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ABSTRACT

We consider a new perspective on intermittence anomalies aris-

ing in intermittently-computing mixed-volatile systems. Existing

forward progress techniques avoid such anomalies by enforcing

a computation that corresponds to a continuous one, introducing

a significant overhead. We take a different stand: by allowing the

presence of specific anomalies, we make the program aware of

intermittence, unlocking new design patterns. We argue about the

various possibilities emerging from this and we make the concept

concrete by applying it to loops. We show how intermittence anom-

alies allow to preserve the results of loop iterations across power

failures, without requiring to save the device’s volatile state after

each iteration. Compared to existing checkpoint mechanisms, our

technique shows on average a 35.2𝑥 lower energy consumption

and a 48.4𝑥 lower execution time across several staple benchmarks.
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1 INTRODUCTION

Ambient energy harvesting for embedded sensing devices removes

the maintenance costs and environment impact associated with

battery replacement and disposal. Being harvested energy erratic

and usually not sufficient to power a device continuously, these de-

vices experience frequent power failures. Executions thus become

intermittent [5], as periods of active computation are interrupted by

periods where the device is powered off and recharges its energy

buffer. Frequent power failures harm program forward progress, as

power outages cause a device to shut down and loose the computa-

tional state, making it restart from scratch when power returns.

Managing persistent state. As we point out in Sec. 2, ensuring

program forward progress across power failures requires saving a
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1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;

Shutdown

5. ...

a: 0

During
checkpoint

a: 1

After
shutdown

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;
5. ...

a: 1

After
restore

a: 2

Figure 1: Example of intermittence anomaly. A checkpoint

saves the volatile state and then line 4 updates a to 1. Next, a power
failure occurrs. When energy returns, computation resumes from line

2. Being a non-volatile, it is not included in the checkpoint and retains
the effects that line 4 produced during the previous power cycle. The
execution produces a different result than a continuous execution.

1. r = −1;
<CHECKPOINT>
2. r = r + 1;
3. if(r < 1){
4. send(r);
5. }

...

Shutdown

r: -1

During
checkpoint

r: 0

After
shutdown

1. r = −1;
<CHECKPOINT>

2. r = r + 1;
3. if(r < 1) { false
4. send(r); skipped
5. }

...

r: 0

After
restore

r: 1

Figure 2: Example of intermittence-aware program. Line 2
experiences the same intermittence anomaly as in Fig. 1. Variable r
tracks the number of power failures.

snapshot of the volatile state, namely a checkpoint, onto a non-

volatile memory (NVM) location, which can be internal or ex-

ternal to the Micro Controller Unit (MCU). When power returns,

restoring a checkpoint allows the MCU to resume the computa-

tion from where it stopped, as checkpoints contain a copy of main

memory, program counter, and register file. Mixed-volatile sys-

tems [10, 11, 18] feature an internal NVM that they use as a portion

of main memory. NVM is not included into checkpoints, as it al-

ready ensures persistency. This reduces checkpoint overhead, as

the system saves only the volatile slice of main memory.

The use of mixed-volatile platforms may cause intermittence

anomalies [11, 14], due to repeated executions of non-idempotent

code. Fig. 1 shows an example. Being variable 𝑎 non-volatile, it

is not included in the checkpoint. The execution reaches line 4,

which alters 𝑎, then a power failure happens. When the device

resumes, it restores the volatile state from the checkpoint, and the

execution resumes from line 2. Being non-volatile, 𝑎 retained the

effect that line 4 produced during the previous power cycle. This

leads to a result that is unattainable in a continuous execution, as

the re-execution of line 4 updates 𝑎 to 2 instead of 1.

Avoiding intermittence anomalies requires to save additional

checkpoints in specific program locations to break harmful se-

quences [14, 18]. For example, in Fig. 1 a checkpoint between line

2 and line 4 solves the issue. Generally, the more portions of the

main memory are non-volatile, the more frequently checkpoints

must be placed to avoid intermittence anomalies. This may nullify

the performance gains due to reduced volatile state.

https://doi.org/10.1145/3417308.3430266
https://doi.org/10.1145/3417308.3430266
https://doi.org/10.1145/3417308.3430266
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Intermittence awareness. Existing checkpoint mechanisms [8,

11, 13, 18] generally aim at enforcing an execution that corresponds

to the continuous one. We take a different stand. We show how de-

liberately allowing the presence of specific intermittence anomalies

in mixed-volatile MCUs may unlock new program design patterns.

