
makeSense: Real-world Business Processes
through Wireless Sensor Networks

Florian Daniel3, Joakim Eriksson1, Niclas Finne1, Harald Fuchs4, Andrea
Gaglione3, Stamatis Karnouskos4, Patricio Moreno Montero5, Luca Mottola1,
Nina Oertel4, Felix Jonathan Oppermann2, Gian Pietro Picco3, Kay Römer2,

Patrik Spieß4, Stefano Tranquillini3, and Thiemo Voigt1

1 SICS Swedish ICT, Kista, Sweden
2 University of Lübeck, Lübeck, Germany

3 University of Trento, Italy
4 SAP AG, Germany

5 Acciona Infraestructuras S.A., Spain

Abstract Wireless sensor networks (WSNs) have been a promising tech-
nology for quite some time. Their success stories are, however, restricted
to environmental monitoring. In the industrial domain, their adoption
has been hampered by two main factors. First, there is a lack of integra-
tion of WSNs with business process modeling languages and back-ends.
Second, programming WSNs is still challenging as it is mainly performed
at the operating system level. To this end, we provide the makeSense
framework, a unified programming framework and a compilation chain
that, from high-level business process specifications, generates code ready
for deployment on WSN nodes. In this paper, we present the makeSense
framework and the application scenario for our final deployment.

1 Introduction

Wireless sensor networks (WSN) are small, untethered computing devices equipped
with embedded sensors and actuators. WSNs can be deployed much more easily
than traditional wired sensors, and are able to coordinate and self-organize so
that some high-level application goal is achieved. Many of the early sensor net-
work deployments involved only sensors and realized environmental monitoring
applications, that reported aggregated data to a base station [1]. While sensor
networks have been successful in this domain, in other domains their adoption
has been rather limited.

Business
Processes

Wireless
Sensor Networks

Business back-end
not integrated with

WSNs
Unified,
comprehensive
programming
framework still
missing

Figure 1. Open problems for using WSNs in business processes.

makeSense: Real-world Business Processes through Wireless Sensor Networks 59

Application
Model

Model
Compiler

Macro
Program

Application
Capability
Model

System
Capability
Model

Macro
Compiler

WSN-ready
Binary

Figure 2. Compiling business process models into WSN-executable code.

As shown in Figure 1, we see two limiting factors that enable widespread
adoption of sensor networks: (i) there is a lack of integration of WSNs with
business process modeling languages and back-ends; (ii) programming WSNs is
still challenging as it is mainly performed at the operating system level since
there is no unifying comprehensive programming framework.

In the makeSense project [2], we tackle these two issues. We tackle the prob-
lem of integration by providing a holistic approach where application developers
“think” at the high abstraction level of business processes, but the constructs
they use are effectively implemented in the challenging reality of WSNs. Con-
cretely, we let the application developers specify the application in a WSN-
specific extension for Business Process Modeling Notation (BPMN). A model
compiler transforms the extended BPMN models into traditional and WSN-
specific code which allows to distribute process execution over both a WSN and
a standard business process engine.

To simplify WSN programming, many programming abstractions have been
developed [3], but they are hard to use since they typically focus on one specific
problem. To drastically simplify WSN programming, particularly for business
scenarios, we provide a broader approach that enables developers to use several
abstractions at once. Towards this end, we present a unified comprehensive pro-
gramming framework into which existing WSN programming abstractions can
blend smoothly. These abstractions are “glued” together using a core language,
a stripped-down version of Java tailored for WSNs. This macro-programming
language is also the target language of the model compiler mentioned above. It
can, however, also be used directly by WSN programmers. A macro compiler
takes the macro-programming code as input and compiles it down to plain Con-
tiki code that can be executed on WSN nodes or on the gateway between the
sensor network and the business process engines.

Effectively, this leads to two compilation steps as shown in Figure 2. The
model compiler takes as input the application model (in extended BPMN) and
an application capability model. The latter is a coarse-grained description of
the WSN, providing information such as the type of sensors/actuators available
and their operations. The macro compiler takes as input the macro-program
generated by the model compiler and a system capability model. The latter
provides finer-grained information on the deployment environment (e.g., how
many sensors of a given type are deployed at a location). The macro-compiler
generates executable code that relies only on the basic functionality provided by
the run-time support available on the target nodes. By leveraging the system

60 Daniel et al.

Figure 3. Deployment scenario for makeSense final deployment. An overview of the
scenario (left part), and the actuator with the flap (right part).

capability model, the macro compiler can generate different code for different
nodes, based on their application role.

