
1

A Self-Repairing Tree Topology Enabling
Content-Based Routing in Mobile Ad Hoc Networks

Luca Mottola, Gianpaolo Cugola, and Gian Pietro Picco

Abstract— Content-based routing (CBR) provides a powerful
and flexible foundation for distributed applications. Its commu-
nication model, based on implicit addressing, fosters decoupling
among the communicating components, therefore meeting the
needs of many dynamic scenarios, including mobile ad hoc
networks (MANETs). Unfortunately, the characteristics of the
CBR model are only rarely met by available systems, which
typically assume that application-level routers are organized in
a tree-shaped network with a fixed topology.

In this paper we present COMAN, a protocol to organize the
nodes of a MANET in a tree-shaped network able to i) self-
repair to tolerate the frequent topological reconfigurations typical
of MANETs; ii) achieve this goal through repair strategies that
minimize the changes that may impact the CBR layer exploiting
the tree. COMAN is implemented and publicly available. Here
we report about its performance in simulated scenarios as
well as in real-world experiments. The results confirm that its
characteristics enable reliable and efficient CBR on MANETs.

Index Terms— Content-based routing, publish-subscribe,
query-advertise, mobile ad hoc network.

I. INTRODUCTION

Content-based routing (CBR) differs from classical routing in
that messages are addressed based on their content instead of
their destination. In conventional systems, the sender explicitly
specifies the intended message recipients using a unicast or
multicast address. Instead, in CBR the sender simply injects
the message in the network, which determines how to route
it according to the nodes’ interests. These identify the relevant
classes of messages based on their content, e.g., using key-value
pairs or regular expressions. Therefore, in CBR it is the receiver
that determines message delivery, not the sender.

This ability is useful in many application scenarios. For in-
stance, in a stock quote application data producers can publish
stock updates on a CBR network, which routes them only
towards the consumers who subscribed to receive such updates.
Similarly, in a data sharing application repositories can advertise
the attributes of the data they hold; a query from a user node is
then routed by the CBR network only towards the repositories
containing attributes involved in the query. CBR is at the core
of many systems, including event notification [22], distributed
databases [8], file sharing [27], and data collection in wireless
sensor networks [30]. Hereafter, we adopt the terminology made
popular by content-based publish-subscribe, and refer to interests
as subscriptions.

Although it enables multi-point communication, CBR is not
simply multicast. In network-level (e.g., IP) or application-level

L. Mottola and G. Cugola are with the Dipartimento di Elettronica ed
Informazione, Politecnico di Milano, P.zza L. da Vinci, 32, 20129 Milano,
Italy. E-mail: {mottola,cugola}@elet.polimi.it. G.P. Picco is with
the Dipartimento di Ingegneria e Scienza dell’Informazione, Università di
Trento, Italy. E-mail: gianpietro.picco@unitn.it.

(e.g., topic-based publish-subscribe [22]) multicast, the address of
the multicast groups (or topics) must be defined a priori and made
globally known or available. Moreover, a component joined to a
given group receives all the messages addressed to that group—
and only those. If messages are to be received from multiple
groups, the component must join all of them. Indeed, the messages
are conceptually partitioned in classes, and the binding between
a message and its class is established by the sender. Instead, in
CBR message consumers define their own message classes. These
select only the desired messages, need not be known to other
components, and can be arbitrarily overlapping.

The difference between multicast and CBR is reflected also
in the routing mechanisms enabling them. Multicast approaches
typically propagate messages along a tree defined on a per-group
basis, spanning all the receivers for that group. Therefore, a
message addressed to multiple groups is typically duplicated at
the sender, and each copy is routed independently. In CBR, the
absence of an explicit and a priori definition of groups, along
with the fact that every message can be addressed to a different
set of components, discourage the use of separate per-group
trees. Instead, most systems connect all the brokers (the CBR
application-level routers) in a single tree-shaped network [37].
This broker tree is exploited to forward messages. Usually,
these are not flooded to the entire tree, but routed towards the
interested components according to the message content and the
subscriptions stored at tree nodes. Notably, the same arguments
justify also why existing multicast services cannot be directly
used to implement CBR, as discussed in [38]. Indeed, this would
require either a single multicast group, delivering all messages to
all members regardless of their subscriptions, or a group per each
possible set of recipients, placing the burden of determining the
target group for each message on the publishing node. In both
cases, the very benefits of CBR would be lost.

As a concrete illustration of CBR and as a reference for the
rest of the paper, Figure 1 describes the subscription forwarding
routing strategy [10], perhaps the most widely used among the
CBR systems available so far. Each broker holds a subscription
table used to decide how to forward messages along the broker
tree. Such tables are populated by propagating subscriptions along
the broker tree. As an example, Figure 1(a) shows the content
of the brokers’ subscription tables after subscription S1, coming
from E, propagated to the entire tree. The arrows summarize
the content of subscription tables, showing the route followed
by messages matching S1. In Figure 1(b) the same broker tree
is shown after node F issued the same subscription S1 above,
while node C subscribed to S2. Subscription S1 from F reached
A, which updated its subscription table and forwarded S1 only
towards E. Indeed, the subtree including H and its descendants
already received the subscription. Therefore, their subscription
tables need not to be updated. Instead, subscription S2 from
C, appearing for the first time, propagates to the entire tree,

2

D

E

G

B

A
F

H

C

L

S 1 G

S 1 E

S 1 A

S 1 H

S 1 self

S 1 A

S 1 H

S 1 B

S 1 B

(a) A broker tree in the presence of a single sub-
scriber, node E.

D

E

G

B

A
F

H

C

L S 1 A,self
S 2 A

S 1 A,self
S 2 A

S 1 F , E
S 2 H

S 1 H
S 2 H

S 1 A
S 2 G

S 1 H
S 2 B

S 1 B
S 2 self

S 1 G
S 2 C

S 1 B
S 2 B

(b) The same broker tree after F and C subscribed.

Fig. 1. Content-based routing using subscription forwarding.

populating the subscription tables of every broker. As shown by
the arrows in the figure (solid for S1 and dashed for S2) this
mechanism defines the minimal routes followed by messages in
reaching the subscribers along the broker tree.

Motivation. CBR fosters a form of implicit communication that
breaks the coupling between senders and receivers. Senders no
longer need to determine the address of communication parties.
Similarly, receivers do not know who is the sender of a message,
unless this information is somehow encoded in the message itself.
The sharp decoupling induced by this form of communication
enables one to easily add, remove, or change components at run-
time with little impact on the overall architecture.

These characteristics of CBR are an asset for developing
distributed applications in dynamic environments, notably includ-
ing mobile ad hoc networks (MANETs). In this scenario, CBR
can be used effectively to coordinate mobile users, e.g., in a
disaster recovery application [15], [32]. Members of a rescue
team can publish damage assessment information; other members
can selectively query or subscribe to the information germane to
their task. The CBR network matches the published messages
against the dynamically changing interests and routes them to the
appropriate recipients.

Unfortunately, the advantages provided by this interaction
model are not supported by the state of the art of implemented

D

E

G

B

A
F

H

L

C

S 1 A,self
S 2 A

S 1 A,self
S 2 A

S 1 F , E
S 2 H

S 1 H
S 2 H

S 1 A
S 2 G

S 1 H
S 2 B

S 1 B
S 2 self

S 1 G
S 2 C

S 1 B
S 2 B

(a) A link on the broker tree fails.

D

E

G

B

A
F

H

L

C

S 1 A,self
S 2 A

S 1 A,self
S 2 D

S 1 F , E
S 2 E

S 1 H
S 2 H

S 1 A
S 2 A

S 1 B
S 2 B

S 1 B
S 2 self

S 1 D
S 2 C

S 1 E
S 2 B

(b) The broker tree is repaired.

Fig. 2. The impact of tree reconfiguration on CBR information.

systems. Indeed, the majority of available CBR systems address
scalability and ease of implementation by realizing the broker tree
as an overlay network, whose topology is assumed to be stable—a
requirement that clashes with the reality of dynamic scenarios like
MANETs. Therefore, this situation leaves the potential of CBR
largely unexploited precisely in the application scenarios where
it would make a huge difference.

Contribution. This paper overcomes the limitation above by
achieving the following goal:

defining a protocol to organize the nodes of a mobile
ad hoc network in a single, self-repairing tree that
efficiently supports content-based routing.