We call this concept intermittence awareness.

Intentionally allowing specific intermittence anomalies allows

developers to consider intermittence as a program input. The re-

sulting intermittence-aware program can change its behavior ac-

cording to when and where a power failure happens. Fig. 2 shows

an example. Variable 𝑟 is non-volatile. Similar to Fig. 1, when the

execution resumes after a power failure, 𝑟 retains the effects that

line 2 produced during the previous power cycle. By deliberately

allowing the anomaly to occur, we can use 𝑟 to track the number

of power failures since the last checkpoint, as line 2 increments 𝑟

every time the computation resumes. This ensures that line 4 is

not re-executed when the program resumes, as the 𝑖 𝑓 statement of

line 3 evaluates to false. Such behavior is not possible with existing

approaches [3, 11, 16, 18], as they enforce results equivalent to a

continuous computation, that is, 𝑟 must equal 0 after line 2.

Intermittence awareness gives developers new degrees of free-

dom, as it unlocks new design patterns that would otherwise not

be possible, applicable to either program control flow or data flow.

Fig. 2 shows an example where intermittence awareness allows

developers to affect the program control flow when resuming after a

power failure. In constrast, by allowing the intermittence anomaly

Fig. 1, we make the computation dependent from the number of

power failures by altering its data flow.

Intermittence-aware loops. To demonstrate the use of intermit-

tence awareness, we use it to reduce checkpoint overhead inside

loops, as described in Sec. 3.

Power failures cause a device to loose the work done inside

loops, unless a checkpoint is saved at the end of each iteration.

This introduces a significant overhead, yet it is necessary in the

absence of a priori knowledge on energy provisioning patterns.

We identify a set of variables, called loop state set, that represent

the minimum data to preserve. We instrument a loop by allocating

its loop state set onto NVM, thus making it intermittence aware.

This makes a checkpoint before the loop sufficient for resuming

the computation from the latest loop iteration, ensuring forward

progress with much lower overhead. Checkpoint frequency and

size decrease, as checkpoints inside loops are no longer required

and they do not include the loop state set.

Nonetheless, every time a device resumes from a power failure, it

restores the latest checkpoint, introducing a startup overhead. Our

technique also allows us to reduce this. We exploit intermittence

awareness to skip the latest unfinished loop iteration, instead of

re-executing it. The latter mitigates the startup overhead at the cost

of a decreased precision, resulting in a behavior similar to the loop-

perforation technique [17] used in approximate computing [15].

To enable the application of our loop instrumentation technique,

we design and implement the LAPSUS
1
programming abstraction.

LAPSUS exposes a small set of macros that allow developers to

apply our loop instrumentation techniques without manually man-

aging checkpoints, allocating variables, or designing dedicated data

1
Low-overhead intermittence-Aware Program inStrumentation techniqUe for loopS

structures. Moreover, LAPSUS allows developers to decide and

fine-tune where to apply our technique for mitigating the startup

overhead when the program resumes after power failures.

In Sec. 4 we evaluate how LAPSUS affects the overhead of ex-

isting checkpoint mechanisms, based on staple intermittent com-

puting benchmarks. Experimental results show that LAPSUS sig-

nificantly lowers the overhead of existing approaches, reducing

on average the number of executed instructions by 48.4𝑥 , and ob-

taining a 35.2𝑥 lower energy consumption and a 48.4𝑥 lower exe-

cution time. In the worst case, that is, the CRC benchmark where

checkpoint size is small, LAPSUS lowers the energy consumption

overehead by 2.08𝑥 . Instead, with higher checkpoint sizes, such

as the implementation of Dijkstra algorithm, LAPSUS lowers the

energy consumption overhead up to 227.79𝑥 .

2 BACKGROUND AND RELATEDWORK

We provide the necessary background and a brief discussion of

related work here.

