
Monitoring Heritage Buildings with
Wireless Sensor Networks: The Torre Aquila Deployment

Matteo Ceriotti1,2, Luca Mottola1,2, Gian Pietro Picco1, Amy L. Murphy2, Ştefan Gunǎ1,
Michele Corrà3, Matteo Pozzi4, Daniele Zonta4, Paolo Zanon4

1Dip. di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
2Bruno Kessler Foundation—IRST, Trento, Italy 3TRETEC S.r.l., Trento, Italy

4Dip. di Ingegneria Meccanica e Strutturale, University of Trento, Italy

ABSTRACT
Wireless sensor networks are untethered infrastructures that
are easy to deploy and have limited visual impact—a key as-
set in monitoring heritage buildings of artistic interest. This
paper describes one such system deployed in Torre Aquila,
a medieval tower in Trento (Italy). Our contributions range
from the hardware to the graphical front-end. Customized
hardware deals efficiently with high-volume vibration data,
and specially-designed sensors acquire the building’s defor-
mation. Dedicated software services provide: i) data collec-
tion, to efficiently reconcile the diverse data rates and relia-
bility needs of heterogeneous sensors; ii) data dissemination,
to spread configuration changes and enable remote tasking;
iii) time synchronization, with low memory demands. Un-
like most deployments, built directly on the operating sys-
tem, our entire software layer sits atop our TeenyLIME mid-
dleware. Based on 4 months of operation, we show that our
system is an effective tool for assessing the tower’s stability,
as it delivers data reliably (with loss ratios <0.01%) and has
an estimated lifetime beyond one year.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Pro-
tocols—Routing protocols; D.1.0 [Programming Techniques]:
Concurrent Programming—Distributed programming

General Terms
Design, Experimentation, Measurement

Keywords
Wireless sensor networks, Heritage buildings, Middleware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’09, April 15–18, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

(a) External view.

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<

-=4'8%((1>*./55%''#$#*+%(%&49%"(#*'#*%77%&1*'18&4((/((1*?/4"+1*+/&4"(%*-=@((15%"(1*%*#-*8[*
A1$%5%"(1*#-*B4'(%--1*$%""%*/(#-#CC4(1*519%*54'%&94>*

*

** *
*

** *
!! !

"#$%!&%'(!)#*+,!-.#!/.0#1!234.5.!605!.!7,4-1!89.05!.!:;-!<((=!

*
A%-*A1$%5%"(1*(/((4$#4*-%*8#((/&%*$%""%&1*'1((181'(%*4*+/%*&%'(4/&#D*#-*8[*:/*4((/4(1*(&4*,-#*

4""#*E%"(#*%*0&%"(4*'1((1*-4*+#&%C#1"%*+#*F#/'%88%*F%&1-4G*#-*'%51"+1G*8&191''1*%*:#"4"C#4(1*+4-2
-4*31"+4C#1"%*H&51-%*E4&C#G*:/*%::%((/4(1*"%-*;IJK*+4*L%1"%((1*0#"(1&#>*

M>N>O! >?5.49.?5#!-#!4.053;4,!
*
P4-*'%51-1*'51&'1*4#*,#1&"#*"1'(&#*+#$%&'#*'1"1*,-#*#"(%&$%"(#*+#*$4*"4(/&4*5Q%*Q4""1*#"(%&%''4(1*
-4*'(&/((/&4*#"*%'49%G*%*+#*%''#*'#*8/R*(&1$4&%*/"=498#4*+15/9%"(4C#1"%*8&%''1*-=4&5Q#$#1*'(13*
+%--4*.18&#"(%"+%"C4*8%&*#*7%"#*4&5Q#(%((1"#5#*SMTGSOTGSNTGSUTGS<T>*

!

*
!

"#$%!&%'@!A#3?,!-#!#?5.49.?5,!-.+!'B'(1!.054355,!4.+3C#,?.!/%!:3?-,?D!<(=!

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<

-=4'8%((1>*./55%''#$#*+%(%&49%"(#*'#*%77%&1*'18&4((/((1*?/4"+1*+/&4"(%*-=@((15%"(1*%*#-*8[*
A1$%5%"(1*#-*B4'(%--1*$%""%*/(#-#CC4(1*519%*54'%&94>*

*

** *
*

** *
!! !

"#$%!&%'(!)#*+,!-.#!/.0#1!234.5.!605!.!7,4-1!89.05!.!:;-!<((=!

*
A%-*A1$%5%"(1*(/((4$#4*-%*8#((/&%*$%""%&1*'1((181'(%*4*+/%*&%'(4/&#D*#-*8[*:/*4((/4(1*(&4*,-#*

4""#*E%"(#*%*0&%"(4*'1((1*-4*+#&%C#1"%*+#*F#/'%88%*F%&1-4G*#-*'%51"+1G*8&191''1*%*:#"4"C#4(1*+4-2
-4*31"+4C#1"%*H&51-%*E4&C#G*:/*%::%((/4(1*"%-*;IJK*+4*L%1"%((1*0#"(1&#>*

M>N>O! >?5.49.?5#!-#!4.053;4,!
*
P4-*'%51-1*'51&'1*4#*,#1&"#*"1'(&#*+#$%&'#*'1"1*,-#*#"(%&$%"(#*+#*$4*"4(/&4*5Q%*Q4""1*#"(%&%''4(1*
-4*'(&/((/&4*#"*%'49%G*%*+#*%''#*'#*8/R*(&1$4&%*/"=498#4*+15/9%"(4C#1"%*8&%''1*-=4&5Q#$#1*'(13*
+%--4*.18&#"(%"+%"C4*8%&*#*7%"#*4&5Q#(%((1"#5#*SMTGSOTGSNTGSUTGS<T>*

!

*
!

"#$%!&%'@!A#3?,!-#!#?5.49.?5,!-.+!'B'(1!.054355,!4.+3C#,?.!/%!:3?-,?D!<(=!

(b) Inside views.
Figure 1: Torre Aquila.

1. INTRODUCTION
Heritage buildings are a fundamental constituent of a coun-

try’s historical memory. Their preservation is thus a major
concern. Planning the maintenance of such structures re-
quires a careful assessment of their structural integrity, along
with a precise and quantitative understanding of the factors
that may affect them. The latter is traditionally achieved
through sensors and data loggers monitoring quantities such
as vibrations, temperature, and humidity. However, these de-
vices are typically cumbersome to deploy, as they require
a nearby power outlet or extensive wiring. Therefore, their
number is limited, and so is the monitoring: this is especially
true in buildings containing works of art, due to the visual
impact and physical encumbrance of the instrumentation.

In this context, wireless sensor networks (WSNs) enable
radically different solutions overcoming the above limita-
tions. Small, self-powered nodes relying on radio commu-
nication reduce the invasiveness of the system, allow the de-
ployment of more devices, and enable experimenting with
different configurations of the sensing infrastructure.

Torre Aquila. The above requirements were evident in Torre
Aquila, where we conducted the study reported in this pa-

per. Located in the city of Trento (Italy) close to the Buon-
consiglio Castle, it is a 31 meter-tall medieval tower whose
2nd floor contains “Il ciclo dei mesi” (“The Cycle of the
Months”), a series of internationally-renowned frescoes that
represent a unique example of non-religious medieval paint-
ing in Europe, attracting thousands of visitors every year.
The tower and some of the frescoes are shown in Figure 1.

The preservation of the frescoes is the main source of con-
cern for the local conservation board. In ancient times Torre
Aquila represented the main entrance to the city from the
East: with the expansion of the city in the second half of
the 19th century, most of the eastern city wall was demol-
ished and the entrance to the city was moved a few hundred
meters south of the original gate. Today this solution is in-
adequate for the increasing vehicular traffic. The solution to
this problem, pursued by the Municipality of Trento, is to by-
pass the obstacle of the Castle compound with a road tunnel.
The construction of the tunnel has been long delayed due
to concern by the conservation board that construction work
might cause unwanted settlement of the tower foundations.
The timely estimation of the potential risk to the frescoes re-
quires real-time monitoring and appropriate response models
to reproduce the structural behavior of the tower.