The goal of supporting CBR explains the rationale behind the
choice of a tree topology. As already mentioned, most of currently
available CBR protocols adopt this topology for interconnecting
brokers, but assume that the tree does not change. Therefore, our
self-repairing tree enables the reuse of mainstream CBR protocols
in the dynamic scenario characterizing MANETs, by leveraging
off the consistent body of results related to tree-based CBR. At
the same time, providing a tree able to self-repair upon changes
in the physical topology of a MANET is only our minimal (and
obvious) target. Our ultimate goal is to design a protocol whose
characteristics simplify the operations of the CBR layer operating

3

on it. To clarify the exact meaning of this claim, Figure 2
shows the same CBR network of Figure 1 before and after a
reconfiguration where the link G-H breaks and is replaced by
the link D-E. In this case, we observe that the brokers requiring
an update of their subscription tables, whose changed entries are
highlighted in gray in Figure 2(b), are not only those directly
involved (i.e., G, H , D, and E), but also those lying on the
“reconfiguration path” [18] connecting the broken and new links,
i.e., the nodes G, B, D, E, A, H shown in gray in Figure 2(b). A
broker tree that keeps the reconfiguration path as short as possible
(e.g., by selecting H-B as a replacement link instead of D-E,
provided H is also in range of B) makes CBR more efficient,
reducing the effort required to rearrange the routes.

In achieving our goal, we were largely inspired by the Multicast
Ad Hoc On Demand Distance Vector (MAODV) [41], [42] proto-
col for multicast over MANETs. Indeed, MAODV organizes the
members of each multicast group in a single tree without relying
on any underlying multi-hop unicast solution. Moreover, the link
repair process of MAODV is localized around one of the two end-
points of the broken link. This limits the impact of reconfiguration
to a small portion of the system, and therefore intrinsically
resonates with our goal of minimizing the reconfiguration path.

Nevertheless, in this paper we do not simply reuse MAODV as
is. In particular, we do not rely on MAODV for routing messages
because, as already mentioned, multicast routing protocols are not
suited to support CBR [38]. Instead, we borrow from MAODV the
logic concerned with maintenance of the tree topology, and adapt,
extend, and optimize it in a context MAODV was not designed
for—content-based routing. The result, and main contribution of
this paper, is COMAN (COntent-based routing for Mobile Ad
hoc Networks), a protocol for maintaining a CBR broker tree
in a MANET environment. Differently from mainstream CBR
approaches, which interconnects broker through a tree overlay,
COMAN provides a tree topology directly at the network level.
Moreover, COMAN does not rely on any lower-level network pro-
tocol and assumes only that local, one-hop unicast and broadcast
communication is available—a fundamental and always satisfied
assumption in MANETs.

To verify the feasibility of the approach, we implemented
COMAN as a stand-alone module, publicly available as open
source [2]. The module is currently used by the REDS content-
based publish-subscribe middleware [4], [19] we developed, but
its simple interface arguably enables seamless integration in
other CBR systems. Using our implementation, we evaluated the
performance of COMAN in small-scale real-world experiments.
In addition, we carried out larger-scale synthetic experiments
through simulation. Both kinds of experiments confirmed that
COMAN indeed supports CBR over MANETs by efficiently
maintaining a tree-shaped network with a short reconfiguration
path. As for its relationship with the tree maintenance protocol
of MAODV, our evaluation shows that: i) the performance of
COMAN is clearly superior in a CBR setting; ii) as a by-
product of our research, COMAN provides better performance
even when its tree topology is used for plain multicast routing
(as in MAODV) instead of CBR.

Thanks to our choice of focusing on tree-based approaches,
and to the independence of COMAN from the CBR protocols
relying on it, our results are directly applicable to the vast majority
of CBR proposals. In the context of our own research, this
paper completes previous work on tree-based CBR by our group

addressing the complementary problems of efficiently rearranging
the CBR routing tables upon topological changes [18], [40] and
recovering lost messages [16].

Road-map. The rest of the paper is organized as follows. Sec-
tion II summarizes the relevant aspects of MAODV. Section III
discusses how we adapted its tree maintenance protocol, yielding
the COMAN protocol. Section IV evaluates COMAN through
simulation, showing that the tree topology i) is maintained effi-
ciently in the face of mobility; ii) is repaired in a way that mini-
mizes the impact on the routing layer; iii) the same performance
cannot be achieved by MAODV’s tree maintenance strategy.
Section V corroborates these findings by reporting about small-
scale real-world experiments leveraging off our implementation
of COMAN. Section VI shows that COMAN also improves over
MAODV’s tree maintenance protocol even when used for plain
multicast routing instead of CBR. Section VII places our work in
the context of related research efforts. Finally, Section VIII ends
the paper with brief concluding remarks.

II. MULTICAST AD-HOC ON-DEMAND DISTANCE VECTOR
(MAODV)

Before delving into our main technical contribution, we present
a concise summary of MAODV. Our presentation does not cover
all the details of the protocol, as our purpose here is simply
to provide enough background to understand our contribution.
Further details about MAODV can be found in [41], [42].

MAODV (Multicast Ad-Hoc On-Demand Distance Vector) is
the multicast counterpart of the AODV protocol [39]. All nodes
belonging to the same multicast group, along with nodes (called
forwarders) required to forward messages among group members,
are organized in a tree used to propagate messages addressed
to that group. Each multicast group results in a different tree.
To maintain such trees, MAODV leverages off the same route
discovery protocol used in AODV with the addition of special
nodes, called multicast group leaders, in charge of providing
consistency information within each connected partition of a
multicast group’s tree. Specifically, each leader periodically dis-
tributes a monotonically increasing group sequence number in its
own connected partition. This measures the “freshness” of the
multicast group information stored at a node.

The protocol exploits four kinds of messages:
• Route request (RREQ): is broadcast by a node willing to

join a specific multicast group, repair a branch of the tree,
or merge two network partitions. It contains the identifier
of the target group and the most recent sequence number
known for it. When used to repair the tree, RREQ contains
also the last measured hop distance from the leader to the
sender.

• Route reply (RREP): is unicast towards a node that previ-
ously broadcast a RREQ, to inform that its request can be
satisfied. RREP contains the identifier of the target group,
its most recent sequence number known at the responding
node, the identifier of the leader, and the current distance
between the RREP sender and the leader. This information,
along with the number of hops traveled by the RREP, is
used to infer the new distance of the requesting node from
the leader.

• Multicast activation (MACT): is unicast to explicitly ac-
tivate a particular route towards the multicast tree. Further-
more, specific flags are used to implement operations such as

4

2

1

0

3

1

2 RREQ

RREQ RREQ

RREQ

RR
EQ

RREQ

RREP

RREP

RREP

RREP

RREP

(a) After a disconnection, the double circled node issues a
route request (containing a distance of 2 from the group leader)
and receives two replies.

2

1

0

3

1 2

3

MACT

M
ACT

(b) The disconnected node selects a reply for activation among
the ones received.

Fig. 3. An example of MAODV route request and activation. Numbers in
circles denote the distance of each node from the group leader.

identifying a new group leader after a failed repair, pruning a
node from the tree, and updating the nodes distance from the
current leader. Node pruning is required when a forwarder
node becomes a leaf. Instead, the nodes distance from the
leader must be updated whenever the tree topology changes
(e.g., when a broken link is replaced by a new one).

• Group hello (GRPH): is periodically broadcast by each
group leader and rebroadcast across the whole network. Its
main purpose is to disseminate the group sequence number
and let each group member verify its distance (in hops)
from the leader. It is also used to update information at
group members in case the group leader has changed, using
a proper flag.

We now briefly sketch how MAODV handles link breakages and
network partitions.

Link breakages. As shown in Figure 3(a), when a link between
two nodes on the tree fails, the node downstream in the tree
(i.e., the node with the greater hop count from the leader) acts
as the initiator of the repair process, started by broadcasting a
RREQ message. When a non-tree member receives the RREQ it
updates a local table, later used to determine the reverse path
to be followed by RREPs, and rebroadcasts the RREQ. Tree
members operate differently. Upon receiving a RREQ, a tree
member checks if: i) it is not itself involved in a repair process;
ii) its routing table stores a sequence number for the target group
greater than or equal to the one in the RREQ; iii) its distance
from the leader is less than or equal to the one in the RREQ. If
all these conditions hold, the node replies with a RREP, otherwise
it silently drops the RREQ.

Similarly to RREQs, RREP messages set up a forward path
while traveling toward their destination. This path might be later
followed in the opposite direction by a MACT message that
effectively activates that route. Indeed, as shown in Figure 3(a),

the initiator may receive multiple RREPs for a RREQ, each
representing a viable route to the tree. The initiator completes the
repair process by explicitly activating one of these routes using a
MACT message, as illustrated in Figure 3(b).

In case the initiator, after a given number of retries, does not
receive any RREP, it either elects itself as the new group leader
or selects one of its descendants to become so. The first choice
is adopted by group members, while the latter is taken when the
initiator is a pure forwarder. In the latter case, the decision is
communicated to the chosen descendant with a special MACT
message. When the receiving node is a forwarder as well, the
same process is repeated.

Partition merging. The opportunity to merge two partitions
is detected when a group leader GL1 hears a GRPH message
addressed to its group but originated by a different group leader
GL2. Indeed, since GRPHs are broadcast by tree members, this
situation implies the existence of a path connecting two leaders
in different network partitions. Upon receiving such a GRPH,
GL1 sends a RREQ with a specific flag set to the group leader
GL2, by following the reverse path established by the GRPH
message. Upon receiving the RREQ, GL2 elects itself as the new
leader of the merged partition and responds with a RREP. As
this propagates toward GL1 the forwarding nodes activate the
links required to connect the two partitions, while the members
of GL1’s partition update their group leader information to reflect
GL2 as the new leader.