Ensuring forward progress. Various techniques [1–3, 10, 16, 18]

adopt the concept of checkpoint to ensure program forward progress

across power failures. Depending on how and where checkpoints

execute, we classify these techniques as dynamic or static.

Dynamic checkpoint mechanisms, such as Hibernus [1, 2] and

QuickRecall [10], rely on external interrupts that signal a low en-

ergy buffer for saving checkpoints. The program may thus be pre-

empted at arbitrary places to take a checkpoint. Differently, static

checkpoint mechanisms [3, 16, 18] place checkpoint calls in the

program at compile time, fixing where checkpoints execute in the

code. Among these systems, Ratchet [18] always saves a checkpoint

when the execution encounters a checkpoint call. Mementos [16]

and HarvOS [3] execute “trigger” calls to first verify the energy

buffer for deciding whether to save a checkpoint.

In contrast to checkpoint mechanisms that are applicable to

unmodified source code, task-based programming abstractions [4,

6, 12, 19] require programmers to split the application logic in

separate tasks executing with transactional semantics.

Intermittence anomalies. Checkpoint operations save the MCU

volatile state into a NVM location. When power returns, restoring a

checkpoint allows the MCU to resume the computation from where

it stopped. However, the resulting runtime state may differ from

the one of a continuous execution. In such a scenario, we define

the runtime state as anomalous.

Resuming the computationwith an anomalous runtime statemay

lead to intermittence anomalies [11, 14, 18], consisting in unexpected

behaviors unattainable in a continuous execution. The effects of

intermittence anomalies depend on how the program interacts with

the anomalous part of the runtime state [14]. For example, in Fig. 1,

the re-execution of lines 2-4 introduces a write-after-read (WAR)

hazard [11, 14, 18]. Being 𝑎 non-volatile, the re-execution of line 2

sees the effects that line 4 produced on 𝑎 during the previous power

cycle, as if line 2 re-executes just after line 4.

Avoiding intermittence anomalies. Two classes of techniques

exist to verify the presence of intermittence anomalies [14] and

to avoid their occurence [4, 8, 11, 13, 14, 18, 19]. One class of ap-

proaches breaks the sequence of operations involved in WAR haz-

ards using a checkpoint [13, 14, 18] to avoid the operations accessing
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1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. checkpoint();
7. }

4

(a) Checkpoint

1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...

Shutdown

5. res [ i ] = ...

6. }

(i=27)

1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. }

Resumes from
first iteration 7

(b) No checkpoint

Figure 3: Preserving forward progress inside loops. Fig. (a)
shows a checkpoint placement that preserves progress across power

failures. Fig. (b) shows the effects of removing the checkpoint. After a

power failure occurs, the loop restarts all over again.

the anomalous runtime state. For example, in Fig. 1, a checkpoint

between lines 2 and 4 removes theWAR hazard and solves the anom-

aly. The second class of approaches creates multiple versions of the

involved variables [8, 11], ensuring that read and write operations

involved in the WAR hazard access different versions.

To our knowledge, no previous work considers the possibility of

taking advantage from selected intermittence anomalies.

3 INTERMITTENCE-AWARE LOOPS

We show one possible application of the concept of intermittence

awareness for mixed-volatile MCUs. We rely on specific intermit-

tence anomalies to preserve the computation across loops, reducing

checkpoint overhead. In doing so, we primarily target static check-

point mechanisms. Dynamic checkpoint mechanisms may trigger

checkpoints at any place in the code and only when it is strictly

required to do so, essentially yielding no re-executions as the device

likely immediately dies. This spares the overhead of trigger calls,

at the cost of dedicated hardware support [1, 2, 10].

3.1 Example

Existing static checkpoint mechanisms [3, 16, 18] require to possibly

save a checkpoint at the end of each loop iteration to preserve the

work done inside loops. Such a conservative choice is necessary as,

in general, erratic energy patterns may not provide guarantees on

the complete executions of multiple loop iterations.

Consider the example of Fig. 3. A power failure inside the loop

causes the device to resume from the latest checkpoint. The latter

is saved at line 2, thus the computation resumes prior to the loop,

re-executing it from scratch and wasting 28 iterations. Placing

checkpoint calls at the end of each loop iteration introduces an

overhead even if checkpoints do not actually take place, as certain

operations occur anyways when executing the call, such as probing

the energy buffers for their current energy content [3, 16].