Peculiarity of the WSN deployment. The use of WSN for
monitoring the integrity of civil structures is not new, as we
discuss in Section 2. Nonetheless, Torre Aquila poses pecu-
liar challenges that are not usually found in the deployments
reported in the literature:

• Heterogeneity. The system contains many kinds of sen-
sors, whose operation is quite different. Deformation
and environmental parameters can be sampled at a low
rate, but vibration must be monitored at a high rate,
which consequently demands efficient reporting of the
resulting high volume of data. Both modalities must
gracefully co-exist in the same sensing infrastructure.

• Temporal span. The time constants of the phenomena
of interest require monitoring to span months or even
years. In contrast, the systems found in the literature
typically operate for at most a few weeks.

• Online tasking. The ability to change the behavior of
the sensing infrastructure based on external input can
be very useful. For instance, it is interesting to monitor
vibrations when a visit by a large group of people is
expected, or when strong winds are forecast.

Contribution. In this paper, we present the hardware/soft-
ware solution we developed to efficiently address the above
requirements for monitoring Torre Aquila.

The hardware core is based on TMote-like devices, cus-
tomized as illustrated in Section 3. Deformation measure-
ments are acquired by fiber optic sensors stretching the length
of the tower. These sensors, developed especially for our de-
ployment, required custom integration with the motes used to

report the measurements. Moreover, high-rate sampling and
reporting of vibration data demanded buffering into a short-
term storage. The flash memory usually found in motes is ill-
suited for this task, due to its high latency, energy consump-
tion, and limited number of writes. Hence, we integrated
on the mote a 32 Kbyte FRAM (Ferromagnetic RAM) chip,
overcoming all of these problems. To the best of our knowl-
edge, we are the first to use FRAMs in a WSN deployment.

Unlike the hardware, our software layer is not based on
what can be considered a “standard” core. Instead of devel-
oping directly on top of the operating system, we chose to
empower our developers with the higher level of abstraction
provided by a WSN middleware, TeenyLIME [5]. We are un-
aware of studies reporting the use of a WSN middleware in
the context of a real-world, long-running deployment. More-
over, as illustrated in Section 4, our use of middleware is not
limited to the application logic: the lower-level services nec-
essary to the system operation (i.e., data collection, data dis-
semination, and time synchronization) are all implemented
directly on top of TeenyLIME.

Deployment details such as the placement of nodes and
sensors are reported in Section 5. In the same section, we
show and interpret data gathered during 4 months of oper-
ation, as an example of the insights gained about the tower
status. After looking at our implementation from the end-
user’s perspective, Section 6 analyzes it from a system one.
We evaluate the system performance w.r.t. data delivery and
lifetime—often considered key metrics in WSN deployments—
showing that our implementation achieves a data delivery
close to 100% while working at very low power. Moreover,
we discuss the benefits brought to development by the use of
our middleware, in terms of reduction of programming effort
and code reuse.

Section 7 contains brief concluding remarks along with
our plans for future work.

2. RELATED WORK
In [10], the authors note that WSN deployments to date

can be divided in two categories: environmental monitoring
applications (e.g., [15]), designed with low-power operation
allowing them to run for long periods, and high-rate, high-
fidelity ones running only for a relatively short time. The
deployment in Torre Aquila inherits challenges from both
classes, as we must deal with high-rate data and yet the sys-
tem is required to operate for long periods.

In general, although WSNs have been used for monitoring
civil structures [10,3,13,7,22,4], the combination of require-
ments we must address is unique. For instance, only a hand-
ful of the systems surveyed in [13] can be tasked remotely,
and in these cases (e.g., [4]) the implementation lacks sup-
port for low-power operations, hampering their use in long-
running deployments. Similarly, most deployments deal only
with monitoring vibrations [13], without the increased com-
plexity due to heterogeneous sensors, as in Torre Aquila.

In some cases, the hardware is designed bottom-up for a
given deployment. For instance, the work in [10] uses di-
rectional antennas, motivated by the peculiar shape of the
target area. We cannot afford the luxury of fixing the net-
work topology, as structural engineers are likely to relocate
the nodes over time. Moreover, the nodes used by [10] cost
∼$600 each, which in our case would make the WSN solu-
tion not cost-effective compared to a traditional one. Instead,
one of our customized nodes costs ∼$120.

On the software side, real-world deployments mostly fea-
ture ad-hoc implementations [10, 13, 22], which make very
difficult extending or adapting their functionality to different
scenarios. Moreover, where higher-level approaches have
been proposed [7,4] the deployments targeted short-term use.
Our middleware-based one sustains good performance over
a long time span, and yet fosters component reuse in other
scenarios, as we discuss in Section 6.

In summary, our goals set us apart from the state-of-the-
art. We are neither confirming with a proof-of-concept “the
eventual ability to cover a large civil structure with low-cost
wireless sensors” [3] nor we are validating already known
models using WSNs instead of conventional systems [10].
Our requirements, set by the structural engineers on our team,
are instead to design, implement, and deploy an operational
system that, by delivering good performance over a long pe-
riod, helps them to assess the status of Torre Aquila. The rest
of the paper describes how we achieve this goal.

3. HARDWARE
Our requirements demand customized hardware. We se-

lected as the core platform 3MATE! nodes, developed by
TRETEC (www.3tec.it), an easily extensible WSN node
similar to TMotes [18], shown in Figure 2(a). The base
3MATE! is equipped with a TI MSP430 CPU, a ChipCon
2420 radio, and an inverted-F microstrip antenna. Differ-
ently from TMotes, the USB interface can be detached if not
needed, reducing power consumption once deployed, and the
board layout is designed to easily accommodate customized
extension boards. Co-location with the manufacturer helped
us to accommodate rapidly the needs of our deployment. The
nodes have been customized differently according to their
sensing goals, as described next.

Environmental nodes. We developed a 3MATE! extension
board for environmental monitoring, equipped with simple
analog temperature, relative humidity, and light sensors. In
the deployment reported in Section 5, however, temperature
was the only measure required by the end user. Sensitivity to
temperature ranges from −40◦C to 125◦C with a typical ac-
curacy of 0.5◦C. This is sufficient to study phenomena such
as temperature gradients across different floors.

Deformation nodes. To study the tower deformation, we
required a minimally-invasive solution with very high pre-
cision. We developed a dedicated Fiber Optic Sensor (FOS)

FRAM

chip

(a) 3MATE! node.

Gumstix

WiFi

antenna

3MATE!

(b) Gumstix device as sink.

Optic

cable

Sensor
3MATE!

(c) Fiber optic sensor.

3MATE!

Sensor

(d) Acceleration node and calibration.

Figure 2: Custom WSN hardware for Torre Aquila.

and the corresponding 3MATE! extension board, both shown
in Figure 2(c). The sensor and its microcontroller-based con-
trol electronics, developed by TRETEC and University of
Trento, work by differentially measuring the time taken for
a laser pulse to travel through a pair of fiber optic cables
wrapped around the monitored object. As the latter deforms,
the cable stretches, modifying the travel time of the pulse.
This solution is immune to electromagnetic noise and can
be used to measure deformation on different physical scales,
e.g., from individual walls to entire buildings.

The FOS is composed of a read-out unit with a synchronous
laser pulser and a high-resolution optical receiver, and the
optical path formed by fiber optic cables and splitters. Dif-
ferently from all other sensors in Torre Aquila, the charac-
teristics of FOS electronics require external power to ensure

a stable measurement. The expansion board contains also a
temperature sensor similar to the ones above, useful to cor-
relate deformation with temperature in the same location.

Acceleration nodes. To measure vibration we used an ana-
log, ultra-compact, tri-axial acceleration MEMS sensor (ST
LIS3L02AL), integrated on a custom 3MATE! board con-
nected through an extension cable that allows the sensor to be
placed outside the node package, as illustrated in Figure 2(d).
The sensor features a full range of ±2 g and is capable of
measuring accelerations over a bandwidth of 1.5 KHz, with
a resolution of 1 mg over 100 Hz bandwidth. We computed
calibration coefficients for each sensor with induced vibra-
tions at different frequencies and amplitudes using a shake
table and piezoelectric accelerometers for seismic vibrations,
shown on the right of Figure 2(d).