As described in Section 6, the executable code runs atop a dedicated run-time
layer, which provides access to low-level functionality such as MAC protocols
and sensor devices. The run-time system also contains mechanisms enabling
self-optimization of the network functionality, also described in Section 6.

The paper proceeds as follows. In the next section, we briefly present our
deployment scenario. In Section 3 we discuss makeSense application modelling.
The subsequent sections present the makeSense macro-programming language
and the macro-compiler. We give an overview on the makeSense run-time system
in Section 6 and the conclude with some final remarks.

2 Deployment

The makeSense project’s deployment is in a student residence in Cadiz, Spain. As
shown in Figure 3 we implement a room ventilation scenario, where the actuator
(right part of the same figure) opens the flap in the student’s bathroom if the
measurement of the CO2 sensor is above a configurable threshold. The external
business process is managed by a room reservation system. We use an open
source reservation system to manage room reservations that interacts with the
sensor network through an occupancy interface. Hence, the sensor network can
save energy by not ventilating rooms when they are vacant.

3 Application Modeling

For the integration of WSNs with business processes, we do not just add a
service facade to the WSN or deploy middleware components on the gateway
as others have done [4]. Instead, we want to enable a process modeler to model
processes that are partially executed directly by the WSN itself and partially
by traditional business process execution engines. Towards this end, we use and

makeSense: Real-world Business Processes through Wireless Sensor Networks 61

extend the Business Process Modeling Notation (BPMN). We introduce new
attributes that allow the modeler to specify a new intra-WSN participant that
contains the logic executed by the WSN. Since the latter is resource-constrained
we allow only a subset of BPMN elements. Moreover, we introduce a specialWSN
activity type to be used within the intra-WSN participant. The WSN activity is
(except for the message activity) the only allowed activity type there.

The WSN activity is backed by a meta-model that we describe in the next
section. As WSNs are inherently distributed systems, we also introduce a Target
attribute for lanes and activities within the intra-WSN participant, that allows
specifying where the respective logic should be executed, based on labels that
are relevant at the modeling layer. Finally, we add performance annotations,
expressing that the WSN should optimize its operation for a specific goal (e.g.,
system lifetime or reliability) within a certain subsets of activities. This is used
for the self-optimization in the run-time system as described in Section 6.

To assist the process modeler in creating correct, executable models, we use
a set of meta-models that describe the WSN in terms of the logical functionality
it provides, along with the way it is embedded into the physical set-up (e.g.,
which sensing or actuation is supported at which logical location). Instances of
these meta-models can be created either manually or through dynamic service
discovery.

At run-time, the BPMN process is executed in a distributed fashion. To ex-
ecute the intra-WSN process in the WSN, it is entirely transformed into macro-
code, compiled into C, and distributed by the run-time as described in the next
sections. For message exchange between the intra-WSN process and the other
process, the run-time uses a lightweight protocol, reducing encoded message size
by using message structure information on both sides. The compilation step au-
tomatically generates process communication endpoints that handle serialization
and deserialization of messages and implement process instance correlation.

4 Macro-programming Language

To bridge the gap between business processes and WSNs we defined a high level
intermediate macro-programming language where the abstractions contributing
to the language are decoupled, leverage on existing implementation, and can be
changed or extended easily to suit specific application needs.

The makeSense macro-programming language is based on a core set of meta-
abstractions which define the fundamental building blocks of the language as
units of functionality, reuse, and extensions. They are implemented through dif-
ferent “concrete” abstractions and provide the key concepts enabling interaction
with the WSN. The language serves as the “glue” among abstractions, whose
composition can be achieved by using common control flow statements. The core
language, in our case a stripped-down version of Java we tailored for WSNs, is
also the trait d’union between the macro-programming abstractions and the
BPMN business process model.

62 Daniel et al.

Collective Action

Report ActionTell Action

Local Action

Action

Distributed Action

Meta-Abstraction

Modifier

Target

Data Operator
<<use>>

<<use>>

<<use>>

<<use>>

1

0..1

Figure 4. A model for the meta-abstractions of the makeSense macro-programming
language.

