Using Logical Neighborhoods
to Enable Scoping in Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco (Advisor)
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
{mottola,picco}@elet.polimi.it

ABSTRACT

Wireless Sensor Networks (WSNs) are now enabling applicati
whose objective is not just to monitor the environment, daba
to perform actions on it so as to implement complex controp&
Unlike early WSN projects where the application tasks weaig
relegated to the fringes of the network, e.g., to a powerdisibsta-
tion, in sensing and acting scenarios the applicationligeice is
brought in the network, and distributed among the nodeslli¢se
applications are often composed of many collaboratingtasks,
each involving only a subset of the nodes in the system. Threre
the programmers must worry about how to identify these gabse
and address them, before concentrating on the applicatafs.g
This results in additional programming effort and more ctaxp
code, affecting the reliability of the resulting applicati

In this work, we propose a programming abstraction cdlieg
ical Neighborhood, whose goal is to raise the level of abstraction
from the physical neighborhood of a node to a logical notibn o
proximity. The programmers can specify the nodes part ofjz#d
neighborhood using a declarative language we deviseddhmse
application-defined attributes of the nodes. To addressdmbers
of a logical neighborhood, our framework provides a geneoat-
munication API, supported by a dedicated routing schemee He
we present the logical neighborhood abstraction, illtstoar ded-
icated routing solution briefly reporting on some perforoene-
sults, and point at current and future investigations basethe
logical neighborhood abstraction.

Categories and Subject Descriptors. C.2.2 [Network Protocols]:
Routing protocols; D.2.11 [Software Architectures]: Laages

1. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly emplayed

a variety of settings to gather data from the physical wddabitat
monitoring [15], one of the most popular applications, isqolig-
matic in this respect. In that case, the system architeteatares a
single base station collecting data from a high numbehahoge-
neous nodes. Conversely, researchers are now investigatingsthe u
of WSNs to implement decentralized control loops that relylata
sensed to decide orections to be performed. In these settings, the

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MDS06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-418-9/06/11%5.00.

applications often rely otocalized interactions [6], therefore, each
node may act as a base stations for a small portion of nearby de
vices. Moreoverheterogeneous nodes are deployed to provide var-
ious sensing and acting capabilities [1]. Applicationsgeufrom
localization facilities to control systems in tunnels oflthimgs, in-
teractive museums and home automation [19].

New challenges are brought by these application scenalries.
deed, while in early WSN deployments the application goaisew
mainly realized by a single task performed across the whete n
work (typically, sensing and reporting environmental Jlasens-
ing and acting applications are usually composed of marialzol
orating tasks, each affecting only a given part of the systBor
instance, a system deployed to perform control and monar a
building needs to perform at least three main tasks, i.icttral
monitoring, in-door environment monitoring, and respotsex-
treme events such as fire or earthquakes [5]. To realize tter la
functionality, actuator nodes controlling water sprimkl@eed to
monitor nearby temperature sensors and take the appm®pdan-
termeasures where and when needed. In these settings vidle de
oper must worry not only about the implementation of the iappl
cation logic, but also about which subset of the system shbal
involved and how to reach it. As no dedicated programming con
structs and mechanisms exist for the latter task, the resaldi-
tional programming effort, increased complexity and, isaire of
well-established and reusable solutions, less relialide.co

Our research addressed these issues by introducing tlo robti
logical neighborhood [16, 17], illustrated in Section 2. This pro-
vides an abstraction that replaces the conventional nofiphysi-
cal neighborhood—i.e., the set of nodes within the commatitn
range of a given device—with a logical notion of proximity-de
termined by applicative information. Logical neighborkecare
specified declaratively using thee®EY language we designed,
conceived to be a simple extension to existing WSN progrargmi
languages (e.g., nesC [8] in the case of TinyOS [10]). Thgnarm-
mers can address the members of a logical neighborhood ty asi
simple message passing API, which replaces broadcast pinise
ical neighbors. This enables a form of logical broadcastre/tize
receivers are the nodes satisfying the neighborhood spetoifin,
instead of the nodes within communication range.

