to those we use to character-
ize the semantics provided by P/S systems, explicitly accounting
for message delays. By enabling the interplay between time and
the various P/S guarantees, we enable the verification of P/S ap-
plications in realistic environments, going beyond the simplistic
communication models of previous work. The effectiveness of our
approach is assessed in a non-trivial case study, illustrated in Sec-
tion 4, using properties expressed in Linear Temporal Logic (LTL).

To achieve our objective, we must delve into the internals of Bo-
gor to modify critical aspects, such as the inter-component sched-
ule. In doing so, we may run the risk of breaking the checking
engine itself, thus producing unsound results. To address this is-
sue, Section 5 illustrates how we formally verified the correctness
of our temporal extension using existing tools for software verifi-
cation. Notably, these are based on Bogor itself. This allowed us to
make the verification process feasible, by leveraging off the exper-
tise in Bogor we gained while developing the temporal extension.
As we discuss in Section 5, a brute-force approach would instead
make the same problem intractable. Brief concluding remarks and
directions for future work conclude the paper in Section 6.

2. MODEL CHECKING
P/S ARCHITECTURES

The P/S paradigm revolves around a few primitives, which allow
application components to interact by publishing messages or issu-
ing (un)subscriptions. Although the programming interface mostly
remains the same across different P/S incarnations, the way the
paradigm is implemented greatly differs. Table 1 illustrates a clas-
sification of P/S guarantees and semantics we found in existing sys-
tems. These characterize the features that may impact the behavior
of components running on top of such infrastructures, and there-
fore affect whether a given requirement is actually verified. For
instance, message ordering refers to the policy used to deliver mes-
sages: random order, pair-wise FIFO order to deliver messages to
a given subscriber in FIFO order with respect to publish operations
from the same component, system-wide FIFO order to deliver mes-
sages in the same order as publish operations also across different
components, according to the causality chain among messages, or
total order to deliver the same messages in the same order to all
components with the same set of subscriptions. The remaining di-
mensions in Table 1 are thoroughly described in [2]. In the follow-
ing, we briefly overview how the problem of verifying P/S archi-
tectures has been tackled in previous work, and how we addressed
the same problem trough a domain-specific model checker.
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Figure 2: Approaches to model checking P/S architectures.

2.1 Approaches Using Standard Tools
Garlan et al. investigated the problem of model checking P/S

architectures in [14]. They provide a set of pluggable modules
that allow the user to choose one configuration out of a predefined
set. Nonetheless, available models are far from fully capturing the
different characteristics of existing P/S systems shown in Table 1.
Also, application components cannot change their subscriptions at
run-time. The same approach is extended in [5] by adding more
expressive events, dynamic delivery policies and dynamic event-
method bindings. Still, the dispatching mechanism is only char-
acterized in terms of delivery policy (asynchronous, synchronous,
immediate or delayed). Similarly, some of the authors of this paper
addressed similar issues in [21] using the SPIN model checker [17].
The P/S infrastructure is characterized in terms of reliability, mes-
sage delivery order, and subscription propagation delay. Therefore,
several of the dimensions in Table 1 are still missing.

Techniques applicable to specific P/S systems have been consid-
ered in [3, 6]. Beek et al. [3] concentrate on the addition of a P/S
notification service to an existing groupware protocol. They also
show how the P/S paradigm improves the user awareness of the sta-
tus of a project when used to coordinate a large development team.
Caporuscio et al. [6] develop a compositional reasoning technique
based on an assume-guarantee methodology. The methodology is
applied on a specific case study, i.e., the development a file shar-
ing system on top of the Siena P/S system [8]. These approaches
lose generality in that they do not allow the user to customize the
checking engine to model various P/S guarantees.

2.2 A Change of Perspective
Standard tools easily show their limitations when it comes to

implement fine-grained, customizable models to describe guaran-
tees such as those in Table 1. Essentially, this is due to the lack
of parametrization in the input language, and state space explosion
problems. Based on this observation, we reverted the traditional ap-
proach, by embedding the P/S communication paradigm within the
model checker, and exporting the P/S API as primitive constructs
of the modeling language. This is intuitively illustrated in Figure 2.

