
Using Logical Neighborhoods
to Enable Scoping in Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco (Advisor)
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{mottola,picco}@elet.polimi.it

ABSTRACT
Wireless Sensor Networks (WSNs) are now enabling applications
whose objective is not just to monitor the environment, but also
to perform actions on it so as to implement complex control loops.
Unlike early WSN projects where the application tasks were mainly
relegated to the fringes of the network, e.g., to a powerful base sta-
tion, in sensing and acting scenarios the application intelligence is
brought in the network, and distributed among the nodes [1].These
applications are often composed of many collaborating sub-tasks,
each involving only a subset of the nodes in the system. Therefore,
the programmers must worry about how to identify these subsets
and address them, before concentrating on the application goals.
This results in additional programming effort and more complex
code, affecting the reliability of the resulting application.

In this work, we propose a programming abstraction calledLog-
ical Neighborhood, whose goal is to raise the level of abstraction
from the physical neighborhood of a node to a logical notion of
proximity. The programmers can specify the nodes part of a logical
neighborhood using a declarative language we devised, based on
application-defined attributes of the nodes. To address themembers
of a logical neighborhood, our framework provides a generalcom-
munication API, supported by a dedicated routing scheme. Here,
we present the logical neighborhood abstraction, illustrate our ded-
icated routing solution briefly reporting on some performance re-
sults, and point at current and future investigations basedon the
logical neighborhood abstraction.

Categories and Subject Descriptors: C.2.2 [Network Protocols]:
Routing protocols; D.2.11 [Software Architectures]: Languages

1. INTRODUCTION
Wireless sensor networks (WSNs) are increasingly employedin

a variety of settings to gather data from the physical world.Habitat
monitoring [15], one of the most popular applications, is paradig-
matic in this respect. In that case, the system architecturefeatures a
single base station collecting data from a high number ofhomoge-
neous nodes. Conversely, researchers are now investigating the use
of WSNs to implement decentralized control loops that rely on data
sensed to decide onactions to be performed. In these settings, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDS06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-418-9/06/11 ...$5.00.

applications often rely onlocalized interactions [6], therefore, each
node may act as a base stations for a small portion of nearby de-
vices. Moreover,heterogeneous nodes are deployed to provide var-
ious sensing and acting capabilities [1]. Applications range from
localization facilities to control systems in tunnels or buildings, in-
teractive museums and home automation [19].

New challenges are brought by these application scenarios.In-
deed, while in early WSN deployments the application goals were
mainly realized by a single task performed across the whole net-
work (typically, sensing and reporting environmental data), sens-
ing and acting applications are usually composed of many collab-
orating tasks, each affecting only a given part of the system. For
instance, a system deployed to perform control and monitoring in a
building needs to perform at least three main tasks, i.e., structural
monitoring, in-door environment monitoring, and responseto ex-
treme events such as fire or earthquakes [5]. To realize the latter
functionality, actuator nodes controlling water sprinklers need to
monitor nearby temperature sensors and take the appropriate coun-
termeasures where and when needed. In these settings, the devel-
oper must worry not only about the implementation of the appli-
cation logic, but also about which subset of the system should be
involved and how to reach it. As no dedicated programming con-
structs and mechanisms exist for the latter task, the resultis addi-
tional programming effort, increased complexity and, in absence of
well-established and reusable solutions, less reliable code.

Our research addressed these issues by introducing the notion of
logical neighborhood [16, 17], illustrated in Section 2. This pro-
vides an abstraction that replaces the conventional notionof physi-
cal neighborhood—i.e., the set of nodes within the communication
range of a given device—with a logical notion of proximity de-
termined by applicative information. Logical neighborhoods are
specified declaratively using the SPIDEY language we designed,
conceived to be a simple extension to existing WSN programming
languages (e.g., nesC [8] in the case of TinyOS [10]). The program-
mers can address the members of a logical neighborhood by using a
simple message passing API, which replaces broadcast to thephys-
ical neighbors. This enables a form of logical broadcast where the
receivers are the nodes satisfying the neighborhood specification,
instead of the nodes within communication range.