The aforementioned communication APl is supported by alnove
routing mechanism, described in Section 3. This is expyedssi
vised in support of logical neighborhoods, and takes intmant
node heterogeneity explicitly. Our performance evaluasbows
that it efficiently supports logical neighborhoods, therefdemon-
strating the feasibility of our approach. Our abstractiod &Pl
can also foster a fresh look at existing programming modgieb
placing the conventional physical broadcast with our labimtion
of proximity. At the same time, logical neighborhoods caalda



node tenpl ate Sensor
static Function
static Type
dynami ¢ BatteryPower
dynam ¢ Readi ng

create node ts from Sensor
Function as "sensor"
Type as "tenperature”
Readi ng as get TenpReadi ng()
Batt eryPower as getBatteryPower ()

Figure 1: $1DEY: sample node definition and instantiation.

nei ghbor hood tenpl ate H ghTenpSensors(threshol d)
with Function = "sensor" and
Type = "tenperature" and
Readi ng > threshol d

create nei ghborhood htsnl100
from H ghTenpSensor s(threshol d:
max hops 2
credits 30

100)

Figure 2: $IDEY: sample neighborhood definition and instantiation,
t hr eshol d is a parameter bound at instantiation time.

novel programming abstractions based on the scoping mischan
they provide. These opportunities are illustrated in $ecii.

The actual usefulness of the logical neighborhood absgtract
will be ultimately dictated by its effective use in realdifWVSN
applications. To this end, we intend to evaluate the adgasta
brought by our abstraction by developing an extensive setlof
evant applications on top of logical neighborhoods. Fa thsk to
be effective, we also need to support our routing mechanigin w
an analytical model, so as to give the developers the akhilifine-
tune our framework depending on their needs. Section 5 skssu
these future research goals.

Finally, in Section 6 we highlight how theP®>EY language used
to define logical neighborhood is more expressive than iagist
frameworks, and how our abstraction is inherently more Iflexi
and general than existing proposals in the field.

2. ABSTRACTION

The logical neighborhood abstraction revolves around omty
concepts: nodes and neighborhoods, both specified using the
SPIDEY language [17]. Nodes represent the portion of a real node’s
state and characteristics made available to the definifianylog-
ical neighborhood. The definition of such a (logical) noders
coded in anode template, which specifies a node’s exported at-
tributes. This template is then used to derive actual inssuof
(logical) nodes, by specifying the actual source of datgufe 1
reports a fragment of SDEY code that defines a template for a
generic sensor. The attributes in a node template cest bei c
or dynam c. The former represent information assumed not to
vary in time, e.g., the type of measurement a sensor nodédev
Instead, dynamic attributes represent information thatdfinition
changes with time, e.g., the current sensor reading. Inr€iguthe
template is then instantiated by binding attributes to tams/alues
or functions of the target language, obtaining one (logicate.

A logical neighborhood can be defined based on arbitraryipred
cates on node templates. As already illustrated for nodesigh-
borhood is first defined in a template, which basically ensdtie
corresponding membership function, and then instantiayexbec-
ifying where and how the neighborhood is to be constructed and
maintained. For instance, Figure 2 illustrates the defininf a
neighborhood template involving temperature sensors &/hesd-

Figure 3: A pictorial representation of the example in Feg@r The black
node specifies thiogical neighborhood, and itphysical neighborhood is
denoted by the dashed circle. The dark nodes satisfy thalm&igood tem-
plateHi ghTenpSensor s when the threshold is set to 100. However,
the nodes included in the neighborhood instanten100 are only those
lying within 2 hops from the black node, as specified withhio@s clause.

ing is above a given threshdld The template is then instantiated
so that it evaluates the corresponding predicates only dasithat

are at most of 2 hops away from the node defining the neighbor-
hood, and by spending a maximum of 30 “credits”. Figure 3 show
a pictorial representation of the example.