Observe that this procedure works even in presence of more
than two partitions. Indeed, it is also used to build the tree at start-
up, when every node acts as the leader of a partition containing
only the node itself. Accordingly, the procedure covers also the
(very rare) cases when the tree needs to be rebuilt from scratch.

III. TREE MAINTENANCE FOR CONTENT-BASED ROUTING

This section describes how we build upon and extend
MAODV’s tree topology maintenance mechanisms to address the
challenges of our target domain, i.e., CBR on a MANET.

A. Minimization of Route Changes

Problem. When a change in the broker tree occurs, the routing
information used to perform CBR must be updated accordingly.
In particular, as Figure 2 illustrated, this requires a modification of
the routing tables at the nodes along the reconfiguration path. To
improve the overall CBR performance, it is crucial to minimize
the number of such nodes, as this enables a more efficient
route update and therefore faster convergence to a newly stable
situation.

Solution. To address this problem, we modified the policy used
by MAODV for selecting a RREP for activation. Specifically, we
choose the reply resulting in the shortest reconfiguration path.
However, this CBR information is not available in MAODV.

To overcome this limitation, we store at each node an ancestor
list containing the identifiers of all of its tree ancestors, starting
from the group leader. For instance, with reference to Figure 4 the
ancestor list of node A is 〈L, H〉. Moreover, we extend RREPs
to include a list of node identifiers, initially set to the ancestor
list of the responding node. As the RREP travels towards the
initiator, the traversed nodes append their identifier to this list. At
the end of this process the list contains the new ancestors of the

5

H
(1)

D
(4)

E
(3)

G
(2)

B
(3)

RREQ

RREQ

RREQ RREP

RREP

RREP

A
(2)

C
(4)

RREQ

RREQ

RREP

F
(3)

L
(0)

Fig. 4. The example of Figure 2, now highlighting the messages needed to
repair the tree. Dark grey nodes are those on the reconfiguration path.

initiator in case that particular RREP were chosen for activation.
By comparing this list with the one available before link breakage,
the initiator can easily determine the number of nodes potentially
affected by the reconfiguration. For instance, as illustrated in
Figure 4, when the RREP coming from A reaches the initiator G,
it holds the list of nodes 〈L, H,A, E, D, B〉. By comparing this
list with its former ancestor list 〈L, H〉, the initiator can determine
the 6 nodes G, B, D, E, A, and H as those potentially affected
by the reconfiguration.

The processing above requires each node to maintain its ances-
tor list even in the presence of changes in the tree topology. In
case of a successful tree repair we use MACT messages, originally
used to update the nodes’ distance from the leader, to update also
their ancestor list. Similarly, to address network partitions we use
special GRPH messages that, instead of being broadcast as usual,
are propagated along the tree links. When a partition occurs and
a new group leader is elected, we use them to update the ancestor
list of the nodes in the subtree of the new group leaders. These
GRPH messages are sent periodically, and interleaved with the
broadcast of normal GRPH messages.

Notice that our technique does not require additional messages,
the only (arguably small) increase in traffic overhead is due to an
increase in their size.

B. Request Propagation

Problem. MAODV is designed to operate in scenarios where each
node belongs only to a few multicast groups and each multicast
tree spans only the nodes belonging to the same group, plus
some forwarder nodes. In CBR scenarios, instead, it is typical
(see e.g., [29]) to assume that all the nodes run a broker of
the CBR network, which routes messages for the application
components running on the same host. A single tree must be
built and maintained to span all the nodes.

To understand the impact of this aspect, let us recall that
MAODV’s RREQs do not propagate among tree members. Con-
sequently, in a situation where every node is a tree member,
the only possibility for a RREQ to be answered is to find a
replying node within the range of the initiator itself. If this is
not the case, the repair process fails (after several retries), the

E
(0)

D
(2)

B
(1)

C
(1)

A
(2)

RREQ

RREQ

RREQ

RREQ

RREP

RREP

RREP

RREP

(a) RREQ propagation among members of
a tree. Node E is currently acting as the
group leader.

E
(0)

D
(?)

B
(?)

C
(?)

A
(?)

M
ACT

MACT

M
ACT

(b) Path activation after a free RREQ prop-
agation, forming a cycle involving D, B
and E.

Fig. 5. MAODV repair procedure when RREQ messages are allowed to
propagate among tree members. The current distance from the group leader
is shown in parentheses at each node.

tree becomes partitioned, a new leader is elected, and the tree
merging procedure must begin and complete successfully before
the two partitions can reconnect. This results in a long delay to
repair the broken links, hindering communication for a long time.

To overcome this limitation, let us first analyze why MAODV
adopts this rule. Consider the situation in Figure 5(a). In this
case, node C moves outside the communication range of E. Both
nodes experience a link breakage and C, being the downstream
node, triggers the repair procedure by broadcasting a new RREQ.
Node A receives the RREQ, but it cannot respond because of
its greater distance from the current group leader E w.r.t. the
initiator C. Now, suppose that A, instead of ignoring the RREQ as
required by MAODV, rebroadcasts the RREQ, which now reaches
D. Suppose also that D, which is in the same situation as node
A, rebroadcasts the RREQ as well. Both nodes E and B are in
the communication range of D and able to respond with RREPs,
which are received by C along the reverse path set up by the
previous RREQs. At this point, if the reply from E were chosen,
as in Figure 5(b), the MACT message would activate the link
D–E, resulting in a loop involving nodes D, B, and E.

Solution. Looking at the situation in Figure 5, we observe that
the issues arising from an uncontrolled propagation of RREQs
come from the fact that these messages are allowed to propagate
off the tree for more than a single hop. If we force each RREQ to
jump off the tree at most once we prevent loops and, at the same
time, increase the chances that a disconnected node immediately
reconnects. To this end, we extend RREQ with an additional flag
called onTree, and modify the RREQ forwarding rule accordingly.
The flag is initially set to false and remains so while the RREQ
travels along the links of the subtree rooted at the initiator. It
becomes true only after the first hop off the tree. Upon receiving

6

E
(0)

D
(2)

B
(1)

C
(1)

A
(2)

RREQ

RREQ

RREQ RREP

RREP

RREP

(a) RREQs are now allowed to jump off
the tree at most once.

E
(0)

D
(2)

B
(1)

C
(4)

A
(3)

M
ACT

MACT

MACT

(b) After the replacement link is activated,
the distances from the group leader are
updated.

Fig. 6. RREQ propagation using our modified forwarding rule.

a RREQ with the onTree flag set, a node unable to reply stops
broadcasting the message. Moreover, if its ancestor list contains
the initiator identifier (i.e., the node is part of the initiator’s
subtree) it silently drops the message. Otherwise, it forwards the
RREP towards upstream nodes in unicast. Note how forwarding
RREQs downstream is useless because the distance to the current
group leader increases in that direction. Therefore, if the receiving
node is not able to respond, none of its descendants will.

When applied to the situation of Figure 5, the forwarding rule
we just introduced yields the scenario in Figure 6. Once the RREQ
reaches D, it has already jumped off the tree and is now in a
different subtree w.r.t. the one rooted at the initiator. Therefore,
it propagates only upstream: the message is unicast only towards
B, and E plays no role in this reconnection. The RREP sent
by B is safe, as the path it determines contains a single hop
off the tree, and therefore does not create loops if activated. In
Section IV, we provide quantitative results about the effectiveness
of this solution, which allows for faster tree repairs by giving the
disconnected node chances to find a replacement link through one
of its descendants. In Section VI we apply the same technique in a
traditional multicast scenario involving pure message forwarders,
showing its effectiveness even in a situation where the path off
the tree may include several hops up to the other tree partition.

C. Reply Propagation and Link Activation

Problem. As it is clear from Figure 6, our modified mechanism
for propagating RREQs implies that these messages can travel
along the links of the initiator’s subtree, jump off once (the hop
A-D in Figure 6), and then continue along the links of another
branch until they reach a node able to respond, if any. In case
such a responding node exists, the propagation of the MACT up
to it (e.g., the propagation from D to B in Figure 6) is not strictly
needed.

Solution. To avoid the useless propagation of the activation mes-
sage, the node that sets the onTree flag (D in Figure 6) rewrites
the header of the RREP message by replacing the identifier of the
replying node (B in Figure 6) with its own identifier. With this
simple trick, the MACT propagation stops as soon as the selected
link is activated, avoiding useless network traffic.

D. Group Leader Election with a Lost MACT

Problem. We realized that, in MAODV, if a MACT message is
lost the system may end up with a network partition left without
a leader. In fact, as far as the initiator is concerned, a new link
has been found and the related MACT has been sent. Thus, the
initiator considers the repair process as successfully terminated,
and does not try to find a new group leader. However, due to
the MACT loss, there is no active path connecting a member
of this partition to a leader. This is highly undesirable, as the
partition merging procedure requires a working group leader in
each subtree. A partition without a leader will never be able to
merge. We need to address two issues, namely, how to recognize
the absence of a group leader and how to elect a new one.