Figure 4 shows a UML meta-model for the meta-abstractions provided by the
macro-programming language. It focuses on the notion of action, a task executed
by one or more WSN nodes. Actions are separated into local, whose effect is
limited to the node where the action is invoked (e.g., acquiring a reading from
the on-board temperature sensor), and distributed, whose effect instead spans
multiple nodes.

Distributed actions may run on several nodes in parallel and are further
divided into tell, report, and collective actions. The former two represent the
one-to-many and many-to-one interaction patterns commonly used in WSNs to
enable communication between the node (the “one”) issuing the action and a
set of nodes (the “many”) where the latter is executed. A tell action enables a
node to request the execution of a set of actions on other nodes, e.g., to issue
actuation commands or to trigger reconfiguration of system parameters such as
the sampling rate. A report action enables a node to gather data from other
nodes. Event-based abstractions and periodic, continuous queries both fall in
this category. Data acquisition occurring on each target node is specified by a
local action given as input to the report action. The output of the local action
is returned to the report one. Collective actions, in contrast to tell and report
ones, do not focus on a special node where the action starts or ends. They
enable a global network behavior and are executed cooperatively by the entire
WSN through many-to-many communication. An example are distributed asser-
tions [5], where programmers specify a (global) property monitored collectively
by the WSN nodes.

The behavior of distributed actions can be customized by a modifier. We
defined two modifiers, target and data operator. In our envisioned scenarios the
nodes possibly differ along several dimensions, both physical and logical. For ex-
ample, the ventilation scenario of our deployment in Section 2 requires both CO2
sensors and flap actuators to be installed in two different rooms. Programmers
must be able to map actions to the set of nodes of interest. A target identifies
a set of nodes satisfying application constraints, and gives the ability to apply

makeSense: Real-world Business Processes through Wireless Sensor Networks 63

a distributed action to the nodes in this set. Instead, a report action may have
a data operator, specifying processing performed on the results after gathering
and before they are returned to the caller, e.g., to filter or aggregate the data.

General concepts and operations defined by meta-abstractions are imple-
mented by concrete abstractions, which may then provide different levels of ex-
pressiveness and run-time guarantees. To create an instance of a meta-abstraction,
a class implementing its interface must be defined in the core language. As ab-
straction implementations typically closely interact with the operating system,
methods of abstraction classes are implemented in C using a native code interface
provided by the core language. Some abstractions require extensive configura-
tion, for example, a target needs to define a set of nodes based on their properties
[6]. To simplify such configuration, the core language supports the concept of
embedded languages, code snippets formulated in the declarative configuration
language provided by an abstraction. These are efficiently compiled by appro-
priate compiler plugins, instead of being interpreted at runtime.

The makeSense macro-programming core language provides a framework to
integrate the previously described abstractions. In the makeSense framework it
mainly serves as an intermediate language for the translation of BPMN mod-
els to platform code, but it is also suitable for direct use by programmers. The
core language features a Java-like syntax and full support for object-oriented
programming. In addition, to make the programmer’s task easier, we decided to
provide full multi-threading with a Java-like interface based on the Contiki mt
library [7]. Nevertheless, as we are targeting very resource-constrained micro-
controllers, the language needs to be simpler than standard Java. Consequently,
some language features had to be removed. For example, the makeSense macro-
programming language does not provide garbage collection, but relies on manual
memory management. To reduce the resulting burden on the programmer, the
language also provides specific constructs to allocate automatic or static objects,
for which the memory management is handled by the compiler. In contrast to
Java we do not employ a virtual machine approach, but the program is translated
to target code that can be directly run on the target platform. The resulting code
is predeployed on all nodes, so that it is not necessary to migrate code fragments
at run-time.

Abstractions are represented in the language as ordinary classes with a pre-
defined interface. Some abstractions require extensive configuration, for example
in order to specify the set of nodes that form a target. To facilitate such con-
figurations the macro-programming language features an extension mechanism
that allows to embed abstraction-specific languages in the macro-programming
code. This mechanism relies on specific compiler plug-ins as described in Sec. 5.
Listing 1.1 demonstrates the use of embedded code to specify a logical neighbor-
hood [6] to limit the scope of a stream action to this set of nodes. In lines 1 to 6
the logical neighborhood is defined by an abstraction-specific code fragment and
the definition is assigned to a code-type variable neighborhoodDef. This variable
is used in line 8 to associate the neighborhood definition with a new instance
of the logical neighborhood abstraction. Note the use of the newly introduced