In particular, thecr edi t s construct is an application-defined
measure o€ommunication cost, explicitly defined by supplying at
each node aending cost function through a particular &DEY con-
struct. This describes the cost a node incurs in sendingaabast
message to the physical neighbors, thus naturally takitman-
count the heterogeneity of the nodes in the system. Forriosta
one can define higher cost for battery-powered sensors aat lo
costs for resource-rich nodes. The “credits” attached tmg&cél
neighborhood are then evaluated as the sum of the senditg cos
each node involved in routing messages for that neighbarlmo
curs in. Therefore, the construct exposes the trade-offdr ac-
curacy and resource consumption up to the application.

Notice howcr edi t s andhops represent different informa-
tion. The former constrain the span of a neighborhood depgnd
on the amount of resources the developers is willing to sgend
reach the neighborhood members. Hence, neighborhoodiirsta
ated with a high number of credits have a broader coverageeof t
system, at the price of higher resource consumption. Cealxer
the hops construct limits a logical neighborhood depending on
the shape of the network topology, regardless of the ressuen-
sumed. Combining the two provides even greater flexibility.

More advanced features of the ®EY language allow, in a given
neighborhood template, for expressions composed of tred heo-
lean operatoraind, or andnot . Moreover, different neighbor-
hood templates can be combined using usual set operatiohsisu
i ntersection,uni on,andm nus, and can also be defined as
a subset of another, already defined, neighborhood template

Communication in a logical neighborhood is made available t
the programmer by redefining the usual broadcast facilitypdr-
ticular, we change the signature of the send operation to be

send( Message m Nei ghbor hood n)

thus making it dependent on the (logical) neighborhood taclwvh
the message is addressed. To implement communication gra lo
ical neighborhood, we need a routing mechanism able toeteliv
messages to neighborhood members efficiently. In the netibse
we illustrate how we addressed this issue.

3. ROUTING

The logical neighborhood abstraction is essentially ietelent
of the underlying routing layer. Nevertheless, its chaastics

In case a neighborhood template defines a predicate over an at
tribute not defined in a node template, the whole neighbathoo
template evaluates to false.



>l ' J—— bossip F"ropagatibn P=0.75
T Spidey Routing

0.8

0.6 -

Delivery ratio

04 r

0.2

0 I I I I I I I
50 100 150 200 250 300 350

Network Size

(a) Message delivery against network size.

400

—+— Gossip Propagation P=0.75

------ Spidey Routing

- Spidey Routing (excluding state space messages)
g Minimum Spanning Tree

100

80 [

60

40 +

Overhead (thousands of messages)

20 b ) -

100 150 200

Network Size

(b) Network overhead against network size.

250 300 350 400

Figure 4: Evaluation against gossip and ideal multicasigatbe minimum spanning tree.

cannot be easily accommodated by existing routing appesaich
WSNSs. Indeed, these usually focus on how to collect effigrent
data from many sensors to a single node. In our approach the pe
spective is reversed: we must efficiently transmit an apfibo
message from a single node to those matching the neighbirhoo
predicate. Moreover, logical neighborhoods are a scopiagha-
nism, and therefore can be used in conjunction with seveeahm
anisms other than data collection, as we will discuss iniGeet.
Finally, credit management is a distinctive feature of qusraach
that would anyway require appropriate integration. Fos¢heea-
sons, we designed a dedicated routing strategy suppohegh-
straction. Due to space limitations we can only sketch itebr
here. A more detailed description is available in [16].

Our approach to routing istructure-less (i.e., it does not ex-
ploit overlays), is based on the notion lotal search, and relies
on two core mechanisms. The first mechanism builds a disédbu
state space by periodically propagating node profiles, i.e., the list
of node attributes and their values. In doing this, each rsboles
the cost (in credits) to reach a device whose profile contains
specific (attribute,valug pair. This cost is evaluated in terms of
the aforementioned node sending cost, by accumulatingatre-c
sponding amount of credits along the path to that device.eNev
theless, the propagation of node profiles is constrainebateach
node has enough information to reach only the node assddiate
the “cheapest” path, determined by looking at the creditdad
to reach it. Therefore, the spreading of node informatiom loa
limited to small portions of the system, thus scaling better

Routing Performance. We implemented our solution in
TinyOS [10] and evaluated its performance using the TOSSI [
simulator. Our deployment scenario is a grid where each nade
communicate with its four neighbdts This choice simplifies the
interpretation of the results by removing the bias inducedih-
structured scenarios, and also models well some of thagstive
target, e.g., indoor WSN deployments [20]. Each simulatiom
lasted 1000 s—a value above which we verified all the measures
exhibit a variance less tharys.