Solution. Our solution to the first issue relies on the special GRPH
messages flowing along the tree, described in Section III-A. In
the absence of a group leader in a given partition, such messages
are never received. Therefore, the absence of a group leader can
be easily detected by setting a timeout on their reception.

To address the second problem, we exploit the acyclic topology
of the tree by electing as group leader the node whose distance
from the former leader is minimal. This node is unique in each
disconnected subtree and can be determined through a localized
search, requiring each node N to check for the availability of its
upstream node. If such node is still reachable, there is another
node in the same partition with a smaller distance to the former
leader. Otherwise, N is the node with the minimum distance and
can therefore safely elect itself as the new leader. An example
illustrating the process is shown in Figure 7.

One could argue that checking for availability of the upstream
node is superfluous, because the node that is to become the new
leader always coincides with the initiator of the most recent
repair process. Unfortunately, this does not hold in general: an
arbitrary number of disconnections (followed by path activations)
involving nodes in the disconnected subtree may take place while
the initiator is handling the repair process. Consider Figure 8,
where D loses its upstream node C and successfully reconnects
to B, while A loses its upstream node E and does not reconnect
because the MACT message is lost. If we allow any disconnected
node to elect itself as the new leader, then both D and A would
become group leaders, leading to an inconsistent state. To address
this issue, it is sufficient to note that what differentiates D from
A is the fact that D’s upstream node is reachable, while A’s is
not. The check on upstream nodes we described earlier relies on
this observation, and guarantees that A safely becomes the new
group leader. Note that, as a result, our protocol is able to tolerate
an arbitrary number of concurrent repairs.

E. Partition Merging

Problem. As illustrated in Section II, MAODV employs a specific
process for merging partitions, conceptually different from the
normal repair process. This is no longer required when using our

7

A
(1)

D
(3)

C
(2)

E
(0)

B
(2) MACT

MACT

(a) A partition where a MACT is lost. A
has the shortest distance from the leader
of the disconnected partition containing
A, B, C, and D.

A
(0)

D
(2)

C
(1)

E
(0)

B
(1)

CHK U
P

CHK UP

ACK

ACK

(b) Electing a new leader. CHK UP is
the message used for checking if the
upstream node is reachable. If so, this
replies with an ACK. E eventually re-
joins the tree through partition merging.

Fig. 7. Group leader election in case a MACT message is lost.

modified way of propagating RREQ, as partition merging can now
be considered a particular case of the standard repair process.

Solution. In COMAN, each GRPH message is effectively treated
as if it were a special RREQ. In particular, when a node in a
partition P1 hears a GRPH coming from a different partition P2,
it forwards the message as if it were a RREQ with the onTree flag
set, i.e., upstream. Due to the condition on the distance from the
group leader, the only node able to respond to this special RREQ
is the leader in P1. This replies with a standard RREP that follows
the reverse path set up by the GRPH, up to the leader in P2. The
latter reacts by sending a MACT to activate the new link that
connects the two partitions.

In essence, this technique changes neither the number of
messages needed for merging partitions nor the general behavior
of the protocol, which behaves exactly as MAODV to an external
observer. Moreover, our modifications do not affect MAODV’s
ability to join multiple network partitions in subsequent steps.
However, the possibility of managing merging as a normal repair
process greatly simplifies the implementation.

IV. EVALUATION THROUGH SIMULATION

To evaluate the effectiveness of COMAN we measured its
performance in both simulated as well as real settings. Therefore,
we separate the evaluation in two parts. This section presents
the results we obtained in simulated scenarios, with the goal of
showing how COMAN is indeed more reliable and better suited
to CBR than MAODV’s tree maintenance strategy. Instead, Sec-
tion V reports about our real implementation, demonstrating that
our solution can be easily integrated into an existing content-based
publish-subscribe middleware, and evaluating the performance
obtained in a small-scale, real deployment scenario.

Settings. We implemented our protocol using the NS-2 simu-
lator [3]. Table I summarizes the most significant parameters,

A
(1)

D
(3)

C
(2)

E
(0)

B
(2) MACT

MACT

M
ACT

(a) D detects the absence of the group
leader, but it does not try to elect one
because its upstream node is reachable.

A
(0)

D
(2)

C
(1)

E
(0)

B
(1)

CHK UP
ACK

(b) D is connected to its upstream node,
but A is not. A can safely become the
new leader.

Fig. 8. A scenario with two concurrent disconnections and a lost MACT.

along with their default values. While most of them are typical
of simulations in MANETs and do not require further discussion,
it is worth detailing the strategy we adopted for modeling traffic.
Indeed, our goal is to evaluate the ability of COMAN of main-
taining the CBR broker tree even in presence of real network
traffic beyond that needed for tree maintenance, but regardless
of any specific CBR strategy. Accordingly, we decided to have
each node flooding the entire network with “dummy” packets
at a given rate. This traffic generates contention of the wireless
medium and, therefore, collisions and message losses that stress
COMAN’s operations. At the same time, this does not require
any specific assumption about the specific CBR strategy adopted.

We run all simulations until a periodic evaluation of the
variance of all measures is below 1%, which happens around 980
simulated seconds. It is known [49] that this approach gives more
precise results than simply repeating simulations with different
seeds. As a mobility model, we employed Random Waypoint [31],
as this was the model used in the MAODV papers.

A. Evaluating the Broker Tree
Before evaluating the CBR-specific features of COMAN, it is

necessary to assess its ability to keep the tree connected at an

Parameter Range Default value
Simulation area (side) 750 m—2,000 m 1,250 m
Network size 50—100 nodes 75 nodes
Node speed 1 m/s—10 m/s 5 m/s
Flooding traffic rate (per node) no traffic—1 msg/s 0.5 msg/s
Communication range (fixed) 150 m
MAC layer (fixed) IEEE 802.11-2Mb/s
Message Size (fixed) 256 bytes
Warm-up time (fixed) 60 s
Mobility model (fixed) RandomWaypoint [31]

with 0 s pause time

TABLE I
SIMULATION SETTINGS.

8

acceptable cost. Therefore, we consider the following measures:
• The percentage of time the tree remains fully connected
(TC), i.e., with all the nodes connected in a single tree.
A link is considered broken when an underlying beaconing
mechanism recognizes the absence of a neighbor.

• The average number of control messages sent per tree
repair (MS). This includes the RREQ, RREP, MACT, and
GRPH messages used to repair a broken link along with the
messages not strictly involved in the repair process, e.g., the
MACT and GRPH messages needed to update the distance
from the leader.

• The average number of nodes involved in a tree repair (NI),
i.e., the nodes that sent or forwarded at least one RREQ or
RREP message. This measure gives an indirect measure of
the amount of processing overhead our protocol imposes on
the network.

Results. Figure 9 shows the trends w.r.t. the network density
and the number of nodes in the system. As the network den-
sity decreases, performance obviously degrades. In particular,
Figure 9(a) shows that TC rapidly decreases in sparse settings
due to the lack of overall connectivity. Similarly, as the network
becomes more sparse, more messages are needed for a single
tree repair, as shown by the value of MS in Figure 9(b). This
is not surprising, as in sparse networks a RREQ usually needs
to travel farther before finding a node able to respond, if any.
Interestingly, NI shows a small decrease when the side of the
simulation area is between 1,250 and 1,500 m. On one hand, more
nodes are involved when the network is dense because, being
closely located, they are likely to hear the same RREQ message.
On the other hand, we already pointed out how messages often
travel farther in sparse networks, again involving more nodes. The
values between 1,250 m and 1,500 m represent the best trade-off
between these two extremes. The network traffic does not seem to
affect significantly the performance of our protocol, as the curves
for various message rates shown in Figure 9(a), 9(b) and 9(c) are
quite close to each other.

Conversely, Figure 9(d) shows how TC varies w.r.t. the number
of nodes in the system and their speed. TC initially increases
with density until the network becomes so dense that packet
collisions start to affect the protocol’s ability to carry out the
repair processes. The same behavior is exhibited at different node
speeds. However, while there is little difference between scenarios
with speeds of 1 m/s and 5 m/s, a speed of 10 m/s shows a more
marked gap.

NI and MS are not shown in Figure 9(d), as they turned out
to be essentially independent from node speed. This indirectly
supports our claims about the limited reconfiguration impact of
our solution. Indeed, NI and MS are relative to single repair
processes, and speed generally influences only their number.
Therefore, our measures would vary with speed only in the case
of concurrent, overlapping link repair processes. These are more
likely to happen when they span larger portions of the system.
However, the ability of our protocol to confine reconfigurations
to a small portion of the tree makes the probability of concurrent,
overlapping link repair processes very low.