High-volume data such as vibration pose severe demands
on buffering space. Some deployments [10] use the flash
chip on the mote as a temporary buffer. However, this is a
viable option only if the system operates for a limited time
span, as the bound on the number of write operations even-
tually results in corrupted data. Instead, we equipped the
3MATE! with a FRAM chip, shown in Figure 2(a). Com-
pared to flash memory, FRAM features lower power con-
sumption, virtually unlimited write-erase cycles, and faster
write speed, enabling higher sampling rates. In our exper-
iments, the flash could sustain at most 500 Hz sampling,
whereas the FRAM allowed up to 1 KHz. Nonetheless, the
storage area provided by FRAM is generally smaller than
flash. In our case this is not an issue, as we use our 32 Kbyte
FRAM as a temporary buffer, freed progressively as data is
reported to the sink, described next.

Sink node. In Torre Aquila, the sensed data converge from
all nodes to a sink where they are collected and stored, re-
quiring a computing device with enough storage space and
processing power. Moreover, this device must double as a
gateway to interconnect with the front-end, allowing remote
users to interact with the system. Finally, the requirement to
reduce invasiveness holds also for the sink.

To address these needs, we chose a Gumstix [8] device,
shown in Figure 2(b). Gumstixs are easily customizable em-
bedded PCs with a very small form factor. We equipped
ours with a board to use Secure Digital (SD) storage cards,
a WiFi card to reach the external network, and a USB board
for connecting a 3MATE! to access the WSN. As shown in
Figure 2(b), the space required for this configuration is very
small: it uses the same packaging of the WSN nodes.

4. SOFTWARE DESIGN
The design of WSN software is often characterized by ad-

hoc solutions built directly on top of the operating system.
The consequence is that systems become difficult to maintain
and reuse is hampered [19, 1]. In our deployment we took a
different stand, and addressed since the beginning the chal-

TeenyLIME

Data
Collection

Data
Dissemination

TupleSpace TupleSpace

Sampling
& Tasking

TupleSpace

Time
Synchronization

TupleSpace

TinyOS

Figure 3: Software architecture.
lenge of designing the software layer through higher-level
abstractions that simplify development and foster code reuse.

Architecture. Figure 3 shows the high-level architecture of
our software layer. The various macro-components inter-
act exclusively through a shared memory space where data
is read or written as tuples, sequences of typed fields. The
tuple space abstraction is provided by a middleware called
TeenyLIME [5], concisely described next. Its constructs are
used to implement both application-level functionality (e.g.,
sensor sampling) and system-level mechanisms (e.g., routing
and time synchronization), providing a unifying high level of
abstraction throughout the software stack.

The reliance on this shared tuple space yields a highly
decoupled software configuration, boosting code reuse both
within and across deployments. For instance, the software
deployed on acceleration nodes differs from that of envi-
ronmental nodes solely in the sampling functionality, which
inevitably depends on the quantity to sense. Moreover, it
makes it easier to design alternative deployments by remov-
ing or replacing components, without affecting the others.

TeenyLime in a nutshell. As shown in Figure 4, in Teeny-
LIME each node hosts a tuple space shared among 1-hop
neighbors: a node perceives its tuple space as containing
the tuples stored locally plus those residing on its neigh-
bors. Software components atop TeenyLIME interact locally
or across nodes by reading/writing tuples from/to the shared
tuple space. If needed, however, the read/write operations
can be scoped to access directly the local tuple space of
a neighbor. Read operations occur by requesting a match
against a pattern: its fields express a constraint on the field
type or value in the tuples being considered for matching.
For instance, a pattern 〈"foo", ?integer〉 matches the tuple
〈"foo", 20〉 but not 〈"foo", "boo"〉. Moreover, TeenyLIME
provides a form of data listener called a reaction, a code

Local Tuple
Space

Local Tuple
Space

Communication
Link BA C

Physical
Node

Local Tuple
Space

Shared Tuple Space at node B

Tuple
Space

Local Tuple
Space

BA C

Shared Tuple Space at node A

Local Tuple
Space

Local Tuple
Space

Figure 4: Tuple space sharing in TeenyLIME.

Node type Operating parameters Typical value
Environmental Sampling period P 10 min

of sampling sessions N infinite
Deformation # of samples averaged per session A 10

Sampling period P 10 min
of sampling sessions N infinite

Acceleration Sampling frequency F 200 Hz
Sampling duration D 30 s
of sampling sessions N infinite

Figure 5: Node types and their typical configuration.

fragment whose execution is automatically triggered upon
the appearance of a matching tuple in the shared tuple space.
This provides a very powerful way to increase the decoupling
among different functionality. Other TeenyLIME constructs
are described in the following, whenever appropriate. Teeny-
LIME is implemented in nesC on top of TinyOS. Therefore,
operations are asynchronous and their result is signalled to
the caller component through an event. A complete descrip-
tion of the middleware, including API and implementation
details can be found in [5].

We now describe the design of the main components in
Figure 3. In every case, we first highlight the requirements
and challenges, and then report on the component design and
implementation in TeenyLIME.

4.1 Sampling and Data Collection

Requirements and challenges. The deployment in Torre A-
quila is characterized by heterogeneous sensor nodes whose
sampling requirements and modalities vary greatly, as seen
in Figure 5. This affects not only the local processing, but
also the routing protocols employed for data collection, where
reliability guarantees also play a key role. Based on our sce-
nario, we identify two classes of traffic for data collection:

I. Bursty, high-rate data with strong reliability require-
ments, i.e., those coming from acceleration nodes. Lar-
ge amounts of data are locally stored in a buffer whose
elements are all sent in a burst after the sampling ses-
sion. In this case, the loss of samples can impair the
accuracy of the signal reconstruction, and therefore the
analysis. Moreover, the volume of data generated re-
quires compression, to reduce the amount of data trans-
mitted and extend lifetime. This poses an additional re-
liability requirement, as it is impossible to decompress
the stream if some of its packets are missing.

II. Low-rate data with weak reliability requirements, i.e.,
those coming from environmental and deformation no-
des. Even if one sample is occasionally lost, a mean-
ingful data analysis can still be carried out.

Our system also supports best-effort delivery of system
data (e.g., battery status) whose loss is not critical. We could
design a solution only for the most demanding class I, and
use it for all data collected. However, this would constitute
a waste of resources. Therefore, we designed a solution able

Sampling

read(<emptyMsgTuple>)

TeenyLIME
Tuple Space

write(<msgTuple>)

Data
Collection

write(<emptyMsgTuple>)

fill(<emptyMsgTuple>)

reactTo(<msgTuple>)

route(<msgTuple>)

<emptyMsgTuple>

Figure 6: Handing sampled data over for routing.

to accommodate each of the above requirements efficiently.

Design and implementation. The sampling of environmen-
tal and deformation nodes is straightforward. The only pe-
culiarity of deformation is that a single sample is usually not
relevant, as values tend to fluctuate: thus, the data communi-
cated to the sink is actually an average of the last A samples.

Instead, acceleration nodes add significant complexity due
to the high volume of data sampled. Each of these nodes
buffers the data of an entire sampling session on FRAM. The
availability of the entire data set allows us to apply a Huff-
man [9] compression scheme to reduce the amount of data
transmitted. It is important to note that, unlike other com-
pression schemes mentioned in the literature (e.g., wavelets
in Wisden [4]), Huffman is loss-less and therefore preserves
the semantic richness of the vibration data [14]. The effec-
tiveness of compression, however, greatly depends on the
statistical properties of the data set. We observed that differ-
ent nodes and acceleration axes produce data with different
properties, which can be exploited in the Huffman scheme.
Therefore, we developed a compilation tool-chain that, using
as input the (real) uncompressed data from a node/axis, au-
tomatically generates the optimized compression code to be
used on that node. This procedure requires an extra step dur-
ing system deployment, but achieves remarkable improve-
ments in the resulting compression, as discussed in Section 6.

At run-time, sampled data is encoded in a tuple that is sha-
red by the sampling component, through TeenyLIME, with
the data collection component of Figure 3. The coordina-
tion among the two takes place as shown in Figure 6. The
sampling component queries the tuple space for an “empty”
tuple, indicating the availability of a transmission slot: we
describe next how and when this is generated. If such a tuple
exists, it is removed from the tuple space, filled with the data
to transmit, and output back to the tuple space. Through a
previously-installed reaction the data collection component,
notified of the presence of the data tuple, can withdraw it and
begin the processing necessary for routing.