64 Daniel et al.

Listing 1.1. Use of embedded code in the MPL core language
1 code neighborhoodDef = {:
2 neighborhood co2Sensors () {
3 ACM. getFunction () == " sensor "
4 and ACM. getType () == "co2"
5 }
6 :};
7
8 Target co2Sensors = lnew LN(neighborhoodDef);
9

10 Report co2Stream = lnew Stream ();
11
12 co2stream . setTarget (co2Sensors);
13 co2Stream . setAction (lnew ReadCO2Level ());
14 co2Stream . setDataOperator (lnew MedianOperator ());
15 co2Stream . setParameter (" period ", 5 * 60);
16
17 co2Stream . execute ();
18
19 co2Stream . waitResult ();
20
21 Object result = co2Stream . getResult ();

lnew operator to create an automatic object instance for which memory man-
agement is handled by the compiler. In line 12, the neighborhood is assigned as
target scope to a newly created stream action. In the following lines, additional
parameters are set and finally the action is executed in line 17. After execution
of the action, the program needs to wait until a result and can be fetched.

Another significant feature of the makeSense macroprogramming language is
the provision of a generic object serialization interface. This feature is primarily
used by the different abstractions in order to transfer object state between the
involved nodes. The object serialization facility is similar to the one provided
by Java and allows to write the state of an object to a standardized flat rep-
resentation. This representation is, for example, suitable to be send over the
network and can later be used to recreate an exact copy of the serialized object
on the same or a different node. To be applicable for serialization, a class needs
to implement the predefined interface Serializable. The serialization and de-
serialization functionality is automatically generated by the macro-compiler, but
can be customized by overriding specific methods.

5 Macro-compiler

The makeSense macro-compiler is responsible for the translation of the macro-
programming language program to Contiki-based C code. The generated C code
can than be compiled with the existing Contiki tool chain and can be finally
deployed on the nodes.

The basic architecture of the compiler follows the established reference ar-
chitecture. As shown in Fig. 5, the compilation process consists of four major
phases: scanning and parsing, semantic analysis, target code generation, and
code partitioning. To support different platforms, like Contiki and TinyOS, it is

makeSense: Real-world Business Processes through Wireless Sensor Networks 65

scanner and parser

type checker

code generator

macro-
program

code allocator

c
o
n
t
r
o
l
l
e
r

AST

type
environment

dependency
graph

target
platform

code
(gateway)

target
platform

code
(nodes)

...

Figure 5. Architecture of the makeSense macro-compiler

possible to replace the generation back end, but the currently implementation
only supports Contiki. In the non-standard final code partitioning phase, the
compiler determines which translated classes need to be deployed at a specific
node class based on a previously established dependency graph and a data flow
analysis for the program. The goal of this phase is to remove unneeded code
from specific program images. To reduce the size of the deployed program im-
age, the single macro-program specifying the behavior of the whole network is
partitioned into node-specific program parts. Each segment only contains those
classes that are potentially executed on the nodes belonging to the respective
class. For example, it is not necessary to provision program code for actuator
control on pure sensor nodes. In the current implementation, we only differen-
tiate between regular nodes and a dedicated gateway, but this concept can be
easily extended to a larger number of node classes.

To enable the embedded code introduced in Sec. 4 the macro-compiler ex-
hibits a plug-in interface that allows to integrate small sub-compilers for the
abstraction-specific languages. Each of these plug-ins is responsible for parsing,
type checking, and translation of the respective code fragments. As shown in
Fig. 6, the plug-ins are automatically invoked by the main compiler, if it en-
counters an embedded code fragment in the macroprogramming code. A return
channel allows the plug-ins to inform the compiler about references to macro-
programming language constructs encountered in the embedded code fragments.
Like the macro-compiler, the plug-ins are implemented in Java.

6 Run-time System

Figure 7 shows the high-level architecture of the makeSense run-time system. The
business process execution engine connects to the sensor network through a ded-
icated gateway we design. Application performance requirements are specified in

66 Daniel et al.

:MacroCompiler :Plugin :Registry

setOutputDirectory(NODE)

setOutputDirectory(GATEWAY)

setRegistry()

init()

parse()

registerLocalAction()

parse()

registerLocalAction()

registerLocalAction()

generate()

Figure 6. Typical communication sequence of makeSense macro-compiler plug-in.