The aforementioned communication API is supported by a novel
routing mechanism, described in Section 3. This is expressly de-
vised in support of logical neighborhoods, and takes into account
node heterogeneity explicitly. Our performance evaluation shows
that it efficiently supports logical neighborhoods, therefore demon-
strating the feasibility of our approach. Our abstraction and API
can also foster a fresh look at existing programming models by re-
placing the conventional physical broadcast with our logical notion
of proximity. At the same time, logical neighborhoods can enable

node template Sensor
static Function
static Type
dynamic BatteryPower
dynamic Reading

create node ts from Sensor
Function as "sensor"
Type as "temperature"
Reading as getTempReading()
BatteryPower as getBatteryPower()

Figure 1: SPIDEY: sample node definition and instantiation.

neighborhood template HighTempSensors(threshold)
with Function = "sensor" and

Type = "temperature" and
Reading > threshold

create neighborhood htsn100
from HighTempSensors(threshold: 100)
max hops 2
credits 30

Figure 2: SPIDEY: sample neighborhood definition and instantiation,
threshold is a parameter bound at instantiation time.

novel programming abstractions based on the scoping mechanisms
they provide. These opportunities are illustrated in Section 4.

The actual usefulness of the logical neighborhood abstraction
will be ultimately dictated by its effective use in real-life WSN
applications. To this end, we intend to evaluate the advantages
brought by our abstraction by developing an extensive set ofrel-
evant applications on top of logical neighborhoods. For this task to
be effective, we also need to support our routing mechanism with
an analytical model, so as to give the developers the abilityto fine-
tune our framework depending on their needs. Section 5 discusses
these future research goals.

Finally, in Section 6 we highlight how the SPIDEY language used
to define logical neighborhood is more expressive than existing
frameworks, and how our abstraction is inherently more flexible
and general than existing proposals in the field.

2. ABSTRACTION
The logical neighborhood abstraction revolves around onlytwo

concepts: nodes and neighborhoods, both specified using the
SPIDEY language [17]. Nodes represent the portion of a real node’s
state and characteristics made available to the definition of any log-
ical neighborhood. The definition of such a (logical) node isen-
coded in anode template, which specifies a node’s exported at-
tributes. This template is then used to derive actual instances of
(logical) nodes, by specifying the actual source of data. Figure 1
reports a fragment of SPIDEY code that defines a template for a
generic sensor. The attributes in a node template can bestatic
or dynamic. The former represent information assumed not to
vary in time, e.g., the type of measurement a sensor node provides.
Instead, dynamic attributes represent information that bydefinition
changes with time, e.g., the current sensor reading. In Figure 1, the
template is then instantiated by binding attributes to constant values
or functions of the target language, obtaining one (logical) node.

A logical neighborhood can be defined based on arbitrary predi-
cates on node templates. As already illustrated for nodes, aneigh-
borhood is first defined in a template, which basically encodes the
corresponding membership function, and then instantiatedby spec-
ifying where and how the neighborhood is to be constructed and
maintained. For instance, Figure 2 illustrates the definition of a
neighborhood template involving temperature sensors whose read-

Figure 3: A pictorial representation of the example in Figure 2. The black
node specifies thelogical neighborhood, and itsphysical neighborhood is
denoted by the dashed circle. The dark nodes satisfy the neighborhood tem-
plateHighTempSensors when the threshold is set to 100oC. However,
the nodes included in the neighborhood instancehtsn100 are only those
lying within 2 hops from the black node, as specified with thehops clause.

ing is above a given threshold1. The template is then instantiated
so that it evaluates the corresponding predicates only on nodes that
are at most of 2 hops away from the node defining the neighbor-
hood, and by spending a maximum of 30 “credits”. Figure 3 shows
a pictorial representation of the example.

In particular, thecredits construct is an application-defined
measure ofcommunication cost, explicitly defined by supplying at
each node asending cost function through a particular SPIDEY con-
struct. This describes the cost a node incurs in sending a broadcast
message to the physical neighbors, thus naturally taking into ac-
count the heterogeneity of the nodes in the system. For instance,
one can define higher cost for battery-powered sensors and lower
costs for resource-rich nodes. The “credits” attached to a logical
neighborhood are then evaluated as the sum of the sending costs
each node involved in routing messages for that neighborhood in-
curs in. Therefore, the construct exposes the trade-off between ac-
curacy and resource consumption up to the application.

Notice howcredits andhops represent different informa-
tion. The former constrain the span of a neighborhood depending
on the amount of resources the developers is willing to spendto
reach the neighborhood members. Hence, neighborhood instanti-
ated with a high number of credits have a broader coverage of the
system, at the price of higher resource consumption. Conversely,
the hops construct limits a logical neighborhood depending on
the shape of the network topology, regardless of the resources con-
sumed. Combining the two provides even greater flexibility.