Our routing protocol builds a tree topology rooted at the
sink. The tree is periodically rebuilt to account for connectiv-
ity changes. The process is performed by flooding a special
control tuple. Each node re-propagates the tuple by writing

Child

send(tuple 6)

Parent

retrieve(tuple 7)

4 5 6

cache

send(tuple 7)

send(tuple 8)

5 6 7

cache

6 7 8

cache

send(tuple 9)
7 8 9

cache

Figure 7: Hop-by-hop recovery example.

a copy of it in the tuple space of every node within commu-
nication range. There, the appearance of the tuple triggers
a previously-installed reaction, which updates the tuple con-
tent with path cost information and repeats the process, even-
tually flooding the entire system. This flooding mechanism
is reused also by other components, as mentioned later.

The reliability metric we use in optimizing the shape of
the tree is a variant of [21], based on the Link Quality In-
dicator (LQI) provided by the radio chip. Interestingly, the
LQI value is also accessed through TeenyLIME, using spe-
cial tuples whose field values are materialized by the run-
time, as described in Section 4.4. Finally, data forwarding
occurs through the tuple space, by writing tuples to the tuple
space of the current parent in the tree.

The reliability requirements of the aforementioned class I
and II are dealt with through a hop-by-hop recovery scheme,
intuitively described in Figure 7. Sent tuples are kept in the
local tuple space, which effectively serves as a local cache,
managed as a circular buffer. The receiving parent in the tree
keeps track of the last tuple received from each child, thanks
to a sequence number included in it. Upon recognizing a
hole in the sequence, the parent pulls the missing tuple from
the child’s cache, using a read operation. The child node
is totally oblivious of recovery: no dedicated processing is
required, as the necessary operations are performed directly
by the parent through TeenyLIME.

Since it is localized, fully distributed, and does not require
system-wide flooding of recovery information, our reliable
protocol enjoys lower latencies and far less network over-
head than end-to-end, centralized solutions such as [10]. On
the other hand, it might fail if a tuple is lost right before a
node changes its parent. Consider a node C switching its
parent from Pold to Pnew. In this situation, Pnew has no
information about tuples previously sent by C, and cannot
detect a tuple lost during the switch. These cases do occur
in practice: Figure 8 shows a lab experiment where the tree
is rebuilt every 2.5 minutes, and the occasional tuple losses
occur only in coincidence with such tree reconfigurations.

Situations like the above must be avoided for class I traffic,
which requires 100% delivery. They are taken care of in our
protocol with a simple, yet effective, mechanism. Whenever
the sink recognizes the beginning of a burst of class I traffic,

 0

 1

 2

12:30:00 12:45:00 13:00:00 13:15:00 13:30:00

M
e

s
s
a

g
e

s
 l
o

s
t

/
1

0
 s

e
c

Time

Loss Rate Tree Refresh

Tree Refresh

Figure 8: Lost tuples and tree refresh operations.

the time scheduled for the next tree rebuild is temporarily
set to infinite. This effectively prevents the tree from chang-
ing while class I traffic is routed towards the sink, and thus
removes the source of the problem.

Our implementation also considers transmission schedules.
Traffic of class II is scheduled opportunistically. In the case
of class I traffic, however, a network congestion may de-
velop due to the high volume of data transmitted. To allevi-
ate the problem, we employ a form of slow-start scheduling
for class I traffic, varying the inter-message period at which
the empty tuple representing an available transmission slot
becomes available. When a transmission failure is detected,
the inter-message is set to the highest value then slowly de-
creased, up to a configured minimum, as data are success-
fully forwarded to the sink. With a minimum inter-message
interval of 1 s, the reporting of a 30-second compressed sam-
pling session at 200 Hz takes around 8 minutes.

4.2 Time Synchronization

Requirements and challenges. To investigate the dynam-
ics of Torre Aquila, the readings taken by different nodes
must be correlated w.r.t. time. This is especially true for
vibrations, e.g., to study how forces applied at the base of
the tower propagate to the top floor. The samples must be
aligned in time, with a worst-case time drift up to 1 ms [13].

Design and implementation. Several time synchronization
protocols for WSN exist. To meet the requirement above, our
solution is a modified version of [6]. The protocol works by
creating a hierarchy among the network nodes, whose clocks
are then synchronized with the root’s clock. As depicted in
Figure 9, synchronization is based on a round-trip tuple ex-
change between nodes at level i and i − 1 in the hierarchy.
The nodes at level i record the time T1, at which a synchro-
nization request is issued, and T4, at which the reply from a
node at i−1 is received. This reply contains the times T2 and
T3 at which the node at i−1 received the request and replied
to it, respectively. These four values enable the nodes at the
lower level i to evaluate clock drifts and propagation delays,
and adjust consequently their local time w.r.t. nodes closer
to (and therefore with a smaller drift from) the root at level
0. Since this process is performed at each hierarchy level, it
eventually synchronizes all nodes to the root.

As with the other services, we implemented time synchro-
nization using TeenyLIME. The hierarchy is built trivially by
relying on the same flooding mechanism described for data

Node at

level i

read(<times>)

Node at

level i-1

<T2,T3>

reifyCapabilityTuple

write(<T2, T3>)

T
1

T
2

T
4

T
3

request issued

reply received

Figure 9: Time synchronization using capability tuples.

collection in Section 4.1. However, the information flooded
(and therefore the resulting tree) is different, since data col-
lection optimizes the tree shape w.r.t. link quality, while time
synchronization minimizes the hop-count from the sink to
reduce the impact of the link latency on the time estimate.

Instead, pairwise synchronization among nodes relies on
one of TeenyLIME’s unique constructs: capability tuples [5].
A capability tuple is essentially a placeholder for the actual
data, which is generated on demand. As illustrated in Fig-
ure 9, when a read operation whose pattern matches a capa-
bility tuple is received, TeenyLIME does not simply return,
as usual, the latter as result. Instead, it delegates its com-
putation to the component that originally output the capabil-
ity tuple, using a reifyCapabilityTuple event. This
is handled by computing and outputting the actual content
of the tuple, which is then finally delivered to the query is-
suer by TeenyLIME. This mechanism essentially enables a
node to “advertise” the availability of data without the need
to keep it up-to-date by periodically regenerating it—a waste
of energy when not used by any query.

In our time synchronization component we use a capabil-
ity tuple to produce on demand the values of T2 and T3, as
illustrated in Figure 9. It is worth noting that most of the
distributed processing is dealt with by TeenyLIME, greatly
simplifying the implementation.

Of course, threats to accuracy may come from the unpre-
dictability of processing and message transmission delays.
Solving this issue actually led to extensions to the original
TeenyLIME API. To alleviate the first problem, we enabled
components to be notified when a given operation (e.g., a
message send) is completed. This information is used by
the synchronization component to periodically re-evaluate
processing delays. Message transmission delays, instead,
are kept under control by temporarily switching off the ra-
dio duty-cycling during a synchronization round. This is
achieved by using a newly-designed tuning interface, which
enables cross-layer interactions by giving developers direct
control over the node hardware.

Evaluating precisely the accuracy of our protocol is dif-
ficult in the deployment environment. Therefore, we per-
formed a number of lab experiments, using 12 nodes in a
chain topology. We used a Tektronix TDS 220 two-channel
oscilloscope to measure the time drifts between any two nodes
in the network. As expected, the worst-case time drift hap-

pens between the root of the tree and the node at the oppo-
site end of the chain. In this case, the time difference was
732 µs, still sufficient to perform meaningful analysis of vi-
bration data [13]. Moreover, Section 6 reports that in the
deployment we observed at most 6 hops between an accel-
eration node and the sink. It is therefore unlikely that time
drift in Torre Aquila is higher than in our lab experiments.

4.3 Tasking and Data Dissemination

Requirements and challenges. The ideal configuration of
the monitoring system deployed in Torre Aquila, in terms of
acquisition rates and intervals, is not known a priori, as of-
ten happens when WSNs are employed to study a physical
phenomenon for the first time. Moreover, in many cases an
external event may suggest a different configuration. For in-
stance, it could be of interest to monitor more frequently vi-
bration and deformation when roadwork is being conducted
nearby, people are present in the tower, or strong winds are
present. The ability to remotely task the system must be
supported by a mechanism that disseminates the new con-
figuration reliably, and guarantees that the received data is
eventually consistent across the system.

Design and implementation. The set of sampling parame-
ters that can be modified remotely are those shown in Fig-
ure 5. There, we included the values suggested by the struc-
tural engineers on our team: each parameter, however, can
be changed independently. In particular, the number of sam-
pling sessions N can be a finite number, enabling monitoring
of a given quantity only during a given time interval.