A single logical neighborhood was defined with a sender gener
ating one message per second, and having 10% of the nodes in th
system as neighborhood members. The node sending cost mas co
stant and identical throughout the system. Credits weigrsess by
slightly overestimating the cost to reach a node in the systieng
the shortest path, and weighing this value by the probghifithe
node being a receiver. As already mentioned, the definitfom o
model supporting fine-tuning of credit assignment is our adm
ate research goal, and will be discussed in Section 5.

Figure 4 illustrates some of our simulation results, otediby
comparing our solution against a gossip scheme with thediaw
ing probability set to 0.75. Figure 4(a) shows that the peiame
of delivered messages is consistently higher than in goasip is
significantly less sensitive to an increase of the netwar. shs for
network overhead, (i.e., the number of messages exchangee a
MAC layer), Figure 4(b) evidences how we generate almodt hal
of the overhead of gossip, and yet deliver significantly nmoes-
sages. In this respect, we provide additional insights loywaig

The second mechanism enables messages to smartly “ndvigate our protocol performance with and without the messagesatked

the state space. Messages addressed to a logical neighdartio-
tain the neighborhood template, and the correspondingtsraad
number of hops specified when instantiating the neighbathdbe
credits are “spent” while navigating the state space. Eaefsage

is always sent along at leastdacreasing path, i.e., a path where
the cost needed to reaclattribute,valug pair matching the neigh-
borhood template is decreasing. Whenever such a path isl faun
credit reservation mechanism, exploiting the state space informa-
tion, reserves enough credits to reach the node at the ertkof t
decreasing path. The remaining credits are used to routedise
sage alongxploring paths, i.e., directions where the cost to reach
a matching node is non-decreasing. This is done to avoid loca
minima in the state space, and to find further decreasingtiires
towards different neighborhood members. In [16], we euvaldia
this routing scheme, proving how it performs well with resp®

a pure gossip mechanism. An excerpt of our simulation ressilt
presented next.

to build the state space, and by comparing against the ideeir|
bound provided by the minimum spanning tree rooted at thdesen
(computed with a global knowledge of network topology). Tlap
between gossip and our solution is even more evident noticmun
the cost to build the state space. This highlights how effidethe
pure routing mechanism, once the routing information islace.
This is particularly significant, as the construction of stete space
is a fixed cost that is paid once and for all. In other wordsjragld
another sender—regardless of the neighborhood it addresimes
not increment the overhead due to state space generation.

4. BUILDING OVER
LOGICAL NEIGHBORHOODS

Logical neighborhoods are independent of what is running on
top. Our current research is exploring how to couple logiedgh-

2\We used the TinyOS'ossyBui | der to generate topology files
with transmission error probabilities taken from real besis.



data events commands

Sm, 7 .

e 9o
2 ,777\@1"
7 . e
’ s

,,,,,,,

Figure 5: The flow of information between real devices andugir sen-
sors or actuators. Nodes belonging to the same logical bergbod are
identified with the same dashed lines.

create node vts from Sensor
Function as "virtual Sensor",
Type as "tenperature”,
Readi ng as aver age(rooniTenpSensors) every 30

fl oat average(Nei ghborhood:
sum = 0; counter = 0;
for(node in nhood) {sum += node. Readi ng;
return suni counter;

nhood) {

count er ++; }

Figure 6: Sample definition of a virtual sensor reporting #verage of
the temperature readings in a neighborhoodoniTenpSensor is the
identifier of the previously instantiated neighborhoodairer age() , we
use an abstract construah, that our $1DEY translator maps to constructs
of the target language.