More advanced features of the SPIDEY language allow, in a given
neighborhood template, for expressions composed of the usual boo-
lean operatorsand, or andnot. Moreover, different neighbor-
hood templates can be combined using usual set operations such as
intersection,union, andminus, and can also be defined as
a subset of another, already defined, neighborhood template.

Communication in a logical neighborhood is made available to
the programmer by redefining the usual broadcast facility. In par-
ticular, we change the signature of the send operation to be

send(Message m, Neighborhood n)

thus making it dependent on the (logical) neighborhood to which
the message is addressed. To implement communication in a log-
ical neighborhood, we need a routing mechanism able to deliver
messages to neighborhood members efficiently. In the next section
we illustrate how we addressed this issue.

3. ROUTING
The logical neighborhood abstraction is essentially independent

of the underlying routing layer. Nevertheless, its characteristics
1In case a neighborhood template defines a predicate over an at-
tribute not defined in a node template, the whole neighborhood
template evaluates to false.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
ra

tio

Network Size

Gossip Propagation P=0.75
Spidey Routing

(a) Message delivery against network size.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

O
ve

rh
ea

d
(t

ho
us

an
ds

 o
f m

es
sa

ge
s)

Network Size

Gossip Propagation P=0.75
Spidey Routing
Spidey Routing (excluding state space messages)
Minimum Spanning Tree

(b) Network overhead against network size.

Figure 4: Evaluation against gossip and ideal multicast along the minimum spanning tree.

cannot be easily accommodated by existing routing approaches in
WSNs. Indeed, these usually focus on how to collect efficiently
data from many sensors to a single node. In our approach the per-
spective is reversed: we must efficiently transmit an application
message from a single node to those matching the neighborhood
predicate. Moreover, logical neighborhoods are a scoping mecha-
nism, and therefore can be used in conjunction with several mech-
anisms other than data collection, as we will discuss in Section 4.
Finally, credit management is a distinctive feature of our approach
that would anyway require appropriate integration. For these rea-
sons, we designed a dedicated routing strategy supporting the ab-
straction. Due to space limitations we can only sketch its behavior
here. A more detailed description is available in [16].

Our approach to routing isstructure-less (i.e., it does not ex-
ploit overlays), is based on the notion oflocal search, and relies
on two core mechanisms. The first mechanism builds a distributed
state space by periodically propagating node profiles, i.e., the list
of node attributes and their values. In doing this, each nodestores
the cost (in credits) to reach a device whose profile containsa
specific〈attribute,value〉 pair. This cost is evaluated in terms of
the aforementioned node sending cost, by accumulating the corre-
sponding amount of credits along the path to that device. Never-
theless, the propagation of node profiles is constrained so that each
node has enough information to reach only the node associated to
the “cheapest” path, determined by looking at the credits needed
to reach it. Therefore, the spreading of node information can be
limited to small portions of the system, thus scaling better.

The second mechanism enables messages to smartly “navigate”
the state space. Messages addressed to a logical neighborhood con-
tain the neighborhood template, and the corresponding credits and
number of hops specified when instantiating the neighborhood. The
credits are “spent” while navigating the state space. Each message
is always sent along at least adecreasing path, i.e., a path where
the cost needed to reach a〈attribute,value〉 pair matching the neigh-
borhood template is decreasing. Whenever such a path is found, a
credit reservation mechanism, exploiting the state space informa-
tion, reserves enough credits to reach the node at the end of the
decreasing path. The remaining credits are used to route themes-
sage alongexploring paths, i.e., directions where the cost to reach
a matching node is non-decreasing. This is done to avoid local
minima in the state space, and to find further decreasing directions
towards different neighborhood members. In [16], we evaluated
this routing scheme, proving how it performs well with respect to
a pure gossip mechanism. An excerpt of our simulation results is
presented next.

Routing Performance. We implemented our solution in
TinyOS [10] and evaluated its performance using the TOSSIM [12]
simulator. Our deployment scenario is a grid where each nodecan
communicate with its four neighbors2. This choice simplifies the
interpretation of the results by removing the bias induced by un-
structured scenarios, and also models well some of the settings we
target, e.g., indoor WSN deployments [20]. Each simulationrun
lasted 1000 s—a value above which we verified all the measures
exhibit a variance less than1%.