This approach provides several advantages over traditional so-
lutions. We can easily customize the state space generation de-
pending on the particular combination of guarantees assumed on
the P/S infrastructure. This achieves a domain-specific, state ab-
straction mechanism that sensibly reduces the cost of accomplish-
ing the verification by minimizing the number of states generated.
By the same token, it is easy to customize the behavior of the P/S
infrastructure. To this end, before starting the verification, the user
selects a combination of the guarantees shown in Table 1. For in-
stance, s/he may want to check the behavior of application com-
ponents while assuming an underlying P/S infrastructure that guar-
antees causal order and precise filtering. Based on this, our tool
instantiates a parametric dispatcher within the checking engine, to
model the behavior the user desires. As a nice side-effect, describ-
ing the behavior of components running on top of a P/S infrastruc-
ture becomes straightforward, as the input language now comprises
a set of constructs mimicking the P/S API found in real systems.



typealias MessagePriority int (0,9); enum DropPolicy {TAIL_DROP, PRIORITY_DROP}
extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
typedef type<’a>;
expdef PubSubConnection.type<’a> register<’a>();
expdef PubSubConnection.type<’a> registerWithDropping<’a>(int, DropPolicy);
actiondef subscribe<’a>(PubSubConnection.type<’a>, ’a -> boolean);
actiondef publish<’a>(PubSubConnection.type<’a>, ’a);
actiondef publishWithPriority<’a>(PubSubConnection.type<’a>, ’a, MessagePriority);
expdef boolean waitingMessage<’a>(PubSubConnection.type<’a>);
actiondef getNextMessage<’a>(PubSubConnection.type<’a>, lazy ’a);

}

Figure 3: Bogor preamble to export the P/S infrastructure.

// Message definition
record MyMessage { int value;}
MyMessage receivedEvent := new MyMessage;

// Subscription definition
fun isGreaterThanZero(MyMessage event)

returns boolean = event.value > 0;

active thread PublisherComponent() {
MyMessage publishedEvent;
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup
do {
ps := PubSubConnection.register<MyMessage>();

} goto loc1;

loc loc1: // Publishing a message
do {
publishedEvent := new MyMessage;
publishedEvent.value := 1;
PubSubConnection.

publish<MyMessage>(ps, publishedEvent);
} return;

}

active thread SubscriberComponent() {
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup and subscription
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.

subscribe<MyMessage>(ps, isGreaterThanZero);
} goto loc1;

loc loc1: // Message receive
when PubSubConnection.
waitingMessage<MyMessage>(ps) do {
PubSubConnection.

getNextMessage<MyMessage>(ps, receivedEvent);
} return;

}

Figure 4: Using P/S extensions in a Bogor model.

To assess the feasibility of the approach, we use Bogor [19], an
extensible model checker written in Java. With respect to similar
tools, Bogor eases the definition of domain-specific constructs in its
input language. Additionally, it provides out-of-the-box support for
function pointers and dynamic threads, that are pivotal in modeling
the dynamic applications we target. Adding further constructs to
Bogor requires the developers to prepend a preamble to the Bogor
models exploiting the new constructs, and provide one or more Java
classes implementing the required semantics.

Figure 3 illustrates the preamble containing the P/S constructs
available in our tool. Instead, Figure 4 shows an example use,
where two components initially register with the P/S extension with-
in Bogor, as shown in loc0:. In a sense, this models the opera-
tion of opening a connection to the P/S dispatcher, represented by a
dedicated handler returned by the register operation. The han-
dler is used to issue (un)subscriptions and publish messages over a
specific connection to the dispatcher. The former is accomplished

by providing as parameter to subscribe a boolean function rep-
resenting the actual subscription, as in loc0: for the subscriber
component. Notably, this gives the user great flexibility in defining
the format of messages and the matching semantics. Instead, pub-
lishing is achieved with publish or publishWithPriority,
depending on whether messages have associated priorities. To pro-
cess incoming messages, a guard statement named waitingMes-
sage is provided, which holds true when at least one message is
available in the incoming queue. To retrieve the actual message
content, we use the getNextMessage construct.

The mechanisms underpinning the constructs in Figure 3 focus
on guaranteeing a given P/S semantics while reducing the number
of states generated during the verification. For instance, consider
the processing triggered by a message published: the dispatcher
matches the message against the subscriptions issued so far, and
delivers its content to a component if at least one of its subscrip-
tions matches. However, in the presence of multiple subscriptions,
the order in which these are examined is immaterial. Therefore, we
can model the subscription table as a set, thus avoiding the gener-
ation of explicit states when it would make no difference from the
application perspective. This already provides improvements over
standard tools not equipped with a notion of set. Much greater im-
provements are achieved in controlling the generation of states rep-
resenting message routing with particular delivery orderings, and in
modeling message duplications. More details can be found in [2].