B. Evaluating the Benefits to Content-based Routing
In Section I we pointed out that minimizing the number of

nodes on the reconfiguration path is fundamental to achieve

 0

 20

 40

 60

 80

 100

20001750150012501000750

Ti
m

e
th

e
tre

e
re

m
ai

ns
 fu

lly
 c

on
ne

ct
ed

 (T
C)

Side of the square simulation area (m)

1 msg/s broadcast traffic
0.5 msg/s broadcast traffic

no broadcast traffic

(a) TC vs. side of simulation area.

 6

 8

 10

 12

 14

 16

 18

 20

20001750150012501000750
Co

nt
ro

l m
es

sa
ge

s
se

nt
 p

er
 tr

ee
 re

pa
ir

(M
S)

Side of the square simulation area (m)

1 msg/s broadcast traffic
0.5 msg/s broadcast traffic

no broadcast traffic

(b) MS vs. side of simulation area.

 0

 2

 4

 6

 8

 10

20001750150012501000750

No
de

s
in

vo
lve

d
in

 a
 tr

ee
 re

pa
ir

(N
I)

Side of the square simulation area (m)

1 msg/s broadcast traffic
0.5 msg/s broadcast traffic

no broadcast traffic

(c) NI vs. side of simulation area.

 0

 20

 40

 60

 80

 100

 50 60 70 80 90 100

Ti
m

e
th

e
tre

e
re

m
ai

ns
 fu

lly
 c

on
ne

ct
ed

 (T
C)

Nodes in the system

node speed 10 m/s
node speed 5 m/s
node speed 1 m/s

(d) TC vs. nodes in the system and their speed.

Fig. 9. Evaluating the broker tree: average values for time the tree remains
connected (TC), messages needed for a successful tree repair (MS), and nodes
involved in a repair (NI).

9

 3

 4

 5

 6

 7

 8

 50 60 70 80 90 100

No
de

s
on

 th
e

re
co

nf
ig

ur
at

io
n

pa
th

 (N
R)

Nodes in the system

node speed 10 m/s
node speed 5 m/s
node speed 1 m/s

(a) NR vs. number and speed of nodes.

 3

 4

 5

 6

 7

 8

 9

 10

20001750150012501000750

No
de

s
on

 th
e

re
co

nf
ig

ur
at

io
n

pa
th

 (N
R)

Side of the square simulation area (m)

1 msg/s broadcast traffic
0.5 msg/s broadcast traffic

no broadcast traffic

(b) NR vs. simulation area and network traffic.

Fig. 10. Average number of nodes needing routing reconfiguration (NR).

efficient CBR using a tree network. We here show that COMAN
addresses this requirement effectively. To this end, we evaluate
the average number of nodes on the reconfiguration path (NR)
per successful repair process. Notice that the minimum number of
nodes on the reconfiguration path is three. Indeed, having just two
nodes on the reconfiguration path would imply that the initiator
reconnected to the same end-point of the broken link. This is
clearly a degenerate case that should not happen.

Results. The measures we obtained are reported in Figure 10.
These confirm that COMAN is indeed able to limit the number
of nodes on the reconfiguration path. This naturally implies that
most of the nodes in the system do not change their routing
decisions because of a link disruption, and CBR mechanisms can
maintain their effectiveness despite topological reconfigurations.
Remarkably, NR decreases as the number of nodes in the system
increases, as illustrated in Figure 10(a). This can be explained
by considering the combined effect of the modifications we
introduced in Section III-A and III-B. With more nodes in the
system, our changes to RREQ propagation enable more nodes to
reply. In addition, our policy for selecting the path to be activated
picks the one guaranteeing the minimum reconfiguration path
among those available.

Figure 10(a) also shows that, as the node speed increases, NR
slightly increases as well. This trend is due to transient effects
where nodes in a formerly disconnected subtree do not receive
the MACT update regarding their ancestors. This can happen
because, as speed increases, a link in this subtree may fail before
such a message arrives. In this case, the nodes downstream of the
failed link do not have up-to-date information on their ancestors,

which is used to compute the length of the reconfiguration paths
available. Clearly, this yields sub-optimal selections of RREP
messages.

Figure 10(b) shows a trend for NR similar to those observed for
NI and MS. As the network is more sparse, the reconfiguration
path is longer. Similarly to what observed for NI and MS, network
traffic does not seem to influence NR significantly.

C. Evaluating the Improvements over MAODV

To quantitatively evaluate the improvements in a CBR scenario
w.r.t. MAODV’s tree maintenance, here we describe simulation
results comparing the two protocols. We compare them on the
same mobility traces, in their ability to keep the CBR tree
connected, using the MAODV implementation in [1]. We define
#X = XCOMAN−XMAODV

XMAODV
× 100 as the percentage difference

of measure X between our solution and MAODV. In partic-
ular, we focus on #TC and #NR, the latter being computed
considering successful reconfigurations only. #TC highlights the
impact of our mechanisms for request propagation and link
activation (Section III-B and III-C) as well as the effectiveness of
the leader election procedure (Section III-D). These procedures
enable COMAN to find replacement links when MAODV would
not. The leader election procedure solves inconsistent states where
a network partition is left without a group leader by proactively
electing a new one, cutting down the time needed for partition
merging. On the other hand, #NR assesses the effectiveness of
our policy for selecting the replacement link (Section III-A) by
highlighting the improvements we obtain in the number of nodes
on the reconfiguration path.

Notice that the mechanisms we illustrated in Section III do
not have a direct impact on #NI and #MS, and the simulations
confirm this behavior. For this reason, we do not show them here.

Results. As evidenced by Figure 11(a), for what concerns TC CO-
MAN achieves sensible improvements over MAODV, increasing
as the number of nodes in the system grows. The improvement is
even more prominent as the number of link breakages increases
because of higher speeds. This is not surprising, as our mecha-
nisms affect the performance of single repair processes, and their
total impact becomes more and more relevant as the number of
link breakages in the system increases.

Furthermore, the number of nodes on the reconfiguration path,
NR, is greatly diminished using the mechanism we proposed in
Section III-A, as shown in Figure 11(b). The gain w.r.t. MAODV
is higher at lower node speed because, with less link breakages,
nodes are more likely to have up-to-date information on their
ancestors, as discussed earlier. The same trend is exhibited as
the number of hosts in the system increases. With more hosts in
the system, more replies are received, providing the initiator with
more options to minimize NR.

By varying the simulation area, #TC and #NR exhibit trends
similar to the ones in Figure 11(a) and 11(b), with better
performance in sparse networks. Moreover, they are basically
independent of network traffic.

V. EVALUATION THROUGH REAL-WORLD EXPERIMENTS

We implemented COMAN in a small (19 Kbyte of jar file)
Java software component [2] designed to be fully decoupled w.r.t.
the CBR protocol employed. Middleware developers can easily

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 60 70 80 90 100

%
 d

iff
er

en
ce

 in
 ti

m
e

th
e

tre
e

is
co

nn
ec

te
d

Nodes in the system

node speed 10 m/s
node speed 5 m/s
node speed 1 m/s

(a) Percentage difference in the time the tree remains fully
connected (!TC).

-50

-40

-30

-20

-10

 0

 50 60 70 80 90 100

%
 d

iff
er

en
ce

 in
 n

od
es

 o
n

th
e

re
co

nf
ig

ur
at

io
n

pa
th

Nodes in the system

node speed 10 m/s
node speed 5 m/s
node speed 1 m/s

(b) Percentage difference in the number of nodes required to
change routing information (!NR).

Fig. 11. Comparing COMAN against MAODV’s tree maintenance.

integrate it into their own CBR systems to support MANET
scenarios.

We integrated our component in REDS (REconfigurable Dis-
patching System) [4], [19], a content-based publish-subscribe
middleware we developed that exploits the deferred unsubscrip-
tion technique described in [40] to reconfigure the routing in-
formation in face of changes in the broker tree topology. This
allowed us to verify the performance of COMAN experimentally.
In doing this, we were clearly limited to small scale scenarios.
Nevertheless, the experiments we ran provide interesting insights
about the trends and values of the critical parameters at stake.

Scenario. In our experiments, eight users participated by carrying
a laptop equipped with a 802.11g wireless card configured in ad-
hoc mode and without any encryption. The measured commu-
nication range was about 35 m. Users moved in a 60 × 150 m
area in a park behind our department. Therefore, the resulting
network scenario was rather sparse. Each user was instructed to
move according to the Random Waypoint mobility pattern [31],
randomly choosing a target point within the test area and walking
towards it along a straight line and with constant speed. Upon
reaching the target, the user stopped for a random time between
20 s and 60 s, and then repeated the process. We also ran
experiments using Random Waypoint extended with “hot spots”
as well as the Column mobility model. However, these results are
omitted here because they are very similar to those obtained with
Random Waypoint.