A single logical neighborhood was defined with a sender gener-
ating one message per second, and having 10% of the nodes in the
system as neighborhood members. The node sending cost was con-
stant and identical throughout the system. Credits were assigned by
slightly overestimating the cost to reach a node in the system along
the shortest path, and weighing this value by the probability of the
node being a receiver. As already mentioned, the definition of a
model supporting fine-tuning of credit assignment is our immedi-
ate research goal, and will be discussed in Section 5.

Figure 4 illustrates some of our simulation results, obtained by
comparing our solution against a gossip scheme with the forward-
ing probability set to 0.75. Figure 4(a) shows that the percentage
of delivered messages is consistently higher than in gossip, and is
significantly less sensitive to an increase of the network size. As for
network overhead, (i.e., the number of messages exchanged at the
MAC layer), Figure 4(b) evidences how we generate almost half
of the overhead of gossip, and yet deliver significantly moremes-
sages. In this respect, we provide additional insights by showing
our protocol performance with and without the messages needed
to build the state space, and by comparing against the ideal lower
bound provided by the minimum spanning tree rooted at the sender
(computed with a global knowledge of network topology). Thegap
between gossip and our solution is even more evident not counting
the cost to build the state space. This highlights how efficient is the
pure routing mechanism, once the routing information is in place.
This is particularly significant, as the construction of thestate space
is a fixed cost that is paid once and for all. In other words, adding
another sender—regardless of the neighborhood it addresses—does
not increment the overhead due to state space generation.

4. BUILDING OVER
LOGICAL NEIGHBORHOODS

Logical neighborhoods are independent of what is running on
top. Our current research is exploring how to couple logicalneigh-

2We used the TinyOS’LossyBuilder to generate topology files
with transmission error probabilities taken from real testbeds.

Figure 5: The flow of information between real devices and virtual sen-
sors or actuators. Nodes belonging to the same logical neighborhood are
identified with the same dashed lines.

create node vts from Sensor
Function as "virtualSensor",
Type as "temperature",
Reading as average(roomTempSensors) every 30

float average(Neighborhood: nhood) {
sum = 0; counter = 0;
for(node in nhood) {sum += node.Reading; counter++;}
return sum/counter;

}

Figure 6: Sample definition of a virtual sensor reporting theaverage of
the temperature readings in a neighborhood.roomTempSensor is the
identifier of the previously instantiated neighborhood. Inaverage(), we
use an abstract constructin, that our SPIDEY translator maps to constructs
of the target language.

node template Actuator
static attribute Function
static attribute Type
operation Activate(int regulation)
operation Deactivate()

create node ws from Actuator
Function as "actuator"
Type as "waterSprinkler"
Deactivate() as regulateSprinklerFlow(0)
Activate(int regulation)

as regulateSprinklerFlow(regulation)

neighborhood template RoomSprinklers()
with Function = "actuator" and

Type = "waterSprinkler" and
provides(Activate(int regulation) and
provides(Deactivate())

Figure 7: A neighborhood containing water sprinklers that can be activated
or deactivated.

borhoods with higher-level programming models and applications.
In this section, we report on three such efforts.

Virtual Nodes. In the sensing and acting scenarios we introduced
in Section 1, logical neighborhoods provide the ability to define
subset of nodes and interact with them. However, the data col-
lection required to implement the sensing tasks, and the distribu-
tion of commands to actuator nodes to affect the environmentare
still on the programmers’ shoulders. This issue can be facedby
enablingvirtual nodes, acting either asvirtual sensors or virtual
actuators [3]. The former enables data sensed at nodes part of a
neighborhood to be processed according to an application-provided
aggregation function, and then perceived as the readings ofa single,
virtual device. Conversely, the latter allow to operate a potentially
sparse set of actuator nodes from a single entry point, thus simplify-
ing the application code. These concepts are graphically illustrated
in Figure 5.

To define virtual sensors, one simply instantiates a logicalnode
binding one or more attributes to an aggregation function taking
a neighborhood instance as parameter, as in Figure 6. When this
happens, the SPIDEY translator generates a programming entity
(e.g., a nesC component and corresponding interface in the case of
TinyOS), that can be used to access the state of the virtual sensor.
Conversely, Figure 7 illustrates how virtual actuators areenabled by
defining logical nodes not only in terms of exported attributes, but
also by specifying the operations they offer. A furtherprovides
construct is made available for the definition of logical neighbor-
hoods. This can be used to predicate on exported operations,as
exemplified in Figure 7. Similarly to virtual sensors, our SPIDEY

translator generates a programming entity used to control the set of
actuator nodes belonging to the neighborhood. Once created, vir-
tual sensors and actuators can be addressed like any other node and
hence be part of further logical neighborhoods. This allowsone to
recur the process arbitrarily, creating hierarchies of virtual nodes.