3. TIME EXTENSION
A large body of work exists in the field of model checking em-

bedded systems with time constraints, e.g., [1]. However, our ob-
jective here is not to embed a generic notion of time. Being our
approach specific to the P/S domain, we rather aim to include a
temporal model suited to the requirements of applications built on
top of a P/S infrastructure. Additionally, this must be sufficiently
lightweight to enable its interplay with the other P/S dimensions in
a clear and intuitive manner. Based on these reasons, we adapted
the model presented in [10] to suit the aforementioned needs.

3.1 Time Model
Components running on top of P/S infrastructures are usually

implemented as passive threads executing in an event-driven envi-
ronment. Thread activation is accomplished implicitly by the P/S
infrastructure in delivering a message to a subscribing component.
This executes a message handler where further operations are usu-
ally performed, e.g., to issue new (un)subscriptions or publish mes-
sages. The thread is then suspended again waiting for further mes-
sages. In our approach, the execution rate of a component dictates
the frequency of its operations on the P/S dispatcher, i.e., how many
P/S primitives can be executed in a single time unit. Notably, a rele-
vant class of real systems can be similarly modeled, e.g., [12,16]. In
addition, in distributed environments it is unreasonable to assume
that messages are delivered with zero delays. Therefore, differently
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Figure 6: A graphical representation of the second and third exe-
cutions in Table 2. (The numbers in the circles represent a possible
system-wide schedule).

from [10], we also consider random message delays, thus providing
an even more realistic environment to modeling P/S applications in
case message delays are to be taken into account [7].

The above time model does not modify the individual states of
the system. Rather, it limits the way the system state space is ex-
plored, by preventing some of the transitions to be taken. Let us
consider the example in Figure 5: two components register with the
P/S infrastructure, and publish two messages each. In the absence
of any notion of time, our tool would explore all the possible inter-
leavings of the operations of the two components. As the system
global state is given by the combination of the per-component local
states, the model checker would generate a high number of possible
executions. Some example schedules are shown in Table 2.

When we enable our time model with component C1 being as-
signed an execution rate twice as that of C2, both executions 1 and
2 in Table 2 become unfeasible. The former trivially violates the
timing constraints, as all operations of component C2 are executed
before C1 starts. As for the latter, Figure 6 graphically compares
execution 2 and 3: our time model is violated in transitioning from
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Figure 7: A possible schedule between two components when a
message is sent with a non-zero delay.

〈publish(msg1)C1, publish(msg3)C2〉 to 〈publish(msg1)C1,
publish(msg4)C2〉. Indeed, being C1 running at twice the rate
of C2, it should be allowed to perform two operations for each
operation executed by C2. Instead, Figure 6(a) shows C2 perform-
ing a further operation while C1 has not yet performed the second
publish. Also note that Figure 6(b) is not the only possible correct
schedule. For instance, a different, correct execution is obtained by
swapping the relative order of the initial publish operations. This
indeed represents a different inter-leaving of concurrent operations.

Message delays are modeled similarly, by marking a message as
“in transit” until the time constraints at the subscribing components
are met. An example is illustrated in Figure 7: a component whose
execution rate is of one operation per time unit publishes a message.
This travels towards the subscribing components with a delay of a
single time unit. The receiving component, whose execution rate is
of two operations per time unit, has two available slots before the
message appears in its input queue. During this time frame, it can
either perform other operations, or decide to be suspended waiting
for its input queue to fill.

3.2 Implementation
Implementing the above time model in our Bogor P/S exten-

sion essentially requires the ability to control the inter-component
scheduling. To this end, we further augment the P/S preamble in
Figure 3, by adding the constructs needed to control how the com-
ponents proceed, and providing the corresponding semantics within
the existing implementation of the P/S extension.

Bogor Language Constructs. Figure 8 illustrates the same exam-
ple as in Figure 4, now using the additional constructs of our time
extension. After registering the connection to the dispatcher, each
component configures the time extension using configureTime-
Params. This requires the component execution rate, and two val-
ues representing the lower and upper bounds of a (discrete) random
delay for incoming messages. In case the user needs to temporarily
revert to the original untimed behavior, it is sufficient to set to zero
the execution rate of all components.