Unlike existing techniques [3, 11, 16, 18], intermittence aware-

ness allows specific intermittence anomalies to preserve the loop

computational state across power failureswithout requiring a check-

point at each iteration. Fig. 4 shows how to apply this concept to the

example of Fig. 3. A checkpoint executes at line 2 and the loop starts

the first iteration. Variables 𝑖 and 𝑟𝑒𝑠 are non-volatile. The execu-

tion reaches line 5, which stores the result of the first iteration into

𝑟𝑒𝑠 [0]. Next, 𝑖 increments to 1, and the second iteration completes.

A power failure occurs during the third iteration. The computation

eventually resumes from the checkpoint of line 2. Being 𝑖 and 𝑟𝑒𝑠

NVM state
before 3rd

iteration

i: 2

res[0]: r0

res[1]: r1

res[2]:
...

res[N]:

1. i = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...

Shutdown

5. res [ i ] = ...

6. }

1. i = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. res [ i ] = ...

6. }
Resumes from
latest iteration

NVM state
after

restore

i: 2

res[0]: r0

res[1]: r1

res[2]: r2
...

res[N]:

4

Figure 4: Example of an intermittence-aware loop. A power

failure happens during the third iteration. When the checkpoint is

restored, the computation resumes from the beginning of the loop,

but being i and res non-volatile, they retain the value right before

the previous power cycles. Hence, the loop resumes from the third

iteration, that is, the one interrupted by the power failure.

1. int res [N];

2. int a = 0;

3. for(int i = 0; i < N; i++){
...

4. a = f(a);

5. res [ i ] = g(a);

6. }

(a) Original

1. LOOP-STATE(res[N ], int);
2. C-LOOP-STATE(a, int, 0);
3. PERSISTENT-LOOP(i, i < N) {

...
4. C-WRITE(a, i) = f(C-READ(a, i));
5. res[i] = g(C-USE(a, i));
6. }

(b) Instrumented

Figure 5: Example of LAPSUS instrumentation macros. Fig.

(a) shows the program to instrument; Fig. (b) shows the instrumented

program using LAPSUS macros.

non-volatile, they retain state at the previous power cycle: 𝑖 has a

value of 2, and 𝑟𝑒𝑠 stores the results of the previous loop iterations.

Thus, the loop starts from the third iteration, as if a checkpoint is

saved at the end of the second iteration.

These accesses represent an anomaly, as the value of 𝑖 is produced

during the previous power cycle. By allowing such an anomaly, we

obtain the same results of a checkpoint placed at the end of each

loop iteration, but without its overhead. Existing techniques for

mixed-volatile systems [11, 18] do not allow this behavior. Despite

they allow to directly allocate variables into NVM, as we do, they

enforce executions equivalent to continuous ones. Thus, they would

apply variable versioning [11] or place checkpoints [18] to ensure

that line 3 and 5 do not access the anomalous value of variable 𝑖 .

3.2 Instrumenting Loops

Loop state set.We first need to identify the variables representing

the minimum set of data we must preserve across power failures,

which we call loop state set. This includes, for example, the loop

iterator and the variables carrying loop intermediate or final results.

In the example of Fig. 3a, the loop state set includes variables 𝑖 and

𝑟𝑒𝑠 , which are the loop iterator and the results vector.

We allocate the loop state set into NVM. Variables not included

in the loop state set remain at their original memory location. They

are not necessary for resuming the computation without restarting

the loop from the beginning, and thus we do not require to preserve

them across power failures. A simple example is (volatile) variables

local to the loop body, which are recomputed at every loop iteration.

Altering the loop.We remove any checkpoint inside the loop body

and place a checkpoint before the loop statement. This ensures that

the computation resumes at the beginning of the loop when power

fails during the loop execution. Finally, we remove the initialization
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of the loop iterator from the loop statement, and we place it before

the only checkpoint remaining. This modification ensures that the

loop resumes from the latest iteration and not from the first one, as

the iterator is no longer re-initialized when resuming.