node tenpl ate Actuator
static attribute Function
static attribute Type
operation Activate(int regulation)
operation Deactivate()

create node ws from Actuator
Function as "actuator"
Type as "water Sprinkler"”
Deactivate() as regul at eSpri nkl er Fl ow 0)
Activate(int regul ation)
as regul at eSpri nkl er Fl ow( r egul ati on)

nei ghbor hood tenpl ate RoonSpri nkl ers()
w th Function = "actuator" and
Type = "water Sprinkler" and
provi des(Activate(int regulation) and
provi des(Deactivate())

Figure 7: A neighborhood containing water sprinklers tlaat be activated
or deactivated.

borhoods with higher-level programming models and appboa.
In this section, we report on three such efforts.

Virtual Nodes. In the sensing and acting scenarios we introduced
in Section 1, logical neighborhoods provide the ability &fide
subset of nodes and interact with them. However, the data col
lection required to implement the sensing tasks, and thelalis
tion of commands to actuator nodes to affect the environraent
still on the programmers’ shoulders. This issue can be féged
enablingvirtual nodes, acting either asirtual sensors or virtual

actuators [3]. The former enables data sensed at nodes part of a

neighborhood to be processed according to an applicatioviged
aggregation function, and then perceived as the readirasiafjle,
virtual device. Conversely, the latter allow to operate teptally
sparse set of actuator nodes from a single entry point, thydify-
ing the application code. These concepts are graphichistiated
in Figure 5.

To define virtual sensors, one simply instantiates a logiode
binding one or more attributes to an aggregation functidmta
a neighborhood instance as parameter, as in Figure 6. When th
happens, the BDEY translator generates a programming entity
(e.g., anesC component and corresponding interface iregeaf
TinyOS), that can be used to access the state of the virtnabse
Conversely, Figure 7 illustrates how virtual actuatorssarabled by
defining logical nodes not only in terms of exported attrédsytut
also by specifying the operations they offer. A furtperovi des
construct is made available for the definition of logicalgtsor-
hoods. This can be used to predicate on exported operatsns,
exemplified in Figure 7. Similarly to virtual sensors, owISEY
translator generates a programming entity used to coeadét of
actuator nodes belonging to the neighborhood. Once created
tual sensors and actuators can be addressed like any otteeand
hence be part of further logical neighborhoods. This allows to
recur the process arbitrarily, creating hierarchies dirairnodes.

Virtual actuators are readily implemented on top of the irgut
facility we described in Section 3: only a suitable encodifgper-
ations and their parameters (if any) is needed. Converselgral
optimizations may be possible to implement virtual sendmsed
either on the fact that multiple virtual sensors are likelyrsist on
the same neighborhood, or depending on the mathematicel cha
acteristics of the aggregation function at hand. Currently are
investigating dedicated routing mechanisms to impleménttial
sensor efficiently. Early results appear in [3].

Context-aware Tuple Spaces. Tuple spaces are a programming
abstraction offering communication and coordination debed in
time and space [9]. As such, they are particularly amenabtiyt
namic environments characterized by changing topolodief],
a tuple space is used to share data sensed by WSN devices among
mobile units. The scenario is that of anmersive WSN: a field of
possibly heterogeneous devices is spread in a geograpegiah,
and mobile users roam around communicating with these egvic
through 1-hop, physical broadcast. The tuple space doespaot
the WSN devices. Instead, these are seen as simple dat@asourc
and used to infer theontext surrounding the mobile user.
However, 1-hop communication is still a limitation. Logdica
neighborhoods can be used to give the users the ability teftoed
the shape of the “cloud” surrounding them, i.e., the set ofads
their context is derived from, and do that regardless of thesizal
distance from the mobile unit. The concept is illustratedrig-
ure 8. For instance, a user might be willing to adapt the bieha¥
the application running on her mobile device depending opt-
ature readings within some geographical scope, whereaféea- di
ent user might be willing to modify her application’s useteiriace
based on the actuators nearby. Our framework is able tog®ovi
this despite user mobility, as the routing scheme we destrib