The inter-component schedule is controlled using two guard state-
ments: canProceed and timedWaitingMessage. The for-
mer yields true when a component is allowed to proceed without
violating any time constraint. Instead, the latter yields one value
among CAN_PROCEED, CANNOT_PROCEED, and QUEUE_EMPTY.
Note that we explicitly distinguish whether the component can-
not proceed because higher priority components must be scheduled
first (CANNOT_PROCEED), or the timing constraints would allow
the component to proceed, but no messages are waiting in its input
queue (QUEUE_EMPTY). The latter is needed to give the ability
not to lose available slots in the current schedule and perform some
operations instead of waiting for an incoming message, as it is pos-
sible in the untimed version of the tool.



Id Execution
1 〈startC1, startC2〉, 〈startC1, registerC2〉, 〈startC1, publish(msg3)C2〉, 〈startC1, publish(msg4)C2〉,

〈startC1, endC2〉, 〈registerC1, endC2〉, 〈publish(msg1)C1endC2〉, 〈publish(msg2)C1, endC2〉, 〈endC1, endC2〉
2 〈startC1, startC2〉, 〈registerC1, startC2〉, 〈registerC1, registerC2〉, 〈publish(msg1)C1, registerC2〉,

〈publish(msg1)C1, publish(msg3)C2〉, 〈publish(msg1)C1, publish(msg4)C2〉, 〈publish(msg2)C1, publish(msg4)C2〉,
〈endC1, publish(msg4)C2〉, 〈endC1, endC2〉

3 〈startC1, startC2〉, 〈registerC1, startC2〉, 〈registerC1, registerC2〉, 〈publish(msg1)C1, registerC2〉,
〈publish(msg1)C1, publish(msg3)C2〉, 〈publish(msg2)C1, publish(msg3)C2〉, 〈publish(msg2)C1, publish(msg4)C2〉,
〈endC1, publish(msg4)C2〉, 〈endC1, endC2〉

Table 2: Some of the possible executions for the example in Figure 5, when no time notion is employed.

// Message definition
record MyMessage { int value;}
MyMessage receivedEvent := new MyMessage;

// Subscription definition
fun isGreaterThanZero(MyMessage event)

returns boolean = event.value > 0;

active thread PublisherComponent() {
MyMessage publishedEvent;
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.configureTimeParams(ps, 2, 1, 0);

} goto loc1;

loc loc1: // Publishing a message
when (PubSubConnection.canProceed<MyMessage())
do {
publishedEvent := new MyMessage;
publishedEvent.value := 1;
PubSubConnection.

publish<MyMessage>(ps, publishedEvent);
} return;

}

active thread SubscriberComponent() {
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup and subscription
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.configureTimeParams(ps, 1, 1, 0);
PubSubConnection.

subscribe<MyMessage>(ps, isGreaterThanZero);
} goto loc1;

loc loc1: // Message receive
when (PubSubConnection.
timedWaitingMessage<MyMessage>(ps)==CAN_PROCEED)
do {
PubSubConnection.

getNextMessage<MyMessage>(ps, receivedEvent);
} return;
when (PubSubConnection.
timedWaitingMessage<MyMessage>(ps)==QUEUE_EMPTY)
do {
// Do something...

} return;
}

Figure 8: Adding time to the example model in Figure 4.

Bogor Internals. The mechanisms underlying the above Bogor
constructs divide time into frames, whose length corresponds to a
single operation of the lowest priority component. Based on this,
higher priority components are scheduled multiple times in a single
frame. Within a frame, all possible inter-leavings are generated.
When this is achieved, the execution proceeds to the next frame.

Our implementation is tied to that of the P/S operations, to lever-
age off the domain-specific semantics of the executions involved,
and cut down on the processing overhead whenever possible. Here
we provide some examples as to where we take advantage of this.
Interested readers are referred to [15] for more information.