BP Execution Engine Gateway Wireless Sensor Network

Configuration
and Monitoring

Subsystems

Adaptation Policies
Generation

Network State
Information

N
et

w
or

k
St

at
e

In
fo

rm
at

io
n

A
da

pt
at

io
n

Po
lic

ie
s

Policy Engine

Adaptation
Policies

Application
Data

Application
Data

System
Capability

Model

Application
Performance
Requirements

Figure 7. makeSense run-time architecture.

the extended business processes. These are taken as input by a dedicated opti-

makeSense: Real-world Business Processes through Wireless Sensor Networks 67

mization engine that generates self-optimization policies that allows the network
to dynamically tune its behavior. The latter task is carried out based on informa-
tion from the system capability model and network state information from the
deployed network. On the sensor nodes we deploy a dedicated configuration and
monitoring subsystem that oversees the application execution inside the sensor
network and executes the adaptation policies depending on the observed state.

While the makeSense gateway is implemented with mainstream technology
as it is intended to run on a standard machine, the key functionality of the
makeSense run-time system lies within the configuration and monitoring subsys-
tem aboard the sensor nodes and in the generation of self-optimization policies.
We describe these mechanisms next.

6.1 Monitoring and Configuration

The key design principle of the configuration and monitoring subsystem is to
separate protocol logic from configuration [8]. This way, parameters in all parts
of the system can be configured through a separate configuration component
based on the settings that the self-optimization policies dictate. This makes it
simple to handle changes in the objectives of the application, e.g., when the
application demands a new objective such as high throughput instead of low
energy consumption. Furthermore, we aim at keeping a layered design to make
it possible to exchange layers, for example, when a new MAC layer should be
used. While researchers have argued that cross-layering is required in wireless
sensor networks to achieve high performance, we showed that we can both rely
on a layered system and achieve high throughput [8].

In designing the configuration and monitoring functionality, we wish to lessen
the burden on developers of configuration policies due to gathering and process-
ing the data input to the self-optimization mechanism. To this end, we opt for
a unified tuple space-like API spanning both read and write operations on the
local blackboard, and distributed operations to share the configuration and mon-
itoring information across 1-hop neighboring devices [9]. We also aim at a design
that has clearer boundaries and hence requires little re-engineering work when
new Contiki releases are available. Therefore, we use wrappers between Contiki
components, e.g., the MAC protocol, and our configuration run-time.

As shown in Figure 8, the configuration and monitoring subsystem includes
a central black-board for storage of configuration parameters, system state, and
statistics. The other modules access the blackboard storage via tuple space-like
APIs [9] that operate on the relevant data. These APIs can both operate on local
data and on the blackboard of the one-hop neighbors. makeSense modules handle
their configuration directly via the blackboard while non-makeSense modules,
such as Contiki components, are wrapped so that relevant configuration and
state can be stored in the blackboard. The monitoring modules are responsible
for acquiring information on performance and resource consumption, storing it
in the blackboard to make it available to upper layers.

The configuration policy and policy engine are responsible for setting the
performance-related parameters. They also provide the interface to the optimizer

68 Daniel et al.

tuple space-like APIs

blackboard storage

configuration/
monitoring
data items

tuple space-like APIs

blackboard storage

configuration/
monitoring
data items

configuration and monitoring subsystem
node A

monitoring engine

policy engine

self-
optimization

policies

communication
primitives

macroprogramming
support components

OS-wrappers

configuration and monitoring subsystem
node B

monitoring engine

policy engine

self-
optimization

policies

communication
primitives

macroprogramming
support components

OS-wrappers

Figure 8. Overview of the configuration and monitoring subsystem

that runs outside the network and is in charge of optimizing the performance, as
described next. The policy engine enforces these policies by setting appropriate
parameters in the blackboard that determine the corresponding modules’ behav-
ior and performance. As any initial configuration is likely to be sub-optimal, the
optimizer will dynamically update the configuration. Dynamic updates might
also be required when the radio environment changes. For example, when it be-
comes more difficult to deliver packets due to interference, the optimizer might
decide to increase the maximum number of retransmissions.

6.2 Self-optimization

In several real-world deployments the application and operating system code are
finely-tuned to achieve a certain performance goal [10]. Most often, this is based
on the developers’ intimate knowledge of the internal sensor networks mecha-
nisms and a deep understanding of the application requirements. The deployed
code is also entirely in the hands of the same developers, who are free to modify
and tune the implementations depending on the performance goals.