- 3 | | |
1
G Xy < = __
FERS Pl PAdEnlN
= \ \ P g 1
'@v & - @y |
5 I B Rahae N —~ ]
=y g - "“ AN 1]
. - /
‘f"""“\ \‘ WA r!-.-!, ! N 'I
s Sy, &)
= —— Y
'I" '--_.\\.— R ’:' . &
A1 \ S .
: ¢ . - e -
. w SO R gl -
.-_—'

Figure 8: Tuple spaces-based data sharing using logicghbefhoods:
the 1-hop physical broadcast determining the context ofilmalsers is
replaced with arbitrarily shaped logical neighborhoods.



node tenpl ate Sensor
static Function
static Type
dynam ¢ Routi ngConponent
dynam ¢ Routi ngConponent Ver si on

create node sn from GenericDevice
Function as "sensor"
Type as "tenperature”
Rout i ngConponent as get Routi ngNane();
Rout i ngConponent Ver si on as get Routi ngVersion();

Figure 9: $IDEY: defining attributes to export information on the node
software configuration.

nei ghbor hood tenpl ate Obsol et eRouti ng( nane, version)

with Function = "sensor" and
Type = "tenperature" and
Rout i ngConponent = nane and

Rout i ngConponent Ver si on < version

creat e nei ghbor hood updat eDD
from Qosol et eRouti ng("DirectedDiffusion", 3.0)

Figure 10: $1DEY: definition of a neighborhood to update the Directed-
Diffusion routing component where the version is less thén 3

Section 3 works regardless of a possible moving senderethde
the node defining the neighborhood is the only moving device,
can just broadcast the message, and let the remaining (fieelds
route the message according to the state space informatioch
are instead stored on stationary nodes only.

Software Updates. Software update in WSNs is known to be a
challenging task, and existing proposals (e.g., [13]) ip@stdress
homogeneous scenarios where a software update must beadirec
to all nodes in the system. In heterogeneous scenariosaihsthe
problem of software update becomes more difficult: the nodes
different software configurations based on their hardwhee ac-
teristics and the tasks they are supposed to accomplish.

Logical neighborhoods can be exploited to address thisissu
Simply, one could define node templates that export at&ide-
scribing the software components running on a node, as &g
This way, logical neighborhoods can be defined by predigatim
the software configuration of the system. For instance,gaie 10
we define a neighborhood including only the nodes in the syste
currently running a specific routing component whose versso
less than a given value. At that point, directing a piece afeco
to all the nodes actually needing a particular software tgpdaas
simple as sending a (logical) broadcast message addresseat t
neighborhood. Note how using logical neighborhoods fotvemfe
updates naturally solves both the problem of addressingubset
of nodes needing the update itself, and the problem of Higirig
the code across multiple hops efficiently.

5. RESEARCH AGENDA

Our research agenda comprises a natural extension of the re
search activity described in Section 4, as well as furthezstiga-
tions in closely related directions. We here sketch the rtagiics
we intend to investigate.

Augmenting the Language. A need we recognized while working
with logical neighborhoods is the ability to condition theldng-

ing of a nodeA to a given neighborhood based on the belonging
of a different nodeB to the same neighborhood. For instance, this
might be required to define neighborhoods with peculiar lmgpo

ical properties such as Yao graphs [14]. The current versfon
SPIDEY cannot capture this requirement, as the neighborhood tem-
plate is evaluated independently on each node. Therefereged

to enrich the 8IDEY language, so as to enable more complex node
selection mechanism, and modify the underlying routingesoh
accordingly. For this reason, we plan to evaluate the todfein-
volved at the network level in simulation studies, so as teeta
quick way of evaluating different design choices.