• Several of the dimensions listed in Table 1 also somehow
constrain the inter-component schedule. For instance, when
causal order is assumed, a component is suspended wait-
ing for incoming messages until all causally connected mes-
sages are in its input queue. In our experience, the impact
of these guarantees on the number of enabled transitions is
much greater than that imposed by the time model, especially
when safety properties are to be checked. Therefore, when-
ever possible, we apply the mechanisms modeling the P/S
guarantees before computing the time-based schedule and
running the corresponding checks. This saves in the process-
ing overhead during the verification.

• To model a random message delay between two bounds, we
must generate all the possible executions corresponding to
each (discrete) value in the interval. However, leveraging
off the semantics of this value —which represents the time
taken for a message to be transmitted from a component to
another— it can be observed that not every value in the in-
terval generates a different execution. Based on this obser-
vation, we can apply basic results of rate monotonic theory,
and identify the subset of values that need to be checked to
ensure the completeness of the verification. This way, we
save the processing to generate executions that do not differ
in the inter-leavings among components. Note that the above
can be done while the verification proceeds, by looking at the
execution rate and current state of the components about to
receive the message in transit.

• When timedWaitingMessage returns QUEUE_EMPTY,
the corresponding component already passed the time checks.
Unless the component includes some alternative behaviors
(as in Figure 8), it is suspended waiting for incoming mes-
sages. In this case, the checking engine lets another compo-
nent proceed, and reschedules the suspended component im-
mediately after, without re-running the time extension. Note
that this is semantically correct because once a component
passed the time checks for the current frame, there is no way
for another component to subtract an allocated time slot from
it. Based on this observation, we alleviate the processing
overhead generated during the verification whenever a mes-
sage is to be received.

Our tool performance is such that time-related properties can be
checked within reasonable time under realistic assumptions on the
P/S infrastructure, as illustrated next.

4. CASE STUDY
In this section, we describe the application scenario we have cho-

sen to exemplify the approach, discuss the insights we gained by
exploring the interplay between time and the various P/S guaran-
tees, and report on some performance results assessing the effec-
tiveness of our tool.



Scenario. Systems exploiting a P/S style of interaction span sev-
eral applications domains. Among them, telemedicine is one of the
most promising, as it has the potential to drastically lower the costs
of maintaining hospital facilities, while letting patients enjoy better
quality of life [20]. Here we consider a remote patient monitoring
system, consisting of the following components:

• A variable number of patients, equipped with several sensing
devices to monitor critical parameters, such as heart rate or
blood pressure.

• The medical laboratory, responsible for monitoring the pa-
tients’ status. In case of moderate danger, the lab personnel
can immediately decide on corrective actions when no phys-
ical intervention is required. For instance, a dose change for
a treatment can be remotely communicated to the patient.

• If the patient is in severe danger and is to be picked up by a
first-response team, the medical laboratory informs a flying
squad about the emergency, communicating all the relevant
information to reach the patient and cope with the situation.

• In the same conditions, the medical laboratory also notifies
the hospital about a possible request for hospitalization. On
the way to it, the flying squad also keeps the hospital posted
about the patient’s current conditions, until a final notifica-
tion is sent when the patient is handed over to the hospital
personnel.

Interactions are expressed in terms of P/S operations. Specifi-
cally, the medical laboratory issues a subscription to collect the data
gathered by the patient’s sensors when the values are outside the al-
lowed ranges. The hospital, as well as the flying squad, subscribe
to all messages regarding possible requests for hospitalization. In
addition, the hospital is also interested in messages coming from
the flying squad while carrying a patient.

Essentially, three patterns of interactions characterize our sce-
nario, depending on the patient’s status. Under normal conditions,
the component modeling the patient periodically publishes mes-
sages that, by virtue of not representing any possible danger, are
not delivered to any remote component. When the patient parame-
ters represent a moderate danger, the medical laboratory interacts
with the patient only, e.g., to adjust the doses, without involving any
further component. Differently, under severe danger, all the com-
ponents in the system are involved until the patient’s responsibility
is passed to the hospital personnel.

Running the Verification. To verify our initial design, we checked
whether the following requirements were satisfied:

Requirement 1 When a patient’s status turns into a situation of
moderate danger, any corrective action must be communi-
cated by the medical laboratory within T1 time units.

Requirement 2 Whenever a patient is in a situation of severe dan-
ger, the hospital must receive a request for hospitalization
within T2 time units.

Requirement 3 When a patient arrives at the hospital, the person-
nel there must have received the corresponding request for
hospitalization in advance.