Virtual actuators are readily implemented on top of the routing
facility we described in Section 3: only a suitable encodingof oper-
ations and their parameters (if any) is needed. Conversely,several
optimizations may be possible to implement virtual sensors, based
either on the fact that multiple virtual sensors are likely to insist on
the same neighborhood, or depending on the mathematical char-
acteristics of the aggregation function at hand. Currently, we are
investigating dedicated routing mechanisms to implement virtual
sensor efficiently. Early results appear in [3].

Context-aware Tuple Spaces. Tuple spaces are a programming
abstraction offering communication and coordination decoupled in
time and space [9]. As such, they are particularly amenable to dy-
namic environments characterized by changing topologies.In [4],
a tuple space is used to share data sensed by WSN devices among
mobile units. The scenario is that of animmersive WSN: a field of
possibly heterogeneous devices is spread in a geographicalregion,
and mobile users roam around communicating with these devices
through 1-hop, physical broadcast. The tuple space does notspan
the WSN devices. Instead, these are seen as simple data sources,
and used to infer thecontext surrounding the mobile user.

However, 1-hop communication is still a limitation. Logical
neighborhoods can be used to give the users the ability to to define
the shape of the “cloud” surrounding them, i.e., the set of devices
their context is derived from, and do that regardless of the physical
distance from the mobile unit. The concept is illustrated inFig-
ure 8. For instance, a user might be willing to adapt the behavior of
the application running on her mobile device depending on temper-
ature readings within some geographical scope, whereas a differ-
ent user might be willing to modify her application’s user interface
based on the actuators nearby. Our framework is able to provide
this despite user mobility, as the routing scheme we described in

Figure 8: Tuple spaces-based data sharing using logical neighborhoods:
the 1-hop physical broadcast determining the context of mobile users is
replaced with arbitrarily shaped logical neighborhoods.

node template Sensor
static Function
static Type
dynamic RoutingComponent
dynamic RoutingComponentVersion

create node sn from GenericDevice
Function as "sensor"
Type as "temperature"
RoutingComponent as getRoutingName();
RoutingComponentVersion as getRoutingVersion();

Figure 9: SPIDEY: defining attributes to export information on the node
software configuration.

neighborhood template ObsoleteRouting(name, version)
with Function = "sensor" and

Type = "temperature" and
RoutingComponent = name and
RoutingComponentVersion < version

create neighborhood updateDD
from ObsoleteRouting("DirectedDiffusion",3.0)

Figure 10: SPIDEY: definition of a neighborhood to update the Directed-
Diffusion routing component where the version is less than 3.0.

Section 3 works regardless of a possible moving sender. Indeed, if
the node defining the neighborhood is the only moving device,it
can just broadcast the message, and let the remaining (fixed)nodes
route the message according to the state space information,which
are instead stored on stationary nodes only.

Software Updates. Software update in WSNs is known to be a
challenging task, and existing proposals (e.g., [13]) mostly address
homogeneous scenarios where a software update must be directed
to all nodes in the system. In heterogeneous scenarios, instead, the
problem of software update becomes more difficult: the nodesrun
different software configurations based on their hardware charac-
teristics and the tasks they are supposed to accomplish.

Logical neighborhoods can be exploited to address this issue.
Simply, one could define node templates that export attributes de-
scribing the software components running on a node, as in Figure 9.
This way, logical neighborhoods can be defined by predicating on
the software configuration of the system. For instance, in Figure 10
we define a neighborhood including only the nodes in the system
currently running a specific routing component whose version is
less than a given value. At that point, directing a piece of code
to all the nodes actually needing a particular software update is as
simple as sending a (logical) broadcast message addressed to that
neighborhood. Note how using logical neighborhoods for software
updates naturally solves both the problem of addressing thesubset
of nodes needing the update itself, and the problem of distributing
the code across multiple hops efficiently.

5. RESEARCH AGENDA
Our research agenda comprises a natural extension of the re-

search activity described in Section 4, as well as further investiga-
tions in closely related directions. We here sketch the maintopics
we intend to investigate.