Evaluating the Abstraction. We want to verify the claim that ap-
plications written on top of logical neighborhoods resnltieaner
and more simple code, and thus yield more reliable systerns. T
evaluate this, we need to study the advantages brought fardhe
grammer by our abstraction not only qualitatively, but ajsanti-
tatively. For instance, we need to assess the benefits provided by
our abstraction in terms of lines of code, inter-componegeh-
dencies, and complexity of the resulting application. Tis #nd,

we intend to consider existing and publicly available agatibns,

try to re-implement them on top of our abstraction, and campa
the two versions. In doing this, we will need to define fair rioast

to be applied on the original code and on the one we will dgxelo

Routing. Our credits reservation mechanism already provides some
management of available resources through the use of rétbv-
ever, we intend to push further our current routing solytexplor-
ing the possibility of having an adaptive mechanism thagebdzon
a notion of reinforcement along a path, directs the credasi@ble
in a message towards zones of the system still unexploreis Th
may enable a more careful exploration of the state space,dhwu
taining savings in network overhead. To this end, we planirse
extensive simulations studies in various network scesario

Our routing scheme still lacks an extensive evaluation &hde-
ployments scenarios. To this end, the users of our frameneekl
supporting tools to customize its behavior, and explorertue-off
between system coverage and resource consumption. lowarfi
they need a way to evaluate the credits to be assigned toalogi
neighborhood, based on the desired quality of service. Atyan
ical model of our routing solution can be used for this pugpds
developing this, we intend to borrow from the large body t&frk-
ture available in the field of network theory and random gsd2h

6. RELATED WORK

The work closer to our is the neighborhood abstraction desdr
in [22], where each node has access to a local cache of adtsibu
provided by (physical) neighbors. Data collection is binitb the
constructs, therefore, communication flows only accorttrayma-
ny-to-one paradigm. The implementation considers onlyof-h
neighbors and is based on broadcasting all attributes aedrfg
on the receiver side. Our framework is more flexible as it jgles
a general application-defined neighborhood abstractiecoupled
from the application functionality. Therefore, it can besdsor
purposes other than data collection, as described in ®ettio

The work on Abstract Regions [21], instead, proposes a model
where (key,value) pairs are shared among nodes iregion. The
‘span of a region is based mainly on physical characterisfitise
network (e.g., physical or hop-count distance betweenmsehsand
its definition requires a dedicated implementation. Therefeach
region is somehow separated from others, and regions cdenot
combined. This results in a lower degree of orthogonalitthwi
respect to our approach. The conceptwifing interface provides
access to a region’s implementation, enabling the tweaddihgw-
level parameters (e.g., the number of retransmissionsedn, our
approach provides a higher-level, user-defined notion sf titat
can be used to control resource consumption.

SpatialViews [18] is a programming language for mobile ad-h
networks whereirtual networksare defined depending on the node
physical location and provided services. Computationsgithuted



across nodes in a virtual network by migrating code from rinde
node. Common to our work is the notion of scoping virtual net-
works provides. However, SpatialViews targets devicesimmore
capable than ours, and focuses on migrating computatioeadof
supporting an enhanced communication facility as we do.

Finally, in [7], the authors propose a language and algmsth
supporting generic role assignment in WSNs. Their apprasadh
a sense, dual to ours. Their approacipose certain characteristics
(roles) on nodes in the system so that some specified recgritsm
are met, while in our approach the notion of logical neighiood
selects nodes in the system based on their characteristics.

In our routing scheme, we were influenced by Directed Ditiasi
[11] in setting up routes towards potential neighborhoodniners.
However, an important difference is that our profile adgertients
do not propagate to the whole network, unlike interests re®@ed
Diffusion. Moreover, we do not assume data collection asrthis
functionality, and therefore we cannot rely on any knowkedgout
message content, required in Directed Diffusion for inbéapon
along failing paths. Finally, routing in Directed Diffusids entirely
determined by gradients, while we make the system moreaesil
to changes by allowing exploratory steps, whose use is timless
under the control of the programmer through the credit meisha

7. CONCLUSIONS

In this paper, we illustrated our current and future redearc
logical neighborhoods, a programming abstraction engldimo-
tion of scoping in WSNs. Our communication API, supported by
an efficient routing scheme, extends communication in tlysiphl
neighborhood to a logical level, where the programmersi§pine
neighbors of a node using the®EY language we devised.