The above requirements are straightforwardly expressed as LTL
formulae over the variables representing the components’ current
state1. In particular, the first and second requirement exploit a hook
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Figure 9: Verification flow with Bogor and our P/S extension.

into our time extension that allows properties to be expressed de-
pending on time intervals.

As illustrated in Figure 9, our tool allows the application de-
signer to iterate in a loop where either the application model evolves,
the timing aspects are tuned, or the guarantees assumed on the P/S
infrastructure change. This allows the designers to explore the in-
terplay between the application and the underlying communication
infrastructure. Further, time adds another dimension to this, en-
abling an additional degree of freedom.

For instance, we realized that in our application the character-
istics of the input queues and the component execution rates are
tightly intertwined. Indeed, the first requirement easily fails if the
component modeling the medical laboratory is not assigned an ex-
ecution rate sufficient to handle multiple concurrent notifications
coming from different patients. However, even if this component
is running at a sufficiently high rate, the patients’ notifications can
easily fill up the component’s input queue if this is assumed to be
finite. In this case, depending on the drop policy adopted, some
messages are discarded. Similarly, when multiple patients are in
severe danger, the medical laboratory may send multiple requests
for hospitalization. Therefore, to meet the second requirement, the
component modeling the hospital must be able to process these
messages within a given time bound, and have sufficiently large
queues not to drop any of them.

An interesting relation also exists between message delays and
delivery order. To verify the third requirement, our application
needs an underlying communication infrastructure providing causal
order delivery. Indeed, with random message delays, it may hap-
pen that the message coming from the medical lab is delayed w.r.t.
the one sent by the flying squad when handing over the patient.
However, if message delays are constant, the system essentially
proceeds in a delayed-synchronous manner, which makes assum-
ing any specific message orderings superfluous.

In addition, to evaluate the performance of our tool, we mea-
sured the time and memory taken, as well as the number of states

1To run LTL verification, we used the Bogor extension in [4]



Req. No. Patients Mem. (Mb) States Time
R1 10 278.38 70234 ≈ 16 min
R1 20 312.31 123122 ≈ 20 min
R2 10 412.21 113213 ≈ 22 min
R2 20 502.75 209123 ≈ 26 min
R3 10 498.1 232123 ≈ 30 min
R3 20 591.1 289124 ≈ 35 min
Table 3: Performance of our tool when R1-R3 are verified.

generated during the verification. We considered a system with
10 or 20 patients, each publishing 10 messages that may randomly
trigger the actions corresponding to moderate or severe danger. We
gathered the aforementioned metrics on an Intel Core Duo 1,83Ghz
processor running Apple OSx, using the DJProf [11] profiler to
evaluate the memory occupancy.

When a requirement turns out not to be verified, a counterexam-
ple is returned within a few seconds. Instead, Table 3 reports the
performance of our tool in case the verification succeeds. Note that
doubling the number of patients corresponds to a sharp increase in
the message traffic modeling the interactions among components,
as well as in the number of possible inter-leavings. The additional
complexity of the model, however, yields only a moderate over-
head in the time taken to accomplish the verification, about 25%
in the worst case. We believe this is due to our implementation
of the time extension, described in Section 3.2, that exploits the
domain-specific semantics of P/S to cut down the processing. By
the same token, the above metrics only slightly change assuming
different P/S guarantees that still make the verification succeed. For
instance, as already mentioned, the third requirement can be veri-
fied by either assuming causal ordering, or by imposing a constant
message delay. In both cases, the verification completes in about
half hour.

5. VERIFYING THE TIME EXTENSION
For our tool to prove useful, we must provide a strong foundation

upon which our implementation can substantiate the soundness of
presented results. In general, it is hard to achieve this objective.
Moreover, in our approach the challenge is even more critical, as we
are extending an existing model checker by augmenting its internal
mechanism. To address this issue, we checked the correctness of
our temporal extension using Bandera [9], a tool for the automatic
verification of Java code. Notably, Bandera itself is based on Bogor.
Essentially, it translates the Java code into a Bogor model upon
which the actual verification is run. Consequently, we exploited
our expertise in Bogor to reduce the size of the code fed as input to
Bandera, therefore making the verification feasible. In this section
we report on our experience in this respect, highlighting the lessons
we learned on the way.