Traffic was generated by a client installed on each laptop,
publishing between 1 and 24 msg/s. These publish rates can be

regarded as an overestimate of the real traffic of CBR applications
targeted to MANETs [32]. Each message was generated with a
0.1 probability of matching a subscription. Subscriptions were
allowed to change dynamically. Notice that, differently from the
network traffic we used in simulation, this time we ran actual
content-based application traffic, with messages delivered only
to the nodes that expressed an interest in them. Each test was
repeated three times and lasted 11 minutes, with measures starting
after the first minute.

Metrics. To provide a measure of the mobility in our scenario,
we measured the disconnection frequency (DF), i.e., the average
number of link breakages per minute. This information is relevant
as the rules our volunteers were given cannot describe precisely
the degree of mobility the system experienced. In the setting we
described, DF was on average 15.3 link breakages per minute.

Most importantly, we measured the message delivery ratio
(MDR), i.e., the ratio between the published messages actually
delivered to a client and the overall number of published messages
matching at least one subscription at that client. This figure
basically represents, from the application point of view, the effec-
tiveness of the CBR facility as a whole, achieved by combining
a given routing strategy with a tree maintenance protocol and a
solution to update CBR information when the topology changes.
The MDR was measured by relying on a stable core, as in [40].
In addition, we also measured the control overhead (CTRL),
defined as the ratio between the number of control messages
used to maintain the tree connected and the number of published
messages that, matching at least one subscription, actually flow in
the network. Basically, CTRL describes the impact of messages
for tree maintenance in the presence of real application traffic.

Observe that, differently from the simulation results in Sec-
tion IV, here we do not consider NR and NI, as the small scale
of the system makes these measures pointless.

Results. Figure 12(a) shows CTRL against the publish rate. The
chart confirms the simulation results: the traffic generated by
control messages for tree maintenance is quite independent of
the application traffic. Accordingly, CTRL quickly decreases as
the publish rate increases.

More importantly, Figure 12(a) also shows the message deliv-
ery ratio (MDR) against the publish frequency. Given the high
dynamicity of our scenario, where mobility induces frequent
network partitions, the values in the chart are good, especially
by considering that no additional measure is taken to recover
lost messages. Indeed, by complementing the base delivery shown
with a protocol providing such message recovery (e.g., the one
described in [16]), we expect to easily obtain a full delivery of
100%. Again, the figure shows that COMAN is only marginally
influenced by the application traffic: an increase from 1 to 24
publish/s brings only a 15% reduction in message delivery, a
measure of good scalability.

Figure 12(b) elaborates on this by focusing on the message
delivery ratio (MDR) over time. The message delivery ratio drops
upon disconnection. By looking at our logs, we determined that
MDR reaches the lowest values either when both publisher and
subscriber belong to different partitions (e.g., at 250 s and 350 s
in Figure 12(b)) or when multiple disconnections and reconfigu-
rations occur concurrently, increasing the time required to restore
connectivity. Furthermore, note how the charts show fairly large
intervals (e.g., from 50 s to 200 s) where only a few messages

11

 0

 20

 40

 60

 80

 100

2420151051

M
DR

 a
nd

 C
TR

L
(%

)

Publish rate (messages/s)

Message delivery ratio (MDR)
Control overhead (CTRL)

(a) Message delivery ratio (MDR) and control overhead
(CTRL) vs. publish rate.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

M
es

sa
ge

 d
el

ive
ry

 ra
tio

 (M
DR

)

Time (s)

(b) Message delivery ratio (MDR) vs. time for a randomly
selected publisher and a core subscriber, publish rate of 8
messages/s.

Fig. 12. Performance of the REDS system running with our topology
maintenance protocol.

are lost. Given the aforementioned fairly high disconnection
frequency (i.e., DF=15.3 disconnections per minute) observed in
our setting, it is likely that several link breakages affected the
path between the considered publisher and the subscriber during
that time frame. This shows how COMAN is able to repair the
tree quickly enough so that only a few messages are lost due to
a link breakage.

VI. A LOOK BACK AT MULTICAST

After having verified that COMAN effectively supports CBR
in MANETs, an interesting question is whether it performs well
also in original MAODV scenario, i.e., multicast communication.
In particular, as anticipated in Section III-B, we are interested
in investigating whether the technique adopted by COMAN to
propagate RREQs is effective even in the presence of pure
message forwarders.

Settings. The simulations are carried out using the same settings
of Section IV. Instead of using “dummy” traffic, we allow each
sender to generate multicast packets addressed to a single multi-
cast group at a rate of 1 msg/s. Each message is 256 byte in size.
Sender and receiver nodes are selected randomly among the 75
nodes in the system with the only constraint that a sender cannot
be a receiver as well. As we did in Section V, we want to assess
the effectiveness of COMAN coupled with a specific routing
scheme, which in this case is pure multicast communication.
Therefore, we take MDR and CTRL as performance figures.

Obviously, these are defined here by considering multicast packets
as application traffic.

Results. Figure 13 illustrates some of the results we obtained by
varying node speed and network density. In particular, COMAN
outperforms MAODV by providing higher delivery ratios with
lower control traffic. These results are clearly due to the ability
of our solution to keep the tree more connected than MAODV.
In turn, this ability comes from the mechanisms we described
in Section III-B, III-C, and III-D, whose combined effect is to
i) find a replacement link where MAODV would end up with a
network partition, and ii) lower the time to restore connectivity
to the tree. Conversely, the policy to select the path to activate
discussed in Section III-A (and designed explicitly for CBR)
does not affect the protocol’s ability to work in a multicast
scenario. The mechanism we devised to reduce the number of
nodes on the reconfiguration path simply changes the shape of
the resulting topology, without affecting the ability of the tree to
deliver messages to members of a multicast group.

The trends obtained from these simulations show also increas-
ing gains for COMAN as the network becomes more sparse.
As discussed in Section IV-C, this is due to the way RREQ
messages are propagated among members of the tree, which
enables our protocol to find replacement links where MAODV
would not receive any reply. Finally, by comparing the results
obtained with nodes moving at 1 m/s, shown in Figure 13(a) and
13(b), with the ones reported in Figure 13(c) and 13(d) gathered
with nodes moving at 10 m/s, one can easily appreciate how the
improvements obtained are reasonably independent of node speed.

VII. RELATED WORK

In this section we survey related work in CBR, our target
domain, as well as in multicast communication for MANETs,
the domain that inspired this work.

Content-based Routing. CBR in dynamic environments is a
challenging issue. The research community has tackled this
problem either by trying to adapt solutions designed for existing
systems, which mostly use tree-shaped overlay topologies, or by
developing dedicated routing mechanisms.

In this work we described and evaluated a protocol to organize
the nodes of a MANET in a self-repairing tree enabling the
former approach, regardless of the specific CBR scheme in use.
In this sense, close to our work is the proposal in [29], which
presents a way to implement a content-based publish-subscribe
service on a MANET by constructing a hierarchical topology
to distribute messages. However, the authors make fairly con-
straining assumptions, in that they assume knowledge about the
placement of publishers (always at the root) and the distribution
of messages w.r.t. subscriptions. Also, the evaluation is carried
out by simulation in quasi-static scenarios where a node moves
only occasionally and then settles down for a period of the order
of minutes. For these reasons, their results are not comparable
with ours.

A different form of content-based publish-subscribe is proposed
in [13], where the authors describe mechanisms to reconfigure an
overlay network according to the changes in the physical topology
and to the current brokers’ load. Unlike our solution, each broker
must be provided with a global view of the system. Moreover,
this proposal does not handle partitions and strongly relies on an

12

 0

 5

 10

 15

 20

 25

20001750150012501000750

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 in
 M

DR

Side of the square simulation area (m)

1 send - 10 recv, 1m/s
10 send - 20 recv, 1m/s
10 send - 50 recv, 1m/s

(a) Percentage difference in message delivery ratio (!MDR),
node speed of 1 m/s.

-25

-20

-15

-10

-5

 0

20001750150012501000750

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 in
 C

TR
L

Side of the square simulation area (m)

1 send - 10 recv, 1m/s
10 send - 20 recv, 1m/s
10 send - 50 recv, 1m/s

(b) Percentage difference in control overhead (!CTRL), node
speed of 1 m/s.

 0

 5

 10

 15

 20

 25

20001750150012501000750

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 in
 M

DR

Side of the square simulation area (m)

1 send - 10 recv, 10m/s
10 send - 20 recv, 10m/s
10 send - 50 recv, 10m/s

(c) Percentage difference in message delivery ratio (!MDR),
node speed of 10 m/s.

-25

-20

-15

-10

-5

 0

20001750150012501000750

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 in
 C

TR
L

Side of the square simulation area (m)

1 send - 10 recv, 10m/s
10 send - 20 recv, 10m/s
10 send - 50 recv, 10m/s

(d) Percentage difference in control overhead (!CTRL), node
speed of 10 m/s.

Fig. 13. COMAN vs. MAODV in multicast scenarios.

underlying unicast protocol. Finally, results are not comparable
with ours, as the evaluation concerns a testbed with only 3 nodes.