A parameter configuration is packed in a task tuple with an
appropriate format. These tuples are generated on the sink
upon a user request, issued through our graphical front-end,
and disseminated using the protocol we describe next. On
every node, the sampling and tasking component (Figure 3)
registers a reaction matching task tuples and, upon receipt of
a new one, updates the sampling parameters accordingly.

The task tuples must be disseminated reliably through-
out the system, a widely studied problem in WSNs [11, 12].
We take inspiration from the state-of-the-art by adapting the
Trickle [11] protocol. This achieves eventual consistency of
the disseminated data by using monotonically increasing se-
quence numbers, used to determined if a node is up to date.

This dissemination scheme lends itself to a straightforward
implementation on top of TeenyLIME. Task tuples are ini-
tially flooded by using the mechanism described for data col-
lection in Section 4.1. Moreover, the management of missed
tuples comes almost for free by using one of TeenyLIME’s
constructs: node tuples [5]. A node tuple represents the cur-
rent state of a device, and is made available inside its 1-hop
neighborhood. The format of the tuple and the rules for pop-
ulating its field values are provided by the programmer, but
the periodic update of these values and the tuple propagation
to neighbors is carried out automatically by the TeenyLIME

run-time. Therefore, checking whether a recovery is needed
in our dissemination protocol is as simple as including the
sequence number as a field in a node tuple; installing a re-
action that fires whenever a neighbor’s sequence number is
newer than the local one; and recovering the missing tuple
with a read operation on such neighbor.

4.4 TeenyLime:
Deployment-driven Enhancements

The requirements of the Torre Aquila deployment brought
the development of TeenyLIME one step ahead. We already
mentioned some of the extensions we designed, e.g., the tun-
ing interface in Section 4.2. Below is a summary of other
enhancements to TeenyLIME motivated by our deployment.

Typed tuples and dynamic memory. In the presence of
high-rate data such as vibrations, it is imperative to manage
efficiently the available memory. To further optimize this
aspect in TeenyLIME, we introduced a notion of typed tuple.
Mimicking the generic data types in modern programming
languages, developers instantiate tuples as:
tuple<uint8_t, uint16_t, float> temperature =

newTuple(actualField(TEMPERATURE_TYPE),
actualField(NODE_ID),
actualField(temperatureReading));

where actualField indicates a field with actual data, as
opposed to constraints on the field type or value. A pre-
processor we developed inspects all TeenyLIME-based ap-
plication components to gather a complete view of all tuples
used. Based on this, it generates optimized data structures
for storing and searching the data.

Typed tuples are managed at run-time by a component pro-
viding a form of dynamic memory based on slabs [2]. In our
case, a slab is a chunk of memory meant to store tuples of
the same size. Using slabs does not require de-fragmenting
memory, which is difficult to implement on resource-scarce
devices. In the application described here, the combination
of the techniques above freed 80% of the memory allocated
by our previous release of TeenyLIME.

Automatic field types. Our data collection component re-
lies on LQI as a measure of link reliability. To relieve the
programmer from the burden to explicitly query the oper-
ating system for similar low-level information, we make it
available in the form of tuples by defining a number of spe-
cial field types whose value is automatically materialized by
TeenyLIME as part of the node tuples. For instance, in:

NodeTuple<uint16_t, lqi> myNodeTuple;

the value of the second field of the node tuple reflects the
LQI value towards a particular neighbor. This way, low-level
data becomes straightforwardly available to the application,
greatly simplifying the development of routing protocols.

Reliable, low-power operations. In TeenyLIME, program-
mers can explicitly choose whether the execution of a remote

operation is reliable or not. In our deployment, this feature is
support by a dedicated reliable communication layer exploit-
ing mixed software/hardware link-layer acknowledgements.
This solution occupies only 252 bytes of program memory.

To provide low-power operations, we integrated in our run-
time the Low Power Listening [20] layer available in the
TinyOS distribution. TeenyLIME’s operating parameters (e.g.,
the timeout for remote queries) are exposed to make them
adjustable based on the expected message delays.

5. DEPLOYMENT
The tower contains four floors, the ground one isolated

from the others and used as a public walkway. The plan is
C-shaped 7.8 m × 4.5 m, and the height is 25.6 m. The 14th

century enlargement closed the tower to the West and raised
the gate by an additional storey. The two parts of the ma-
sonry body have completely different properties. The lower
level walls consist of two 40 cm thick stone blocks, with an
incoherent filling. At the upper levels, the older portion of
the masonry is built of 80 cm thick stone blocks, while the
most recent one is brick and blocks of varying sizes. Visitors
enter the tower from the nearby Buonconsiglio Castle, arriv-
ing through a long corridor directly on the 2nd floor where
the frescoes are.

Node placement. As shown in Figure 10, we deployed 16
nodes plus the sink #0. This is placed at the top floor, the
only spot guaranteeing access to the external WiFi network.

The sensor position is chosen to detect early symptoms of
deterioration of the structure. The joint between the ancient
parts of the tower and the more recent ones is today perfectly
visible (bottom of Figure 10), but the degree of structural

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<=

*
!

"#$%!&%'(!)*+,!-./$!-*/$01!231#456!7*/8.+9!5/4.+5$$#.!#/:*+#.+*!
*

*
!

"#$%!&%';!)*+,!-./$!-*/$01!231#456!7*/8.+9!:#<+5!=#!>#8?+5!1*85!6?/$.!6.!83#$.6.!*81*+/.!

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<=

*
!

"#$%!&%'(&!)*+#,-.!/0#.!1234056!

*527#4*04#8#032!72..2!,033244#03#!32..9-**04#+0!#3:0.;,50!
*

*
!

"#$%!&%'(<!)*+#,-.!/0#.!123405!#34+-..-+0!

FIRST FLOOR

SECOND FLOOR

THIRD FLOOR

0

141

144

145

148

149

150

151
152

153

154

160

161

162

142

143

144

149

151

152

161

162

143

142

0 160

145

146

146

150

141

153

148 154

Accelerometer Fiber Optic Sensor

joint

Figure 10: Deployment map.

Figure 11: Graphical user interface.

connection of this joint is still a major point of uncertainty.
The deformation across the connection is measured on the 1st

floor by FOS #154. This is a 0.6 m gauge wrapped as an opti-
cal coil to magnify the sensor precision, and anchored to two
expansion bolts at the sides of the joint, as shown in Figure
10. Another FOS is used to detect vertical elongation at the
S-W corner of the tower, from level +5.7 m to +25.6 m. In
this case the measuring path is a protected optical fiber loop
pre-tensioned between two metal anchorings. An extension
cable connects the sensor to node #153 at the 3rd floor.

The vibrations induced by traffic and, to a minor extent,
by wind are recorded by acceleration nodes #144, #145, and
#146, the first at the base and the others at the top of the
tower. The analysis of acceleration readings allows to under-
stand the dynamical behavior of Torre Aquila. Indeed, the vi-
bration response of a building is not completely random, but
concentrates mainly around some specific frequencies, know
as natural frequencies. Daily and seasonal thermal excur-
sions also affect the structural response of the tower, and the
knowledge of these variations is needed to process and com-
pensate the strain and acceleration signals recorded by FOS
and accelerometers. This motivates the presence of a number
of environmental nodes distributed all over the tower.

Data visualization and access. Effective access to the in-
formation gathered by the system is crucial in supporting the
structural engineers in their analysis. To this end, we pro-
vide a custom graphical user interface, shown in Figure 11,
implemented through a major re-factoring of Octopus [16].
The GUI shows the current network topology and serves as
a control center from which the user can remotely task the
WSN. Moreover, it displays the data collected, which are
also persistently stored in a database.

! Figure 12: The acceleration signal from #145.