Bandera is a set of tools for the transformation of Java code into
verifiable models. To this end, code analysis techniques are used to
reduce the size of the models produced. Essentially, Bandera aims
to i) eliminate from the input code all the elements (e.g., classes,
methods, variables) that do not affect the verification of a given
property, ii) abstract the type of, and infer bounds for, the remain-
ing variables to reduce the state space generated during the verifi-
cation. This is achieved through multiple translation steps, whose
final output is a runnable Bogor model encompassing the properties
to be verified. These are generally specified in terms of the values
taken by input or output parameters of relevant methods.

Despite the degree of sophistication of Bandera, a brute-force
approach whereby the entire Bogor code plus the P/S and time
extensions are input to Bandera easily fails: the model output by
Bandera is intractable. Nonetheless, by examining the outcome of
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Figure 10: Scenarios for verifying the time extension.

Bandera, one can recognize how large parts of those models are
not relevant to the verification of the time extension. Indeed, as we
already observed, our notion of time does not alter the state space
w.r.t. the untimed version of our tool. Rather, it limits the way the
state space is explored. Therefore, the correctness of our extension
can be checked by simply making sure that the guards controlling
the inter-component schedules return the correct values for every
possible situation.

Based on the above observation —that again exploits our domain-
specific knowledge— we carved out the time extension plus a few
Bogor components needed to trigger its functionality. Specifically,
almost the entire Bogor code enabling the extension capabilities
was removed, as well as parts of the Bogor parser. Moreover, the
state space generation mechanism was greatly reduced, as only the
ability of generating the state space was required. Instead, how to
explore this is dictated by the time extension, that is our verification
target. To let the entire package compile, we implemented empty
stubs in place of the parts removed.

To check our implementation, we must explore all the possible
inter-component schedules. Notably, this can be accomplished with
only two components, and four scenarios where these components
publish or receive messages:

Scenario 1. As shown in Figure 10(a), two components publish
messages with a non-integer ratio between their execution
rates. No component is subscribed to these messages, hence
they are discarded at the dispatcher. The scenario essentially
checks whether the inter-component schedules are generated
correctly in the absence of any message in transit.

Scenario 2. With a non-zero message delay, a component subscribes



to a message published by another component, as depicted
in Figure 10(b). Therefore, timedWaitingMessage re-
turns QUEUE_EMPTY while the message is in transit, and
switches to CAN_PROCEED as soon as the message appears
in the input queue. The component execution rates are as-
signed so that only the receiving component is allowed to
proceed at the time of message reception. The scenario veri-
fies the functioning of timedWaitingMessage, and how
the inter-component schedule is generated when a message is
received with the subscribing component being given higher
priority.

Scenario 3. Similarly to the previous scenario, this time the com-
ponent execution rates are assigned so that the publishing
component has higher priority. Therefore, when the message
is inserted in the input queue of the receiving component,
this is not immediately scheduled, and the publishing com-
ponent can proceed. This scenario checks the situation dual
to scenario 2.

Scenario 4. To test the combination of scenarios 2 and 3, the com-
ponent execution rates and message delays are assigned so
that both components can be scheduled when the message
arrives at the intended recipient. The objective is to check
whether both possible schedules are correctly generated.

Overall, Bandera generated about 100 assertions to verify the
correctness of our implementation. As for the results, we actually
discovered a bug in our initial prototype. Bandera showed a coun-
terexample in the third scenario where timedWaitingMessage
returned the wrong value after backtracking from the state that rep-
resents component A receiving the message. This was caused by a
non-initialized variable, whose default value worked for most (but
not all) combinations of the input parameters. Apparently, in our
initial tests we were lucky in picking the “right” inputs. This result
witnesses the importance of our efforts in verifying our time exten-
sion. In their absence, this bug would have probably survived.

6. CONCLUSION
In this paper we presented a time model to investigate time-

sensitive P/S architectures. In our approach, time is embedded
within the model checker as an additional dimension characteriz-
ing the system behavior. This work completes previous efforts by
some of the authors, by providing the missing tile in a framework
for the verification of P/S architectures. Our approach opens up op-
portunities for better investigations during the early design stages,
which ultimately hold the potential to produce more reliable imple-
mentations.

Our research agenda includes a deeper assessment of the effec-
tiveness of our approach through several case studies, as well as
further work in the direction of the formal verification of the cor-
rectness of our Bogor implementation.
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