In [47], [48] the authors propose an extension to the
ODMRP [34] multicast protocol to enable CBR on MANETs. The
dissemination infrastructure is built using summaries of content-
based subscriptions coded as Bloom filters. Again, the results are
obtained only in a small-scale simulated scenario of 10 nodes and
only with controlled reconfigurations, i.e., insertion or removal of
a single link.

The aforementioned works try to achieve efficient CBR by
relying on some form of tree. On the contrary, in highly mobile
scenarios the overhead to maintain a tree may become unreason-
able. Recently, our group addressed this problem in two ways.
The work in [17] proposes a semi-probabilistic approach to CBR
where subscriptions are forwarded only up to a given number of
hops from the subscriber. Where there is no deterministic informa-
tion, messages are forwarded to a randomly selected subset of the
neighbors. Instead, in [5] each node autonomously decides about
forwarding messages, based on its estimated distance from the
closest node interested in the content of the message. This value
is computed by measuring the time since they were most recently
able to communicate. In principle, the aforementioned approaches
should perform more efficiently than the one described here
in highly mobile scenarios. Conversely, the solution described
in this work should be more effective in settings with lower
mobility, e.g., when node movement can be modeled according
to a group mobility pattern [9]. An extensive evaluation of the
three approaches is in our immediate research agenda.

A different solution is described in [50], where a form of CBR
is proposed to disseminate information coming from sensor-like
devices to mobile units within a scope defined by time and space
constraints. The scenario and assumptions taken in this case are
fairly restrictive. For instance, the authors assume information
about the position, speed and direction of mobile units and
monitored phenomena. Furthermore, they deal with multi-hop
communication by relying on a unicast routing protocol. In this
work we considered a much more general scenario and more
easily verified assumptions—basically, the availability of local
broadcast and unicast.

Additional techniques to address the peculiarities of content-
based mobile scenarios are discussed in [28], [36]. The work
in [28] relies on replication to overcome the challenges stemming
from node mobility. In [36] proximity filters are proposed to
define a spatial scope where messages are delivered to the mobile
nodes interested in their content. These works do not propose any
dedicated routing solution, rather focusing on architectural and
design issues. Further investigation is needed towards a possible
integration with the solution presented here.

Multicast Communication. The work described here adapted
the topology maintenance mechanisms of MAODV to a CBR
scenario. The rationale behind the choice of MAODV has already
been discussed in Section I. However, here we report about
other proposals in the field of MANET multicast that are close
to our requirements, i.e., maintaining a flat (i.e., no hierarchies
or backbones) acyclic network in the presence of mobility. A
comprehensive survey on the subject can be found in [14], [35].

One way of achieving multicast communication in MANETs is
to implement it on top of the MAC layer, therefore tackling mobil-
ity and link disruptions directly at the network layer. Alternatively,
one can rely on some underlying multi-hop unicast mechanism

13

providing point-to-point communication, and let this deal with
mobility and reconfigurations1. Notice how the second approach
creates a layer of indirection hiding many aspects related to
reconfiguration. Instead, we want to retain control of mobility, to
tailor the broker tree reconfiguration to our needs. Inevitably, this
implies removing any intermediate layer between the topology
maintenance mechanism and the network itself.

In AMRIS (Ad-Hoc Multicast Routing protocol utilizing In-
creasing id-numberS) [45] a bidirectional shared tree is built by
exploiting a ranking order among group members. The link repair
process is somehow similar to MAODV, with the downstream
node trying to reconnect by looking for a new parent node. The
modification we illustrated in Section III-B makes this process
more general and able to find farther replacement links. CAMP
(Core Assisted Mesh Protocol) [23] and ODMRP (On-Demand
Multicast Routing Protocol) [34] exploit mesh-like topologies.
With respect to the tree-shaped network provided by MAODV,
they provide redundant paths at the expense of additional pro-
cessing for maintaining multiple routes and discarding duplicates.
Similarly to MAODV, CAMP and AMRoute require at least
one special node for reconnecting lost partitions. ODMRP and
MAODV have been extensively compared in [44], showing that
the former provides better packet delivery at the expense of
higher network traffic, and thus reduced scalability. DCMP [20]
is another source-initiated multicast protocol that exploits a mesh
topology similar to ODMRP. However, in this case the control
overhead is improved by dividing sources into active and passive.
Active sources are responsible for creating a shared mesh also on
behalf of the passive ones associated to them.

AMRoute (Ad-Hoc Multicast Routing) [7], [46] is a tree-
based protocol that exploits unicast tunnels to connect the group
members. However, this may result in duplicate traffic when
different unicast tunnels exploits the same physical links. The
multicast protocol relies completely on the underlying unicast
protocol to face mobility. Unicast tunnels are also used in LGT
(Location Guided Tree) [11], [12]. However, when a node receives
a data packet from its parent, the identities of the children are
taken directly from the packet header, instead of being stored
locally at the node. PAST-DM (Progressively Adapted Sub-Tree
algorithm on Dynamic Mesh) [25] also exploits unicast tunnels.
In this case, however, the authors focus on the construction of an
optimized virtual topology on top of the unicast facility obtained
through a source-based Steiner tree algorithm. Finally, in ALMA
(Application Layer Multicast Algorithm) [24] reconfigurations are
triggered when application-defined thresholds on link qualities
are violated, and overlay maintenance is implemented by having
children in the tree looking for new parents. How far the new
parent should be searched is decided based on how severe is the
link disruption, i.e., how much the measured link quality violated
the corresponding threshold.

Finally, let us recall that the problem of building a tree topol-
ogy goes far beyond network protocols for MANETs. Similar
problems have been faced for multicast communication in wired
networks [43]. In these scenarios, the Dijkstra algorithm [21]
is often used to compute the minimum spanning tree rooted at
a source node. However, this assumes global knowledge of the
network topology. Furthermore, a large body of research has been
devoted to this or similar problems in the field of operational

1This approach is also known as overlay multicast [26].

research and graph theory [6]. However, the problem formulation
in this case is quite different, as the focus is on determining
the optimal spanning tree on top of a general graph according
to some predefined metric. Moreover, most algorithms work on
a centralized representation of the graph (e.g., [33]), and are
therefore not suited to a distributed setting with partial topology
knowledge like MANETs.

VIII. CONCLUSIONS

In this paper we presented and evaluated COMAN, a protocol
for maintaining a tree-shaped network interconnecting the brokers
of a CBR network in a MANET scenario. COMAN is designed
to tolerate the dynamics of the underlying physical network char-
acteristic of MANETs. Moreover, it is also designed to minimize
the number of brokers whose routing information are affected
by topological changes, therefore improving the efficiency of the
CBR network as a whole.

COMAN builds upon the tree maintenance algorithm found in
the MAODV multicast protocol for MANETs. We extended this
algorithm in a novel way for use in a CBR network, precisely to
achieve the aforementioned goals. COMAN was evaluated using
simulated, as well as real-world experiments leveraging off our
implementation. Results show that the protocol we propose meets
the requirements for use in a CBR network, and yields good
performance. The latter is significantly better than the original
MAODV tree maintenance strategy, therefore showing that our
solution does have a strong impact in achieving the desired
properties of the broker network.

COMAN is available as open source at [2].

Acknowledgements. We are indebted to Davide Frey and Amy
Murphy for their insightful comments and discussions about the
topic of this paper. We are also grateful to Antonio Capone,
Jon Crowcroft, Renato Lo Cigno, and Mirco Musolesi for their
precious comments on an early draft of this paper. The work
described here is partially supported by the Italian Ministry of
Education, University and Research (MIUR) under the VICOM
project, by National Research Council (CNR) under the IS-
MANET project, and by the European Union under the IST-
004536 RUNES and IST-034963 WASP projects.

REFERENCES

[1] Carleton University - MAODV extensions for NS-2. www.sce.
carleton.ca/wmc/code.html.

[2] COMAN Web page. home.dei.polimi.it/mottola/coman.
[3] NS-2 Simulator Web Page. www.isi.edu/nsnam/ns.
[4] REDS Web page. zeus.elet.polimi.it/reds.
[5] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni.

Structure-less content-based routing in mobile ad hoc networks. In Proc.
of the IEEE Int. Conf. on Pervasive Services, 2005.

[6] B. Bollobas. Modern Graph Theory. Springer, 2002.
[7] E. Bommaiah, M. Liu, A. McAuley, and R. Talpade. AMRoute: Ad-hoc

multicast routing protocol. IETF Internet draft, 1998. www.ietf.org/
internet-drafts/draft-talpade-manet-amroute-00.
txt.

[8] A. Bulut, A. K. Singh, and R. Vitenberg. Distributed data streams
indexing using content-based routing paradigm. In Proc. of 19th IEEE
Int. Parallel and Distributed Processing Symposium (IPDPS), 2005.

[9] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research. Wireless Communications and Mobile Computing,
2(5):483–502, 2002.

[10] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation
of a Wide-Area Event Notification Service. ACM Trans. on Computer
Systems, 19(3), August 2001.