Augmenting the Language. A need we recognized while working
with logical neighborhoods is the ability to condition the belong-
ing of a nodeA to a given neighborhood based on the belonging
of a different nodeB to the same neighborhood. For instance, this
might be required to define neighborhoods with peculiar topolog-
ical properties such as Yao graphs [14]. The current versionof
SPIDEY cannot capture this requirement, as the neighborhood tem-
plate is evaluated independently on each node. Therefore, we need

to enrich the SPIDEY language, so as to enable more complex node
selection mechanism, and modify the underlying routing scheme
accordingly. For this reason, we plan to evaluate the trade-offs in-
volved at the network level in simulation studies, so as to have a
quick way of evaluating different design choices.

Evaluating the Abstraction. We want to verify the claim that ap-
plications written on top of logical neighborhoods result in cleaner
and more simple code, and thus yield more reliable systems. To
evaluate this, we need to study the advantages brought to thepro-
grammer by our abstraction not only qualitatively, but alsoquanti-
tatively. For instance, we need to assess the benefits provided by
our abstraction in terms of lines of code, inter-component depen-
dencies, and complexity of the resulting application. To this end,
we intend to consider existing and publicly available applications,
try to re-implement them on top of our abstraction, and compare
the two versions. In doing this, we will need to define fair metrics
to be applied on the original code and on the one we will develop.

Routing. Our credits reservation mechanism already provides some
management of available resources through the use of credits. How-
ever, we intend to push further our current routing solution, explor-
ing the possibility of having an adaptive mechanism that, based on
a notion of reinforcement along a path, directs the credits available
in a message towards zones of the system still unexplored. This
may enable a more careful exploration of the state space, thus ob-
taining savings in network overhead. To this end, we plan to purse
extensive simulations studies in various network scenarios.

Our routing scheme still lacks an extensive evaluation in real de-
ployments scenarios. To this end, the users of our frameworkneed
supporting tools to customize its behavior, and explore thetrade-off
between system coverage and resource consumption. In particular,
they need a way to evaluate the credits to be assigned to a logical
neighborhood, based on the desired quality of service. An analyt-
ical model of our routing solution can be used for this purpose. In
developing this, we intend to borrow from the large body of litera-
ture available in the field of network theory and random graphs [2].

6. RELATED WORK
The work closer to our is the neighborhood abstraction described

in [22], where each node has access to a local cache of attributes
provided by (physical) neighbors. Data collection is builtinto the
constructs, therefore, communication flows only accordingto a ma-
ny-to-one paradigm. The implementation considers only 1-hop
neighbors and is based on broadcasting all attributes and filtering
on the receiver side. Our framework is more flexible as it provides
a general application-defined neighborhood abstraction, decoupled
from the application functionality. Therefore, it can be used for
purposes other than data collection, as described in Section 4.

The work on Abstract Regions [21], instead, proposes a model
where〈key,value〉 pairs are shared among nodes in aregion. The
span of a region is based mainly on physical characteristicsof the
network (e.g., physical or hop-count distance between sensors), and
its definition requires a dedicated implementation. Therefore, each
region is somehow separated from others, and regions cannotbe
combined. This results in a lower degree of orthogonality with
respect to our approach. The concept oftuning interface provides
access to a region’s implementation, enabling the tweakingof low-
level parameters (e.g., the number of retransmissions). Instead, our
approach provides a higher-level, user-defined notion of cost that
can be used to control resource consumption.

SpatialViews [18] is a programming language for mobile ad-hoc
networks wherevirtual networks are defined depending on the node
physical location and provided services. Computation is distributed

across nodes in a virtual network by migrating code from nodeto
node. Common to our work is the notion of scoping virtual net-
works provides. However, SpatialViews targets devices much more
capable than ours, and focuses on migrating computation instead of
supporting an enhanced communication facility as we do.

Finally, in [7], the authors propose a language and algorithms
supporting generic role assignment in WSNs. Their approachis, in
a sense, dual to ours. Their approachimpose certain characteristics
(roles) on nodes in the system so that some specified requirements
are met, while in our approach the notion of logical neighborhood
selects nodes in the system based on their characteristics.