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;;<

=1"'#+%&4"+1*519%*/"#(4*/">455%-%&4?#1"%*!"#$##%&'()*'#*1((#%"%*/"*51&&#'81"+%"(%*'81'(42
9%"(1*94''#91*/"#(4*84&#*4@*

&&* A

94B CD<EF;G !
"#

**
H* I/%'(1* 8/"(1* J* 81''#7#-%* 51"* 7/1"4* 488&1''#94?#1"%* 51"1'5%&%* -1* '(4(1* +#* +%:1&94?#12
"%K'1--%5#(4?#1"%*+%--4*'(&/((/&4*#"*&%-4?#1"%*4-*$4-1&%*+%-->455%-%&4?#1"%*9#'/&4(4*"%--%*81'#?#1"#*
+%-*(%&?1*8#4"1*L+1$%*'1"1*8&%'%"(#*,-#*455%-%&19%(&#MN*
O%&* :4&%*I/%'(1* '#* J* 488-#54(1*4--4* '(&/((/&4*91+%--4(4*/"4*+%:1&94?#1"%* #981'(4*84&#* 4*I/%--4*
+%--4*8^* :1&94*91+4-%F*%* #"*%"(#()* (4-%*+4*$%&#:#54&%F* #"*51&&#'81"+%"?4*+%--4*81'#?#1"%*+%-*
P1(%* EF* * -1* '81'(49%"(1* /"#(4* *&!*"#$##)+,&&* L5#1J* 519%* '#* J* +%((1* 51&&#'81"+%"(%*
4-->455%-%&4?#1"%*!"#$##%&'(

)
MN* H* I/%'(1* 8/"(1F* $#'(4* -4* -#"%4&#()* +%-* 91+%--1F* '4&)* 81''#7#-%*

'(47#-#&%*/"4*51&&#'81"+%"?4*(&4*'(4(1*+#*+%:1&94?#1"%*%+*455%-%&4?#1"%K'81'(49%"(1N*
*

******************************* *
-

./01-+1%2-34567&!8/694-/&:6(;!$-<677/(:69=49;4-!>-:7/&6-&6=6-=/-?/@7!74-=4>>!-(;7A;;A7!-

*
=#Q* &#'/-(4* *84&(#51-4&9%"(%* #981&(4"(%*8%&* -1*'5181*+%-*'#'(%94*+#*91"#(1&4,,#1@* ->/(%"(%*J*

51'R*#"*,&4+1*+4*&%91(1F*'%98-#5%9%"(%*%55%+%"+1*4--4*84,#"4*S%7F*+#*51"1'5%&%*#":1&94?#1"#*
'/--1*'(4(1*+#*&#'5T#1*%*+#*+4""%,,#49%"(1*+%--4*'(&/((/&4*L4+*%'%98#1*'#*8/Q*51"1'5%&%*4*8&#*
I/%-*$4-1&%*+#*455%-%&4?#1"%*5T%F*'%*-%((4F*51&&#'81"+%*4+*/"4*51&&#'81"+%"(%*48%&(/&4*+#*:%''/&%*
"%,-#*4::&%'5T#MN*
6"*I/%'(>1((#54*'#*'1"1*"/1$49%"(%*6$4(#*#*$4-1&#*+#*'81'(49%"(#*%*+%:1&94?#1"#*L"%--%*81'#2

?#1"#25T#4$%*+%'5&#((%*8&%5%+%"(%9%"(%M*51"*&#:%	%"(1*4*I/4((&1*84&(#51-4&#*$4-1&#*+#*455%-%&42
?#1"%@*
*
2*!%"#$##B&'(

)@*$4-1&%*5T%*&488&%'%"(4*L+4--%*1''%&$4?#1"#*'8%	%"(4-#*+%,-#*455%-%&19%(&#M* -4*
'1,-#4*4-*+#*'1((1*+%--4*I/4-%*'#*T4*(1(4-%*#"'%"'#7#-#()*+%#*'%"'1&#U*
*
2*!)"#$%&'(

)@*$4-1&%*5T%*&488&%'%"(4F*8%&*#*<*'%51"+#*+#*1''%&$4?#1"%*+%'5&#((#F*#-*$4-1&%*8#V*4-(1*
9#'/&4(1*+%-->455%-%&4?#1"%*+1$/(4*4-*&/91&%*497#%"(4-%U*
*
2*!C"D&'(

)@*$4-1&%*5T%*&488&%'%"(4*-4*9%()*+%--4*8#V*,&4"+%*455%-%&4?#1"%*5T%*8/Q*%''%&%*9#'/2
&4(4*+4#*'%"'1&#*/(#-#??4(#N*

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;;<

=1"'#+%&4"+1*519%*/"#(4*/">455%-%&4?#1"%*!"#$##%&'()*'#*1((#%"%*/"*51&&#'81"+%"(%*'81'(42
9%"(1*94''#91*/"#(4*84&#*4@*

&&* A

94B CD<EF;G !
"#

**
H* I/%'(1* 8/"(1* J* 81''#7#-%* 51"* 7/1"4* 488&1''#94?#1"%* 51"1'5%&%* -1* '(4(1* +#* +%:1&94?#12
"%K'1--%5#(4?#1"%*+%--4*'(&/((/&4*#"*&%-4?#1"%*4-*$4-1&%*+%-->455%-%&4?#1"%*9#'/&4(4*"%--%*81'#?#1"#*
+%-*(%&?1*8#4"1*L+1$%*'1"1*8&%'%"(#*,-#*455%-%&19%(&#MN*
O%&* :4&%*I/%'(1* '#* J* 488-#54(1*4--4* '(&/((/&4*91+%--4(4*/"4*+%:1&94?#1"%* #981'(4*84&#* 4*I/%--4*
+%--4*8^* :1&94*91+4-%F*%* #"*%"(#()* (4-%*+4*$%&#:#54&%F* #"*51&&#'81"+%"?4*+%--4*81'#?#1"%*+%-*
P1(%* EF* * -1* '81'(49%"(1* /"#(4* *&!*"#$##)+,&&* L5#1J* 519%* '#* J* +%((1* 51&&#'81"+%"(%*
4-->455%-%&4?#1"%*!"#$##%&'(

)
MN* H* I/%'(1* 8/"(1F* $#'(4* -4* -#"%4&#()* +%-* 91+%--1F* '4&)* 81''#7#-%*

'(47#-#&%*/"4*51&&#'81"+%"?4*(&4*'(4(1*+#*+%:1&94?#1"%*%+*455%-%&4?#1"%K'81'(49%"(1N*
*

******************************* *
-

./01-+1%2-34567&!8/694-/&:6(;!$-<677/(:69=49;4-!>-:7/&6-&6=6-=/-?/@7!74-=4>>!-(;7A;;A7!-

*
=#Q* &#'/-(4* *84&(#51-4&9%"(%* #981&(4"(%*8%&* -1*'5181*+%-*'#'(%94*+#*91"#(1&4,,#1@* ->/(%"(%*J*

51'R*#"*,&4+1*+4*&%91(1F*'%98-#5%9%"(%*%55%+%"+1*4--4*84,#"4*S%7F*+#*51"1'5%&%*#":1&94?#1"#*
'/--1*'(4(1*+#*&#'5T#1*%*+#*+4""%,,#49%"(1*+%--4*'(&/((/&4*L4+*%'%98#1*'#*8/Q*51"1'5%&%*4*8&#*
I/%-*$4-1&%*+#*455%-%&4?#1"%*5T%F*'%*-%((4F*51&&#'81"+%*4+*/"4*51&&#'81"+%"(%*48%&(/&4*+#*:%''/&%*
"%,-#*4::&%'5T#MN*
6"*I/%'(>1((#54*'#*'1"1*"/1$49%"(%*6$4(#*#*$4-1&#*+#*'81'(49%"(#*%*+%:1&94?#1"#*L"%--%*81'#2

?#1"#25T#4$%*+%'5&#((%*8&%5%+%"(%9%"(%M*51"*&#:%	%"(1*4*I/4((&1*84&(#51-4&#*$4-1&#*+#*455%-%&42
?#1"%@*
*
2*!%"#$##B&'(

)@*$4-1&%*5T%*&488&%'%"(4*L+4--%*1''%&$4?#1"#*'8%	%"(4-#*+%,-#*455%-%&19%(&#M* -4*
'1,-#4*4-*+#*'1((1*+%--4*I/4-%*'#*T4*(1(4-%*#"'%"'#7#-#()*+%#*'%"'1&#U*
*
2*!)"#$%&'(

)@*$4-1&%*5T%*&488&%'%"(4F*8%&*#*<*'%51"+#*+#*1''%&$4?#1"%*+%'5&#((#F*#-*$4-1&%*8#V*4-(1*
9#'/&4(1*+%-->455%-%&4?#1"%*+1$/(4*4-*&/91&%*497#%"(4-%U*
*
2*!C"D&'(

)@*$4-1&%*5T%*&488&%'%"(4*-4*9%()*+%--4*8#V*,&4"+%*455%-%&4?#1"%*5T%*8/Q*%''%&%*9#'/2
&4(4*+4#*'%"'1&#*/(#-#??4(#N*

(a)

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<=

!"#$%&%#'()*+%&%#,!-./0123/#4*)56)789#4!-:/2;1<8=#
*

********************** *

*

*** *
*

!