In general, the approach above is not possible in makeSense. Two main rea-
sons concur to this: i) the executable code is generated from high-level appli-
cation models, and the mapping from the latter to low-level Contiki C is not

makeSense: Real-world Business Processes through Wireless Sensor Networks 69

trivial; and ii) the programming framework is open to external developers, who
may contribute new concrete abstractions along with their supporting run-time.
Furthermore, makeSense allows application developers to specify performance
objectives that can change at the run-time. This is necessary to support long-
lasting business processes subject to real world interactions and rapidly changing
requirements. Therefore, the makeSense run-time must be able to self-optimize
towards the stated performance objectives.

We define self-optimization as the property of a system to automatically
find near-optimal system configurations whenever application objectives, system
parameters, or environmental conditions change. To enable self-optimization,
we gather run-time information from the deployed sensor network, e.g., network
topology and protocol performance, and feed these to a reinforcement learning
algorithm that explores the space of possible configurations using simulations. At
the end of each simulation round, the learning process evaluates the performance
obtained with a given setting w.r.t. the application’s performance goals. Based on
this, we derive self-optimization policies that specify which parameters provide
better performance as a function of the current application and environment
state, including the performance goal. We distribute the policies back to the
deployed network where nodes will apply them whenever needed.

This approach sharply differentiates from existing solutions. Rather than
requiring detailed modeling of the individual protocols, as done for example with
great effort for MAC protocols [11], we treat the entire application as a black-
box. This may lead to sub-optimal solutions, but also enjoys greater flexibility
as it lets users add programming abstractions to the framework along with their
supporting protocols and have the latter “implicitly” optimized.

We describe next the key aspects of the self-optimization functionality

Off-line learning. A typical makeSense application will have several modes of
operation, along with different performance objectives. The same application
can, for example, have energy efficiency as the major objective for most of the
time, but in some emergency situations switch to latency. This means that there
is no static system configuration that is optimal at all times. The configuration
needs to be adapted as soon as the objective changes.

The approach taken for adapting configurations is to have a simulation frame-
work that can simulate the set-up of a specific makeSense application. The sim-
ulation is fed with the applications network topology, the sensor network nodes
firmwares being used, and network state information from the deployed system.
The simulation is then run together with learning mechanisms that tune the con-
figuration while simulating the application scenario. During the simulation, the
learning mechanism will evaluate the performance given the application objec-
tives. We choose to use a reinforcement learning based approach for the learning
mechanism. As shown later, initial results demonstrate that this is a promising
approach.

State monitoring. The nodes need to monitor their internal state to adapt
their configuration. This state is an important part of the input to the configu-

70 Daniel et al.

ration policies and includes, as a function of the needed policy, information such
as density, network congestion, and energy levels. The decision on what is needed
is partly set by what information is relevant to the performance objectives. Mon-
itoring the local state is needed to allow the performance goals to change over
time because the nodes only adapt their configuration based on what they know
in their local state. To change the performance objectives during run-time, the
relevant parameters need to be updated in the nodes local state.

The selection of what should be included in the nodes’ local states is im-
portant. Including too many parameters increases the time required to learn
configuration policies and also increases energy consumption for parameters re-
quiring active monitoring. Including too few parameters, on the other hand,
makes it difficult to find reliable configuration policies because they might not
have enough information.

Learning. In its simplest form, a policy is a mapping between a state and a set
of actions that should be performed when the application is in this state. An
action in this case can be a value to update in the blackboard that triggers a
reconfiguration.

We are using a reinforcement learning based approach for the process of
learning policies. The learning is performed during simulation using a plug-in
for the Cooja simulator. A utility function based on the performance objectives
provides the reinforcement learning with the needed rewards to implement the
learning process. The specific learning mechanism that we use is First Visit
Monte Carlo Policy Iteration [12]. We use the Cooja simulator as it allows to to
accurately emulate sensor nodes such as TMote Sky and Wismote. This makes
it possible to reuse the firmwares that are executed on the real sensor network
in the simulator, making the simulation behavior as realistic as possible.

To automate the learning process in Cooja, we design and implement a new
extension for the simulator that is able to run multiple simulation rounds of
the same scenario. This extension uses the same simulation configuration files
as Cooja and after the regular simulation it restarts the scenario at fixed time
intervals. Before resetting the scenario the learning process takes place.