Fig. 4 shows an example. By allocating the loop state set onto

NVM and by removing any checkpoint inside the loop, we are

deliberately allowing intermittence anomalies. In a sense, we make

the loop iterator 𝑖 function as a checkpoint, as it saves onto NVM the

index 𝑖 of the last completed iteration. Once 𝑖 increments, no power

failure can lead to the re-execution of a loop iteration previous to 𝑖 .

LAPSUS. To allow the application of intermittence awareness to

loops, we design a programming abstraction called LAPSUS. We can

use LAPSUS with a broad range of static checkpoint mechanisms,

as our techniques do not rely on specific ones. LAPSUS provides

a set of macros that allow developers to instrument a program by

specifying the loop to be instrumented and its loop state set.

Fig. 5 shows an example. The original code is in Fig. 5a, whereas

Fig. 5b shows the instrumented one. First, we substitute the loop

construct with the macro PERSISTENT-LOOP, which takes two argu-
ments: the loop iterator, and the loop condition. PERSISTENT-LOOP
allocates the loop iterator into NVM and initializes it. Then, PERSI-
STENT-LOOP generates the for loop statement and places a check-

point before it. Next, we specify the loop state set, which includes

the variables 𝑟𝑒𝑠 , 𝑎, and 𝑖 . To that end, we substitute each variable

declaration with the macro LOOP-STATE, except for the loop iter-

ator 𝑖 , which LAPSUS already identifies with PERSISTENT-LOOP.
LOOP-STATE takes three arguments: the variable name, the variable

type, and the initialization value, which is optional. LOOP-STATE
allocates the variables into NVM and initializes them.

3.3 Avoiding Unwanted Anomalies

By allocating the loop state set onto NVM, we may introduce addi-

tional unwanted anomalies. Fig. 6a shows an example. Variable 𝑎 is

non-volatile, as it is included in the loop state set. Line 5 represents

a WAR hazard [11, 14, 18] that leads to an intermittence anomaly.

It first reads the value of 𝑎 from NVM, executes function 𝑓 , then

writes the result back to NVM. As no checkpoint happens between

read and write in line 5, a power failure during or after the function

call causes an unwanted intermittence anomaly.

The technique we describe next remedies this issue for scalar

variables, with additional overhead. It is not applicable for more

complex data structures, such as arrays or linked lists. Addressing

this limitation opens up interesting avenues for future work.

Versioning. To avoid placing a checkpoint inside the loop body,

we apply a versioning technique. Fig. 6b shows how to avoid the

intermittence anomaly of Fig. 6a. Variable 𝑎 becomes a vector of

two elements, each representing a version of 𝑎. At each iteration,

𝑎 write operations target a copy and 𝑎 read operations target the

other. To carry the results across loop iterations, 𝑎 read and write

versions switch after every loop iteration.

This access pattern breaks the sequence of operations involved

in the WAR hazard, as now line 5 read and write operations target

different copies of 𝑎. As such, a power failure can no longer cause

line 5 read operation to access an anomalous value, and we can

avoid the intermittence anomaly without inserting a checkpoint.

NVM

i: 0

a: ai

1. i = 0; a = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. a= f(a);
6. }

Unwanted
intermittence
anomaly 7

(a)

NVM

i: 0

a[0]: ai
a[1]: 0

1. i = 0; a[1] = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. a[i%2]= f(a[1− i%2]);
6. } Unwanted

intermittence
anomaly
avoided 4

(b)

Figure 6: Avoiding unwanted intermittence anomalies in an

intermittence-aware loop. In Fig. (a), line 5 read and write op-

erations represents a WAR hazard [11, 14, 18] on variable a. Fig. (b)
shows how to avoid the unwanted anomaly of variable a.

LAPSUS support. LAPSUS includes macros to protect variables

against unwanted intermittence anomalies. We use the example of

Fig. 5a, where variable 𝑎 exposes the same anomaly as Fig. 6a.