!

!"#$%&'#()*+%,-#*.(/+#*+#*0&%"(1*2*3451-()*+#*6",%,"%*
0%5"1-1,#%*+#'(/#(%*8%&*#-*91"#(1&4,,#1*'(&/((/&4-%*+#*%+#:#5#*'(1#*

*

!

;<=

!"#$%&%#'()*+%&%#,!-./0123/#4*)56)789#4!-:/2;1<8=#
*

********************** *

*

*** *
*

(b)

Figure 13: First (a) and second (b) vibrational modes.

Preliminary data analysis. The data collected is processed
by a Bayesian algorithm that provides the user with the real-
time probability of an ongoing structural disease. The algo-
rithm can identify a hazardous condition many days in ad-
vance w.r.t. to the actual occurrence of the damage [23], and
it has already been applied for risk analysis of historic build-
ings [24]. In the following, we provide a few examples of
collected data and discuss the insights that the structural en-
gineers on our team gained from them.

Figure 12 shows the acceleration measured on the X axis
of #145. The top chart reports the time history over 5 s,
while the bottom one shows the corresponding frequency
spectrum. The peaks in the spectrum indicate possible nat-
ural frequencies of the structure, at 1.25 Hz, 1.80 Hz and
2.40 Hz. Every natural frequency follows a specific deflec-
tion shape, usually referred to as vibrational mode. For in-
stance, Figure 13 shows the first two vibrational modes of
the tower computed by a numerical model, respectively as-
sociated to natural frequencies of 1.25 Hz and 1.80 Hz1.

Figure 14 reports the strain measured, in microstrains (µε),
1For sake of clarity, in the picture the amplitude of the vibrational
modes have been artificially magnified.

!

!

!

!

Figure 14: Strain measurements from FOS #154.

 16

 18

 20

 22

 24

 26

 28

 30

03/09 09/09 15/09 21/09 27/09

D
e

g
re

e
s
 C

e
ls

iu
s

Date

148
149
152

Figure 15: Temperature on three floors of Torre Aquila.

by the FOS #154 placed across the joint. To eliminate the
high frequency instrumental noise, we applied to the signal
a moving average filter with a 60-sample long window. The
graph shows the well-known “breath” of the structure due
to daily thermal variations. The joint is forced to open be-
cause of thermal expansion when sun rays hit the southern
facade, and then closes during the night. We also note a
delay between the maximum irradiation at mid-day and the
maximum joint elongation, presumably caused by the ther-
mal inertia of the walls. The analysis of this behavior also
allows assessing the sensitivity of the joint to temperature.
As for the latter, the temperature data shown in Figure 15 for
nodes on different floors confirm the presence of a gradient
along the tower, as well as significant seasonal changes. The
daily strain variation (on the order of 500 µε) agrees with the
numerical prediction under the assumption that the joint is
fully released. To date, the strain response of the tower has
not shown trends which may rise concerns about its stability.

The benefit of the above analysis is twofold: on one hand,
in the short-term it permits identification of a reliable model
for the structure response, and prediction of the behavior of
the tower during exceptional events, e.g., earthquakes or sub-
siding. On the other hand, the data are stored in a database
that will remain available in the long-term and constantly
compared with more recent data, so that any change in the
tower behavior can be detected, triggering specific analyses.

6. EVALUATION
In this section, we study the effectiveness of our design

along two lines. We report first on the system performance
in Torre Aquila, showing that our solution performs reliably
and efficiently. Next, we consider the benefits of using a
middleware during the development process.

6.1 System Performance
To assess the effectiveness of our middleware-based de-

sign we report on three key performance issues: i) reliable
delivery of data, ii) effective compression of acceleration
readings, and iii) energy consumption and system lifetime.

Reliable delivery. During the last four months of operation,
the overall loss rate always remained below 0.01%. This
performance is striking if compared to the average yield of
long-running WSN deployments reported in the current liter-
ature [1], and even more so if we consider that ours is one of
the few WSN deployments featuring high-rate data reporting
for more than a few weeks.

The effectiveness of our reliability mechanisms for traffic
of class I and II is exemplified in Figure 16, showing the cu-
mulative loss rate (in log scale) over time. The loss rate for
class I traffic generally remains an order of magnitude lower
than that of class II traffic. In the morning of September 3rd

a malfunctioning acceleration node lost a number of tuples,
which generated the spike relative to class I traffic. Later
on the same day we replaced the faulty node and performed
a few maintenance operations on the sink, temporarily sus-
pending its operation. This caused the spike in class II traffic.
After these two events, the loss rate decreased steadily.

This performance is achieved in spite of the peculiar char-
acteristics of the deployment scenario. Although Torre A-
quila is not particularly tall, the thickness of its walls greatly
hinders wireless propagation. As an indication of this, Fig-
ure 17 reports the percentage of time some nodes spent at

 1e-06

 1e-05

 0.0001

 0.001

 0.01

30/08 01/09 03/09 05/09 07/09 09/09 11/09 13/09 15/09C
u

m
u

la
ti
v
e

 l
o

s
s
 r

a
te

 (
lo

g
 s

c
a

le
)

Date

Class I Traffic
Class II Traffic

Figure 16: Cumulative loss rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

#142
#143

#146
#148

#151
#152

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

04 Sept - 09 Sept

#142
#143

#146
#148

#151
#152

09 Sept - 14 Sept

1 Hop
2 Hops
3 Hops
4 Hops
5 Hops
6 Hops

Figure 17: Distance in hops from the sink.

 0

 0.2

 0.4

 0.6

 0.8

 1

#142
#143

#146
#148

#151
#152

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

04 Sept - 09 Sept

#142
#143

#146
#148

#151
#152

09 Sept - 14 Sept

Sink
#142
#143
#148
#149
#151
#152
#153

Figure 18: Time spent with a given parent node.

a given distance from the sink. Notably, the latter in some
cases reaches the value of 6 hops. Moreover, we observed
how small changes in the node placement drastically change
the connectivity. Figure 17 shows two periods: in the latter
we moved the sink because of some restoration work taking
place in the tower. Although the sink was moved at most
by 1 m, the topology drastically changed: for instance, #148
became able to reach the sink directly for most of the time,
rather than through the 4-5 hops experienced previously.

In any case, our data collection protocol adapts effectively
to topology changes. For instance, Figure 18 shows how,
in the context of the same sink movement, nodes select a
new, better parent. However, topology changes are more fre-
quently induced by connectivity fluctuations caused by peo-
ple visiting the tower and humidity gradients: the reaction
to these common causes is equally effective. For instance,
we observed nodes relying on up to 4 different parent nodes,
according to the observed link reliability.

Compression. We used an Agilent 34411A digit multimeter
to measure the processing time over 166 sampling sessions
of 30 s at 200 Hz, for a total of ∼1,000,000 raw accelera-
tion samples. Although the code was not optimized for this
data set, the worst compression time was 17.32 ms, which
supports our choice of Huffman coding and confirms the ef-
ficiency of the compression code we generate automatically.

Our tool-chain also enables optimization of the compres-
sion scheme according to the specific node (i.e., position)
and axis. In Torre Aquila, this brings considerable advan-
tages w.r.t. a compression tuned using all acceleration sam-
ples regardless of their source and axis, as illustrated in Fig-
ure 19. Interestingly, the maximum improvement is achieved
by generating the custom compression code for the Z axis.
Indeed, this axis is subject to the gravitational field, and there-
fore its values are rather different from those of the X-Y axes:
a dedicated compression scheme better captures the statisti-
cal properties of the corresponding data sets.

Energy consumption and lifetime. We observed that en-
ergy consumption essentially depends on the node function-
ality, as shown in Figure 20 using battery voltage. Acceler-
ation nodes draw more current than environmental ones: not
only are they used more intensively, but they must also con-
tinuously power the FRAM chip. Consequently, acceleration

Input Input Compression Reduction in
Node Axes Ratio Data Traffic
All All 17.9% 17.9%
144 All 31.45%

27.7%145 All 24.91%
146 All 26.76%

144 X-Y 47.11%

51.23%

Z 69.34%

145 X-Y 41.65%
Z 64.66%

146 X-Y 43.56%
Z 62.43%

Figure 19: Compression ratios with different input sets.