14

[11] K. Chen and K. Nahrstedt. Effective location-guided tree construction
algorithms for small group multicast in MANET. In Proc. of INFOCOM
2002, volume 3, 2002.

[12] K. Chen and K. Nahrstedt. Effective location-guided overlay multicast in
mobile ad hoc networks. Int. Journal of Wireless and Mobile Computing
(IJWMC), Special Issue on Group Communications in Ad Hoc Networks,
2005.

[13] Y. Chen and K. Schwan. Opportunistic overlays: Efficient content
delivery in mobile ad hoc networks. In Proc. of the 5th Int. Middleware
Conf., 2005.

[14] C. Cordeiro, H. Gossain, and D. Agrawal. Multicast over wireless mobile
ad hoc networks: present and future directions. IEEE Network, 17(1),
2003.

[15] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G. P.
Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis. The RUNES
middleware for networked embedded systems and its application in a
disaster management scenario. In Proc. of the 5th Int. Conf. on Pervasive
Communications (PerCom), 2007.

[16] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic
algorithms for reliable content-based publish-subscribe: An evaluation.
In Proc. of the 24th Int. Conf. on Distributed Computing Systems
(ICDCS), 2004.

[17] P. Costa and G. P. Picco. Semi-probabilistic content-based publish-
subscribe. In Proc. of the 25th Int. Conf. on Distributed Computing
Systems (ICDCS), 2005.

[18] G. Cugola, D. Frey, A. Murphy, and G. P. Picco. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In Proc.
of the 19th ACM Symp. on Applied Computing (SAC), 2004.

[19] G. Cugola and G.P. Picco. REDS: A reconfigurable dispatching
system. In Proc. of the 6th Int. Workshop on Software Engineering
and Middleware (SEM), 2006.

[20] S.K. Das, B.S. Manoj, and C. Siva Ram Murthy. A dynamic core based
multicast routing protocol for ad hoc wireless networks. In Proc. of the
3rd ACM Int. Symp. on Mobile Ad-hoc Networking & Computing, 2002.

[21] E.W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1, 1959.

[22] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys, 2(35), June 2003.

[23] J.J. Garcia-Luna-Aceves and E.L. Madruga. The core assisted mesh
protocol. IEEE Journal on Selected Areas in Communications, 17(8),
1999.

[24] M. Ge, S.V. Krishnamurthy, and M. Faloutsos. Application versus
network layer multicasting in ad hoc networks: The ALMA routing
protocol. Ad Hoc Networks Journal, 4, 2006.

[25] C. Gui and P. Mohapatra. Efficient overlay multicast for mobile ad hoc
networks. Wireless Communications and Networking, 2, 2003.

[26] C. Gui and P. Mohapatra. Scalable multicasting in mobile ad-hoc
networks. In Proc. of INFOCOM 2004, 2004.

[27] D. Heimbigner. Adapting publish/subscribe middleware to achieve
Gnutella-like functionality. In Proc. of the 8th ACM Symposium on
Applied Computing, pages 176–181, 2001.

[28] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile enviro-
ment. In Proc. of the 2nd ACM Int. Workshop on Data engineering for
Wireless and Mobile access (MOBIDE), 2001.

[29] Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in
wireless ad-hoc networks. In Proc. of the 4th Int. Conf. on Mobile Data
Management (MDM), 2003.

[30] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Trans.
Networking, 11(1), 2003.

[31] D. B. Johnson, D. A. Maltz, and J. Borch. DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. Addison-
Wesley, 2001.

[32] S. Kalasapur, K. Senthivel, and M. Kumar. Service oriented pervasive
computing for emergency response systems. In Proc. of the 4th IEEE
Workshop on Ubiquitous and Pervasive Health Care (UBICARE), 2006.

[33] J.B. Kruskal. On the shortest spanning subtree and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7, 1956.

[34] S. J. Lee, W. Su, and M. Gerla. On-demand multicast routing protocol
in multihop wireless mobile networks. ACM/Baltzer Mobile Networking
and Applications, 7(6), 2002.

[35] S. J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A performance
comparison study of ad hoc wireless multicast protocols. In Proc. of
INFOCOM 2000, volume 2, 2000.

[36] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wireless
Ad Hoc Network. In Proc. of the 22nd Int. Conf. on Distributed
Computing Systems (ICDCS), 2002.

[37] G. Muhl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems.
Springer, 2006.

[38] L. Opyrchal et al. Exploiting IP multicast in content-based publish-
subscribe systems. In Proc. of the 2nd Int. Middleware Conf., 2000.

[39] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing.
In Proc. of 2nd IEEE Workshop on Mobile Computing Systems and
Applications, 1999.

[40] G. P. Picco, G. Cugola, and A. Murphy. Efficient content-based event
dispatching in the presence of topological reconfigurations. In Proc. of
the 23rd Int. Conf. on Distributed Computing Systems (ICDCS), 2003.

[41] E. Royer and C. Perkins. Multicast Ad hoc On- Demand Distance Vector
(MAODV) Routing. IETF, Internet Draft. Available at www.cs.ucsb.
edu/˜ebelding/txt/maodvid.ps, 2000.

[42] E. M. Royer and C. E. Perkins. Multicast operation of the ad-hoc on-
demand distance vector routing protocol. In Proc. of ACM MobiCom,
1999.

[43] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1996.
[44] K. Viswanath, K. Obraczka, and G. Tsudik. Exploring Mesh and Tree-

Based Multicast Routing Protocols for MANETs. IEEE Trans. on Mobile
Computing, 5(1), 2006.

[45] C.W. Wu, Y.C. Tay, and C.-K. Toh. Ad hoc Mul-
ticast Routing protocol utilizing Increasing id-NumberS
(AMRIS) Functional Specification”. IETF, Internet-draft.
Available at www.ietf.org/internet-drafts/
draft-talpade-manet-amris-spec-00.txt, November
1998.

[46] J. Xie, R.R. Talpade, A. McAuley, and M. Liu. AMRoute: ad hoc multi-
cast routing protocol. ACM/Baltzer Mobile Networking and Applications,
7(6), 2002.

[47] E. Yoneki and J. Bacon. An adaptive approach to content-based
subscription in mobile ad hoc networks. In Proc. of the 1st Int. Workshop
on Mobile Peer-to-Peer Computing (MP2P), 2004.

[48] E. Yoneki and J. Bacon. Content-based routing with on-demand
multicast. In Proc. of the 3rd Int. Workshop on Wireless Ad Hoc
Networking (WWAN), 2004.

[49] J. Yoon, M. Liu, and B. Noble. Sound mobility models. In Proc. of
ACM MobiCom, 2003.

[50] H. Zhou and S. Singh. Content-based multicast (CBM) in ad hoc
networks. In Proc. of the 1st ACM Int. Symp. on Mobile Ad-hoc
Networking & Computing, 2000.

15

Luca Mottola Luca Mottola is a Ph.D student
at Politecnico di Milano (Italy). He received the
Dr.Eng. degree in Computer Engineering from Po-
litecnico di Milano (Italy) in 2004, and the M.Sc.
in Computer Science from the University of Illinois
at Chicago (USA) in 2005. His research interests
include programming abstractions, distributed com-
puting, and routing for wireless sensor networks, and
formal verification of distributed software architec-
tures. More information at http://home.dei.
polimi.it/mottola/.

Gianpaolo Cugola Gianpaolo Cugola received his
Dr.Eng. degree in Electronic Engineering from Po-
litecnico di Milano. In 1998 he received the Prize
for Engineering and Technology from the Dimitri
N. Chorafas Foundation for his Ph.D. thesis on
Software Development Environments. He is cur-
rently Associate Professor at Politecnico di Milano
where he teaches several courses in the area of
Computer Science. He has been involved in sev-
eral projects financed by the EU commission (IST-
034963 WASP, IST-511556 POMPEI, IST-11400

MOTION, ESPRIT-34840 PIE, ESSI-21244 MIDAS), and by the Italian
governor. He is co-author of tens of scientific papers published in international
journals and conference proceedings. His research interests are in the area
of Software Engineering and Distributed Systems. In particular, his current
research focuses on middleware technology for largely distributed and highly
reconfigurable distributed applications with a special attention to the issue
of Content Based Routing as the basic mechanism to develop advanced
middleware services like publish/subscribe and data sharing.

Gian Pietro Picco Gian Pietro Picco is an Asso-
ciate Professor in the Dipartimento di Ingegneria e
Scienza dell’Informazione (DISI) at University of
Trento, Italy. Previously, he has been on the faculty
of Washington University in St. Louis, MO, USA
(1998-1999) and Politecnico di Milano, Italy (1999-
2006). The goal of his current research is to ease the
development of modern distributed systems through
the design and implementation of appropriate pro-
gramming abstractions and of communication pro-
tocols efficiently supporting them. His work spans

the research fields of software engineering, middleware, and networking, and
is oriented in particular towards wireless sensor networks, mobile computing,
and large-scale distributed systems. More information at http://disi.
unitn.it/˜picco.