Being 𝑎 part of the loop state set, we substitute its declaration

at line 2 with the macro P-LOOP-STATE, where P stands for pro-

tected. P-LOOP-STATE takes the same arguments of LOOP-STATE,
but it also creates the two copies of variable 𝑎 that our technique re-

quires. Next, we make read and write operations target the correct

copy of 𝑎. To this end, LAPSUS provides three macros: P-WRITE,
P-READ, and P-USE. They take two arguments: a variable and the

loop iterator. P-READ and P-WRITE target the copy reserved for

read and write operations, respectively. For example, at line 4 of

Fig. 5a, we substitute the definition of variable 𝑎 with P-WRITE(a,
i). Similarly, we substitute P-READ(a, i) in line 4. Instead, we

use P-USE to access a value written by a previous operation in the

same iteration, as in line 5 in Fig. 5a. Fig. 5b shows the final result.

Note that we must address all protected variable accesses using the

corresponding macro, even for accesses outside the loop.

3.4 Restore Approximation

Intermittence awareness not only reduces checkpoint overhead, but

also makes resume operations more efficient, as the device restores

a lower amount of data from the checkpoint.

Nonetheless, we may further tune our technique to mitigate the

overhead when resuming. Fig. 7 shows an example. Here we inten-

tionally place the increment of the loop iterator 𝑖 at the beginning

of the loop body. Let us suppose a power failure happens during the

third loop iteration. When the computation resumes, 𝑖 increments

as first operation and the loop resumes from the fourth iteration,

jumping the iteration interrupted by the power failure.

As a result, we obtain a behavior similar to loop perforation tech-

niques [17] used in approximate computing [15], where iterations

are skipped to trade accuracy for reduced energy consumption or

execution time. Instead of considering a certain perforation rate to

decide which iteration to skip, we skip iterations every time the

device resumes after a power failure.

LAPSUS supports both the regular and the approximate ap-

proach when resuming. Programmers use macro APPROX-PERSIS-
TENT-LOOP for selecting the approximation strategy, in place of

PERSISTENT-LOOP. The two macros act similarly and take the same

arguments. They declare the loop iterator as non-volatile, initialize

it, and select the appropriate loop construct.

4 EVALUATION

We discuss our experimental setup and early results we gather to

assess feasibility and potential impact of intermittence awareness.
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NVM state
at 3rd

iteration

i: 2

sum: s1

1. i = −1;
2. checkpoint();
3. while(i < N){
4. i++;

5. ...

Shutdown

6. sum = sum + x[i];

7. }
8. mean = sum / N;

1. i = −1;
2. checkpoint();
3. while(i < N){
4. i++;

5. ...
6. sum = sum + x[i];

7. }
8. mean = sum / N;

Resumes from
latest iteration

NVM state
after

restore

i: 3

sum: s1

Skips resumed
iteration

Figure 7: An intermittence-aware loop with restore approx-

imation. At the second iteration, line 2 increments the non-volatile

loop iterator i to 2. Execution then resumes from the beginning of the

loop after a power failure, but i retains the effects produced during the
previous power cycle. Hence, the loop resumes from the third iteration,

decrease result precision for mitigating the startup overhead.

4.1 Setup

We consider theMSP430-FR5969 [9] MCU, an ultra-low powerMCU

often adopted in intermittent computing [2, 11, 12, 16, 18].

Baseline and benchmarks. We evaluate the performance of our

technique by comparing it against a generic trigger-based static

checkpoint mechanism that, akin to existing systems [3, 16], uses

NVM only for storing checkpoints. At runtime, when a checkpoint

call executes, it queries the ADC to decide whether to execute

a checkpoint. We use the default compiler configuration when

producing machine code [3, 16]. We call this approach TRIGGER.

We consider benchmarks commonly used in intermittent comput-

ing [1, 2, 8, 10, 16, 18], including Cyclic Redundancy Check (CRC)

for data integrity, Fast Fourier Transform (FFT) for signal analysis,

and the Dijkstra algorithm for finding the shortest path among

nodes in a graph. We take these benchmarks from the open-source

implementation of the MiBench2 [7] benchmark suite.

We do not quantitatively evaluate the approximate restore tech-

nique of Sec. 3.4. As with any approximation technique [15], the de-

gree of acceptable approximation is inherently application-specific

and thus an unbiased comparative evaluation is difficult.

Metrics. We focus on the main loops of each benchmark. We com-

pare the increase in i) number of executed machine-code instruc-

tions, ii) energy consumption, and iii) execution time that LAPSUS

and TRIGGER show compared to the non-instrumented program.