Initial results.We run experiments to assess the ability of the self-optimization
framework to dynamically identify policies that improve the resulting system
performance. We consider as example the following performance objective, for-
mulated as a linear combination of desired reliability, goodput, and energy con-
sumption:

utility = received

sent
∗ 25.0 + received ∗ 100.0 − 0.07 ∗ energy (1)

Figure 9 reports a screenshot of the reinforcement learning simulation frame-
work while optimizing for the performance objective above. In the figure, stream
denotes the goodput in received packets per learning period. Throughout differ-
ent simulation runs, the learning algorithms understands that a way to maximize
the value of (1) is to favor packet transmissions (denoted as stream in the fig-
ure) even though they lead to slightly higher energy consumption. This is a

makeSense: Real-world Business Processes through Wireless Sensor Networks 71

Figure 9. The utility improves significantly over time (top); the learning algorithm
detects that it is better to send many messages, improving goodput (middle), even if
the energy cost slightly increases (bottom).

direct result of the objective formulation, which poses the largest weight on the
goodput.

7 Conclusions

In this paper, we have presented the makeSense approach for generating sensor
networking code from business process models. Our approach integrates business
processes with sensor networks in a novel way. Through a compilation chain an
application models specified in slightly extended BPMN is transformed to both
code that runs in the sensor network and code that is executed by traditional
business process engines. We have also presented our final application scenario
we are currently deploying in a student residence in Spain.

72 Daniel et al.

Acknowledgments. The work leading to these results has received funding
from the European Union Seventh Framework Programme (FP7-ICT-2009-5)
under grant agreement n◦ 258351 (makeSense).

References

1. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
Sensor Networks for Habitat Monitoring. In First ACM Workshop on Wireless
Sensor Networks and Applications (WSNA 2002), Atlanta, GA, USA, September
2002.

2. F. Casati and F. Daniel and G. Dantchev and and J. Eriksson and N. Finne and
S. Karnouskos and P. Moreno Montera and L. Mottola and F. Oppermann and
G.P. Picco and A. Quartulliz and K. Römer and P. Spiess and S. Tranquilliniz,
and T. Voigt. Towards business processes orchestrating the physical enterprise
with wireless sensor networks. In NIER track, 34th International Conference on
Software Engineering (ICSE), pages 1357–1360, Zurich, Switzerland, June 2012.

3. L. Mottola and G.P. Picco. Programming Wireless Sensor Networks: Fundamental
Concepts and State of the Art. ACM Computing Surveys, 43(3), 2011.

4. D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting with
the SOA-based Internet of Things: Discovery, query, selection, and on-demand
provisioning of Web services. IEEE Trans. on Service Computing, 3(3), 2010.

5. Kay Römer and Junyan Ma. PDA: Passive distributed assertions for sensor net-
works. In Proc. of the Int. Conf. on Information Processing in Sensor Networks
(IPSN), 2009.

6. L. Mottola and G. Picco. Logical Neighborhoods: A Programming Abstraction for
Wireless Sensor Networks. In Proc. of the Int. Conf. on Distributed Computing in
Sensor Systems (DCOSS), 2006.

7. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In Proc. of the Workshop on Embedded
Networked Sensor Systems (Emnets), 2004.

8. N. Finne, J. Eriksson, N. Tsiftes, A. Dunkels, and T. Voigt. Improving sensornet
performance by separating system configuration from system logic. In Proceed-
ings of the Sixth European Conference on Wireless Sensor Networks (EWSN2010),
Coimbra, Portugal, 2010.

9. P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Programming Wireless Sensor
Networks with the TeenyLime Middleware. In Proc. of the 8th ACM/USENIX Int.
Middleware Conf., 2007.

10. M. Ceriotti, L. Mottola, G. P. Picco, A. Murphy, S. Guna, M. Corra, M. Pozzi,
D. Zonta, and P. Zanon. Monitoring heritage buildings with wireless sensor net-
works: The Torre Aquila deployment. In Proceedings of the International Con-
ference on Information Processing in Sensor Networks (ACM/IEEE IPSN), pages
277–288, Washington, DC, USA, 2009. IEEE Computer Society.

11. M. Zimmerling, Federico Ferrari, Luca Mottola, Thiemo Voigt, and Lothar
Thiele. pTunes: runtime parameter adaptation for low-power MAC protocols.
In ACM/IEEE Int. Conference on Information Processing in Sensor Networks
(IPSN), 2012.

12. R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. The MIT
press, 1998.