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2.95

 3

27/07 29/07 31/07 02/08 04/08

V
o
lt
a
g
e

Date

Acceleration Node
Environmental Node

Figure 20: Battery voltage readings.
Component Lines of code
Sampling & Tasking 235–962
Data collection 993
Data dissemination 339
Time synchronization 916

Figure 21: Lines of code for our core components.

nodes deplete their available energy more rapidly.
Estimating the expected system lifetime of our system is

tricky due to the non-linear behavior of commercially avail-
able batteries [17]. The first version of the system used a ra-
dio duty-cycle of 100 ms and used the on-board LEDs for de-
bugging. Under these conditions, and using one pair of size
C batteries, we observed one node dying after 3.2 months
of operation. The system is currently operating with a radio
duty-cycle of 250 ms, yielding the same reliability. More-
over, our packaging can accommodate two pairs of size C
batteries. Assuming the single dead node as a worst case, we
expect the system lifetime to extend beyond one year.

6.2 Beneficial Impact of Middleware
We discuss the impact of our middleware-based design on

programming effort and re-usability.

Programming effort. Quantifying the programming effort
is hard, as it is affected by factors difficult to measure (e.g.,
the complexity of the processing). Research in WSNs has
hitherto considered the number of lines of code (LOC) as
a simple indication. Figure 21 reports this metric for the
core functionality of our system. It is interesting to com-
pare these figures against similar functionality available in
TinyOS libraries, where it is built directly on top of the OS.
The CTP [20] collection protocol and the DIP dissemination
protocol [12] have almost twice as many LOC as our solu-
tions, and yet the former addresses only low-rate data. The
original implementation of the time synchronization proto-
col [6] contains 80% more LOC than our version. We main-
tain that the significant reduction in LOC is achieved by del-
egating part of the processing to the middleware. For exam-
ple, most of the recovery processing in our data collection
component takes place within TeenyLIME, as described in
Section 4.1. Parsing recovery requests, finding the message
to be re-sent, and re-trying the transmission are captured by
a single remote read operation.

Decoupling and re-usability. The use of TeenyLIME fos-
ters asynchronous and data-centric interactions, which in-

creases decoupling. As a result, the design for Torre Aquila
can be easily extended to meet different requirements. For
example, consider adding distributed data aggregation. This
functionality is usually embedded within routing, resulting
in the two becoming entangled. Instead, in our design this
would require no modification to the data collection compo-
nent. It is sufficient to tag differently the tuples carrying raw
data, and make the new data aggregation component react to
them. Aggregated data would then be output as message tu-
ples triggering a reaction in the data collection component,
as already happens in our current design. All these changes
would not even require a wiring of nesC interfaces.

The high decoupling is also beneficial w.r.t. memory con-
sumption. The size of the binary image installed on our
nodes ranges from 37 KB (environmental nodes) to 47 KB
(acceleration nodes). The latter is close to the 48 KB limit
on TMotes, but it is the most complex as it also includes the
compression code. Using components from the TinyOS li-
braries to provide similar functionality (i.e. CTP, DIP, and
the implementation of [6]) would yield a binary of at least
51 KB, which would not fit the program memory.

7. CONCLUSION AND FUTURE WORK
The preservation of the valuable frescoes of Torre Aquila

requires real-time monitoring of structural response and en-
vironmental conditions. We demonstrated that a WSN-based
monitoring system can achieve this goal thanks to highly re-
liable data delivery sustained over an extended time span. In
addition to the customized hardware, this result was achieved
by means of reusable and extensible software services built
on top of the TeenyLIME middleware, demonstrating the ben-
efits of high-level abstractions in a real-world deployment.

The project’s current focus is on finalizing the analysis of
the data gathered. We expect that this will require again the
relocation of some nodes and changes in the sampling con-
figuration, further exploiting the versatility of our system.
Our next step is to apply our hw/sw system to the monitor-
ing of other heritage buildings, therefore verifying experi-
mentally the flexibility and re-usability of our design.

A project Web site is available at d3s.disi.unitn.
it/projects/torreaquila.
Acknowledgments. This work was partially supported by
the Italian Ministry of Education (MIUR) under project
PRIN06-2006084179_003. The authors wish to thank Chris-
tian Benoni, Massimo Cadrobbi for their work on time syn-
chronization and the finite elements model, respectively, and
Prof. Giovanni Soncini for his support in developing the FOS
read-out system.

8. REFERENCES
[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The

hitchhiker’s guide to successful wireless sensor network
deployments. In Proc. of the 6rd Int. Conf. on Embedded Networked
Sensor Systems (SENSYS), 2008.

[2] J. Bonwick. The slab allocator: An object-caching kernel memory
allocator. In USENIX Summer, 1994.

[3] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri. Monitoring civil structures
with a wireless sensor network. Internet Computing, 10(2), 2006.

[4] K. Chintalapudi, J. Paek, O. Gnawali, T.S. Fu, K. Dantu, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri. Structural damage detection
and localization using netshm. In Proc. of the 5th Int. Conf. on
Information Processing in Sensor Networks (IPSN), 2006.

[5] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Programming
wireless sensor networks with the TeenyLIME middleware. In Proc.
of the 8th ACM/USENIX Int. Middleware Conf., 2007.

[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol
for sensor networks. In Proc. of the 1st Int. Conf. on Embedded
Networked Sensor Systems (SENSYS), 2003.

[7] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler. The Tenet architecture for tiered
sensor networks. In Proc. of the 4th Int. Conf. on Embedded
Networked Sensor Systems (SENSYS), 2006.

[8] www.gumstix.com.
[9] D. A. Huffman. A method for the construction of

minimum-redundancy codes. Proc. of IRE, 40(9):1098–1101, 1952.
[10] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and

M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In Proc. of the 6th Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2007.

[11] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and maintenance in
wireless sensor networks. In Proc. of the 1st Conf. on Networked
Systems Design and Implementation (NSDI), 2004.

[12] K. Lin and P. Levis. Data discovery and dissemination with DIP. In
Proc. of the 7th Int. Conf. on Information Processing in Sensor
Networks (IPSN), 2008.

[13] J. P. Lynch and K. J. Loh. A summary review of wireless sensors and
sensor networks for structural health monitoring. Shock and Vibration
Digest, Mar 2006.

[14] J. P. Lynch, A. Sundararajan, K. H. Law, A. S. Kiremidjian, and
E. Carryer. Power-efficient data management for a wireless structural
monitoring system. In Proc. of the 4th Int. Wrkshp. on Structural
Health Monitoring, 2003.

[15] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proc. of the 1st

Int. Wkshp. on Wireless Sensor Networks and Applications, 2002.
[16] Octopus Home Page.

http://csserver.ucd.ie/~rjurdak/Octopus.htm.
[17] C. Park, K. Lahiri, and A. Raghunathan. Battery discharge

characteristcs of wireless sensor nodes: An experimental analysis. In
Proc. of the IEEE Int. Conf. on Sensor and Ad-hoc Communications
and Networks (SECON), 2005.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low
power wireless research. In Proc. of the 5th Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2005.

[19] B. Raman and K. Chebrolu. Censor networks: a critique of "sensor
networks" from a systems perspective. SIGCOMM Comput.
Commun. Rev., 38(3), 2008.

[20] TinyOS Official Source Tree. www.tinyos.net.
[21] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of

reliable multihop routing in sensor networks. In Proc. of the 1st Int.
Conf. on Embedded Networked Sensor Systems (SENSYS), 2003.

[22] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for structural
monitoring. In Proc. of the 2nd Int. Conf. on Embedded Networked
Sensor Systems (SENSYS), 2004.

[23] D. Zonta, M. Pozzi, and P. Zanon. Manging the historical heritage
using distributed technologies. Int. Journal of Architectural Heritage,
2(3), 2008.

[24] D. Zonta, M. Pozzi, P. Zanon, G. A. Anese, and A. Busetto.
Real-time probabilisitc health monitoring of the portogruaro civic
tower. In Proc. of the 6th Int. Conf. on Structural Analysis of
Historical Constructions, 2008.