We calculate the increase in the number of machine-code instruc-

tions by identifying the loop body operations that differ from the

non-instrumented program, that are, FRAM accesses, operations

to protect against unwanted intermittence anomalies, trigger calls,

and actual checkpoints. We then calculate the increase in energy

consumption and execution time by considering the executed clock

cycles, the energy consumption of each clock cycle, and the energy

consumption and access latency for the ADC and FRAM usages [9].

We calculate the energy consumption per clock cycle of various

operating modes as 𝑒𝑥 =
𝑉𝑐𝑐∗𝐼𝑥
𝑓𝑚𝑐𝑢

, where 𝑉𝑐𝑐 is the operating voltage

(3𝑉 ) and 𝐼𝑥 is the current draw of the MCU under the operating

mode 𝑥 . We also consider an operating clock frequency 𝑓𝑚𝑐𝑢 of

either 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧, as FRAM accesses require one wait state at

16𝑀ℎ𝑧. Being not specified in the datasheet, we calculate the current

draw 𝐼𝑓 𝑟𝑎𝑚 of the MCU when it stores only the data segment into

FRAM as

𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖−𝐼𝑠𝑟𝑎𝑚
2

+ 𝐼𝑠𝑟𝑎𝑚 , where 𝐼𝑠𝑟𝑎𝑚 and 𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖 are

the current draws when the MCU operates respectively from SRAM

and FRAM. Note that 𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖 refers to two FRAM accesses per

clock cycle: one for instruction fetch and one for data access.

We consider trigger calls to happen at every loop iteration and

the possible checkpoint to save the minimum amount of data. This

places the baseline in the best possible conditions.

4.2 Results

Fig. 8 reports in logarithmic scale the overhead of single operations

for LAPSUS and TRIGGER compared to the non-instrumented pro-

gram across the benchmarks we consider. For TRIGGER, we report

both the costs of trigger calls and of actual checkpoints, as trigger

calls do not necessarily yield a checkpoint.

Overall, TRIGGER’s complete checkpoint operations require

on average a 48.4𝑥 more clock cycles and execution time than

LAPSUS, as illustrated in Fig. 8a and Fig. 8b. LAPSUS consumes

on average 35.2𝑥 less energy than TRIGGER complete checkpoint

operations, as Fig. 8c shows. Compared to trigger calls alone, on

average LAPSUS executes 37% fewer clock cycles and has a 37%

lower execution time, but it has a 24% higher energy consumption.

The latter are due to the cost of accessing FRAM.

The results specifically vary depending on the program structure.

In the CRC benchmark, LAPSUS has a lower energy consumption

than trigger calls alone, as Fig. 8c reports. LAPSUS instrumentation

in CRC bears very low overhead, and querying the ADC results in

higher energy consumption. Here we also notice that trigger calls

represent most of the overhead of a complete checkpoint.

This is not the case for the FFT and Dijkstra. At 8𝑀ℎ𝑧, LAP-

SUS introduces a lower number of clock cycles than trigger calls

alone, as Fig. 8a shows. Compared to the same baseline, however,

Fig. 8c reports a higher energy overhead for LAPSUS in the FFT

benchmark, as now FRAM accesses are more costly than querying

the ADC. This is is due to the additional operations to protect the

execution against unwanted intermittence anomalies, as explained

in Sec. 3.3. Increasing the clock to 16𝑀ℎ𝑧 is further detrimental

to LAPSUS performance, as now FRAM accesses require one wait

state. Notwithstanding the higher energy consumption than trigger

calls alone for FTT and Dijkstra, LAPSUS requires 99𝑥 less energy

than complete checkpoint operations, as Fig. 8c shows.

We also investigate how LAPSUS and TRIGGER energy overhead

increase with the frequency of power failures. As TRIGGER exe-

cutes a trigger call at the end of each loop iteration, the frequency of

power failures also represents the number of trigger calls convert-

ing to a checkpoint. Note that Ransford et al. [16] reports 16 power

failures during the execution of the CRC benchmark with 2𝐾𝑏 of

data to checkpoint when using RF energy sources, corresponding

to a 1.56% of trigger calls converting to a checkpoint. Being the FFT

and Dijkstra benchmarks way more complex than CRC, we expect

a higher frequency of checkpoint occurrences there.