We pointed out the topics of our current research, gearedrtisv
coupling applications, existing communication models] aovel
programming abstractions with logical neighborhoods. édoer,
we intend to support the users of our abstraction with slatadols
to explore the trade-offs involved, and perform extensixaieation
of our solutions in simulation as well as in real deployments

8. REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor andac
networks: Research challengésl Hoc Networks Journal,
2(4):351-367, 2004.

[2] B. Bollobas.Random Graphs. Academic Press, Harcourt
Brace Jovanovich, 1985.

[3] P. Ciciriello, L. Mottola, and G. P. Picco. Building Viral
Sensors and Actuator over Logical Neighborhood$2rioc.
of the 1% ACM Int. Wkshp. on Middleware for Sensor
Networks (MidSens - colocated with ACM/USENIX
Middleware), 2006.

[4] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy
and G.P. Picco. iINY LIME: Bridging Mobile and Sensor
Networks through Middleware. IBroc. of the 37¢ |EEE Int.
Conf. on Pervasive Computing and Communications
(PerCom 2005), pages 61-72, 2005.

[5] M. Dermibas. Wireless sensor networks for monitoring of
large public buildings, 2005. Tech. Report, University of
Buffalo. Available atwwv. cse. buf f al o. edu/
tech-reports/2005- 26. pdf.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: scalable coordination in sensor
networks. InProc. of the 5 Int. Conf. on Mobile computing
and networking (MobiCom), 1999.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Frank and K. Romer. Algorithms for generic role
assignment in wireless sensor networksPinc. of the 37
ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2005.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systemsRiroc. of the ACM

S GPLAN Conf. on Programming Language Design and
Implementation (PLDI’ 03), pages 1-11, 2003.

D. Gelernter. Generative communication in Lind&M
Computing Surveys, 7(1):80-112, 1985.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked
sensors. IMSPLOSIX: Proc. of the 9™ Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 93-104, 2000.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heideman
and F. Silva. Directed diffusion for wireless sensor
networking.|EEE Trans. Networking, 11(1):2-16, 2003.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: acdera
and scalable simulation of entire TinyOS applications. In
Proc. of the 5 Symp. on Operating Systems Design and
Implementation (OSDI), pages 131-146, 2002.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networksPiac. of the 15¢
Symp. on Network Systems Design and Implementation
(NSDI104), 2004.

X. Y. Li, P. J. Wang, Y. Wang, and O. Frieder. Sparse power
efficient topology for wireless networks. Proc. of the 35"
Annual Hawaii Int. Conf. on System Sciences, 2002.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat
monitoring. InProc. of the 15 ACM Int. Wkshp. on Wireless
sensor networks and applications, pages 88-97, 2002.

L. Mottola and G. P. Picco. Logical Neighborhoods: A
programming abstraction for wireless sensor networks. In
Proc. of the the 2°¢ Int. Conf. on Distributed Computing on
Sensor Systems (DCOSS), 2006.

L. Mottola and G. P. Picco. Programming wireless sensor
networks with logical neighborhoods. Rroc. of the the 1°¢
Int. Conf. on Integrated Internet Ad hoc and Sensor

Networks (Inter Sense), 2006.

Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming
ad-hoc networks of mobile and resource-constrained dgvice
In Proc. of the ACM S GPLAN Conf. on Programming
language design and implementation, pages 249-260, 2005.
E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and

V. Groza. Sensor-based information applian¢EEE
Instrumentation and Measurement Mag., 3:31-35, 2000.

R. Stoleru and J.A. Stankovic. Probability grid: A |tice
estimation scheme for wireless sensor network&rbe. of
the 1 Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON), 2004.

M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. Proc. of 15 Symp. on Networked
Systems Design and Implementation (NSDI), 2004.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hoad:
neighborhood abstraction for sensor network®Haoc. of the
274 |nt. Conf. on Mobile systems, applications, and services
(MobhiSys), 2004.