In our routing scheme, we were influenced by Directed Diffusion
[11] in setting up routes towards potential neighborhood members.
However, an important difference is that our profile advertisements
do not propagate to the whole network, unlike interests in Directed
Diffusion. Moreover, we do not assume data collection as themain
functionality, and therefore we cannot rely on any knowledge about
message content, required in Directed Diffusion for interpolation
along failing paths. Finally, routing in Directed Diffusion is entirely
determined by gradients, while we make the system more resilient
to changes by allowing exploratory steps, whose use is nevertheless
under the control of the programmer through the credit mechanism.

7. CONCLUSIONS
In this paper, we illustrated our current and future research on

logical neighborhoods, a programming abstraction enabling a no-
tion of scoping in WSNs. Our communication API, supported by
an efficient routing scheme, extends communication in the physical
neighborhood to a logical level, where the programmers specify the
neighbors of a node using the SPIDEY language we devised.

We pointed out the topics of our current research, geared towards
coupling applications, existing communication models, and novel
programming abstractions with logical neighborhoods. Moreover,
we intend to support the users of our abstraction with suitable tools
to explore the trade-offs involved, and perform extensive evaluation
of our solutions in simulation as well as in real deployments.

8. REFERENCES
[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor

networks: Research challenges.Ad Hoc Networks Journal,
2(4):351–367, 2004.

[2] B. Bollobas.Random Graphs. Academic Press, Harcourt
Brace Jovanovich, 1985.

[3] P. Ciciriello, L. Mottola, and G. P. Picco. Building Virtual
Sensors and Actuator over Logical Neighborhoods. InProc.
of the 1

st ACM Int. Wkshp. on Middleware for Sensor
Networks (MidSens - colocated with ACM/USENIX
Middleware), 2006.

[4] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy,
and G.P. Picco. TINY L IME: Bridging Mobile and Sensor
Networks through Middleware. InProc. of the 3

rd IEEE Int.
Conf. on Pervasive Computing and Communications
(PerCom 2005), pages 61–72, 2005.

[5] M. Dermibas. Wireless sensor networks for monitoring of
large public buildings, 2005. Tech. Report, University of
Buffalo. Available atwww.cse.buffalo.edu/
tech-reports/2005-26.pdf.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: scalable coordination in sensor
networks. InProc. of the 5

th Int. Conf. on Mobile computing
and networking (MobiCom), 1999.

[7] C. Frank and K. Römer. Algorithms for generic role
assignment in wireless sensor networks. InProc. of the 3

rd

ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2005.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. InProc. of the ACM
SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’03), pages 1–11, 2003.

[9] D. Gelernter. Generative communication in Linda.ACM
Computing Surveys, 7(1):80–112, 1985.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InASPLOS-IX: Proc. of the 9

nt Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[11] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor
networking.IEEE Trans. Networking, 11(1):2–16, 2003.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In
Proc. of the 5

th Symp. on Operating Systems Design and
Implementation (OSDI), pages 131–146, 2002.

[13] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. InProc. of the 1

st

Symp. on Network Systems Design and Implementation
(NSDI04), 2004.

[14] X. Y. Li, P. J. Wang, Y. Wang, and O. Frieder. Sparse power
efficient topology for wireless networks. InProc. of the 35

th

Annual Hawaii Int. Conf. on System Sciences, 2002.
[15] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and

J. Anderson. Wireless sensor networks for habitat
monitoring. InProc. of the 1

st ACM Int. Wkshp. on Wireless
sensor networks and applications, pages 88–97, 2002.

[16] L. Mottola and G. P. Picco. Logical Neighborhoods: A
programming abstraction for wireless sensor networks. In
Proc. of the the 2

st Int. Conf. on Distributed Computing on
Sensor Systems (DCOSS), 2006.

[17] L. Mottola and G. P. Picco. Programming wireless sensor
networks with logical neighborhoods. InProc. of the the 1

st

Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense), 2006.

[18] Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming
ad-hoc networks of mobile and resource-constrained devices.
In Proc. of the ACM SIGPLAN Conf. on Programming
language design and implementation, pages 249–260, 2005.

[19] E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and
V. Groza. Sensor-based information appliances.IEEE
Instrumentation and Measurement Mag., 3:31–35, 2000.

[20] R. Stoleru and J.A. Stankovic. Probability grid: A location
estimation scheme for wireless sensor networks. InProc. of
the 1

st Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON), 2004.

[21] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. InProc. of 1

st Symp. on Networked
Systems Design and Implementation (NSDI), 2004.

[22] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:a
neighborhood abstraction for sensor networks. InProc. of the
2

nd Int. Conf. on Mobile systems, applications, and services
(MobiSys), 2004.