Fig. 9 shows the results. LAPSUS performance across the board

is constant, as LAPSUS does not save any checkpoint inside loops.

In constrast, Fig. 9a shows that the energy overhead of TRIGGER

starts above the one of LAPSUS already with infrequent power

failures and slowly grows when power failures occur more often.

Consistently with the earlier discussion, Fig. 9b demonstrates that

LAPSUS energy overhead is larger than TRIGGER only with very
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(a) Clock cycles overhead

C
R
C
 8

M
hz

C
R
C
 1

6M
hz

FFT 8
M

hz

FFT 1
6M

hz

D
ijk

st
ra

 8
M

hz

D
ijk

st
ra

 1
6M

hz
100

101

102

T
im

e
 o

v
e

rh
e

a
d

 [
u

s
]

(b) Execution time overhead
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Figure 8: Overhead per loop iteration. LAPSUS on average requires 48.4x less clock cycles than TRIGGER complete checkpoint operations,

lowering the execution time by 48.4x and the energy consumption by 35.2x. Trigger calls alone in TRIGGER require on average a 37% higher
number of clock cycles and execution time. However, LAPSUS FRAM accesses cause a 24% higher energy consumption than trigger calls.
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(b) FFT benchmark
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(c) Dijkstra benchmark

Figure 9: Energy overhead during complete executions, against a certain rate of power failures. LAPSUS overhead is constant,

whereas TRIGGER overhead increases with more frequent power failures, especially where checkpoints save a significant amount of data. LAPSUS

overhead is lower than TRIGGER, except for cases with a scarce frequency of power failures.

Benchmark LAPSUS per loop iteration TRIGGER per checkpoint

CRC 14 5

FFT 33,5 264

Dijkstra 25 605

Figure 10: Average NVM accesses. Despite TRIGGER requires

fewer NVM accesses than LAPSUS for the CRC benchmark at each

checkpoint, the latter ultimately yields lower energy overhead, as

shown in Fig. 10, because of the energy cost of trigger calls.

rare power failures. As the latter happen more frequently, LAPSUS

becomes most efficient. A similar observation applies to Fig. 9c.

While the energy overhead of LAPSUS is only due to NVM ac-

cesses to handle the loop state set, that of TRIGGER comes from

a combination of NVM accesses for checkpointing and trigger

calls. Fig. 10 reports statistics on NVM accesses for either solution.

For LAPSUS, the NVM accesses are an average per loop iteration,

whereas for TRIGGER they are required for each checkpoint. Inter-

estingly, NVM accesses for TRIGGER with the CRC benchmark are

lower than those for LAPSUS at every loop iteration. We conclude

that the better performance of LAPSUS compared to TRIGGER in

Fig. 9a is due to the overhead of trigger calls that do not yield a

checkpoint. The opposite situation holds for the other benchmarks,

even though the two figures are not directly comparable as LAP-

SUS incurs in the given number of NVM accesses at every iteration,

whereas TRIGGER pays the overhead only when checkpointing.

5 CONCLUSION

Intermittence awareness allows the occurrence of specific anom-

alies to gain new information regarding intermittence, unlocking

new design patterns. Developers exploit intermittence awareness

to make their program react to intermittence, altering the program

control flow and/or data flow accordingly. We make this concept

concrete with an instrumentation technique that uses intermittence

awareness to reduce checkpoints overhead inside loops. Our tech-

nique preserves the loop computational state across power failures,

without requiring to save a checkpoint after each iteration. The

LAPSUS programming abstraction facilitates developers in apply-

ing our technique to loops. We compare LAPSUS against existing

trigger-based checkpoint mechanisms. Across the benchmarks we

test, on average LAPSUS lowers the energy overhead of existing

checkpoint mechanism by 35.2𝑥 and reduces the execution time by

48.4𝑥 , demonstrating the impact of intermittence awareness.

Our technique has limitations, such as handling non-idempotent

accesses to complex data structures. It also introduces some non-

determinism that may complicate testing, as program execution

becomes dependent on energy patterns. As we plant the seed for

intermittence awareness, we also seek to address these issues.
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