
Anquiro: Enabling Efficient Static Verification
of Sensor Network Software

Luca Mottola, Thiemo Voigt,
Fredrik Österlind, Joakim Eriksson
Swedish Institute of Computer Science

{luca, thiemo, fros, joakime}@sics.se

Luciano Baresi, Carlo Ghezzi
Politecnico di Milano, Italy

{baresi, ghezzi}@elet.polimi.it

ABSTRACT
We present ANQUIRO, a domain-specific model checker for stati-
cally verifying the correctness of sensor network software. In this
context, static verification has hitherto received little attention, as
state space explosion problems may prevent applying these tech-
niques. ANQUIRO overcomes this limitation by providing different
abstraction levels depending on the functionality to verify, and by
implementing domain-specific state abstractions within the check-
ing engine. We demonstrate the use of ANQUIRO in verifying the
correctness of a widely used data dissemination protocol. This
study allows us to identify issues that the protocol may overlook.
Moreover, our evaluation of ANQUIRO’s performance shows that it
drastically reduces the number of states generated during the veri-
fication, preventing state space explosion problems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking

General Terms
Design, Verification

Keywords
Wireless sensor networks, Static verification

1. INTRODUCTION
Many deployments of Wireless Sensor Networks (WSNs) have

failed due to software and hardware issues [10]. Failures may hap-
pen even after careful testing in simulation and testbeds, since the
real-world conditions encountered at deployment time are in gen-
eral different from those in the lab. These trigger untested execution
paths, revealing previously unknown issues. As a result, assessing
the correctness of WSN software is a major challenge.

The current practice, described in Section 2, includes using sim-
ulators/emulators to investigate the system behavior prior to de-
ployment, or relying on WSN-specific debugging tools to deal with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-969-5/10/05 ...$10.00.

issues arising in the field. Both types of solutions only identify is-
sues when and if they arise. In addition, the former approaches ex-
pose only a partial view on the possible system executions, dictated
by arbitrary simulation parameters such as random seeds. The latter
approaches, instead, may identify issues without however showing
the corresponding causes. Some of these tools must also defend
against so-called “heisenbugs” [27], where the debugging infras-
tructure affects the system behavior to the point of causing issues
that would not be present otherwise.

Static verification appears to be an ideal complement to the above
approaches, providing complete and sound verification of WSN
software against user-specified properties. Completeness entails
that a property violation is always found if present, whereas sound-
ness guarantees that no false property violations are detected. The
properties may describe desired behaviors or invariants over the
system state, e.g., a requirement that a tree-based routing protocol
never creates loops. Upon detecting a property violation, the tools
return counter-examples showing the complete system execution
leading to the property violation. This represents an asset during
development, as it makes easier to identify the causes of the issue.

Existing approaches for static verification of WSN software, how-
ever, focus on very specific problems, e.g., concurrency issues in
multi-threading libraries [3]. Generalizing these solutions is diffi-
cult because of the diversity in the functionality to verify. These
range from application-level processing to hardware-specific func-
tionality, and thus operate at different abstraction levels. In most
cases, details that are relevant to an abstraction level are immate-
rial for others. Even within a single abstraction level, simple frag-
ments of code may generate large state spaces. Many of these states
are generated only because of the generality of algorithms used
in general-purpose tools [9], which do not exploit domain-specific
knowledge to save on generated states. However, these states may
not be necessary to examine for the property at hand.

Leveraging this observation, we build upon our prior work [2]
on domain-specific verification of Publish/Subscribe architectures,
and present ANQUIRO, a WSN-specific model checker based on the
Bogor model checker [19]. The tool works in a two-step fashion.
The source code is first translated into ANQUIRO-specific mod-
els. Next, it is verified against user-provided properties. ANQUIRO
overcomes state space explosion problems during verification by:

• providing different abstraction levels depending on the func-
tionality to verify, as described in Section 3. For instance, if
users want to verify the implementation of application-level
functionality, the tool operates by abstracting away the low-
level communication aspects that are irrelevant from the ap-
plication perspective. These may include, for instance, dif-
ferent causes of packet losses, as the application is only inter-
ested in whether packets are lost, independently of the cause.
• augmenting Bogor’s modeling language with domain-specific

constructs depending on the abstraction level, and implement-

Model Checker

Input Models

Checking Engine

Model Checker Input Language

WSN-Specific
Abstractions

(a) Standard approach to the verifi-
cation of WSN functionality.

Model Checker

Input Models

Model Checker Input Language + WSN-Specific Constructs

WSN-Specific
Abstractions

Checking
Engine

(b) ANQUIRO approach to the verification of WSN func-
tionality: domain-specific abstractions are embedded
within the tool.

Figure 1: The ANQUIRO model checker embeds domain-
specific modeling abstractions within the checking engine.

ing their semantics inside the tool, as described in Section 4.
This technique, intuitively described in Figure 1, gives AN-
QUIRO full control on how the state space evolves during
verification, thus enabling domain-specific state abstractions.
These allow us to transparently merge different system states
that are irrelevant to a given abstraction level, drastically im-
proving the speed and scalability of the verification.

To demonstrate the use of ANQUIRO, Section 5 reports on the
verification of a widely used WSN dissemination protocol [12]. As
property to check, we study the core guarantee the protocol is to
provide: the ability to eventually deliver data to all nodes. AN-
QUIRO shows us that the protocol may overlook an issue preventing
correct operation. We complete the discussion with an evaluation
of ANQUIRO’s run-time performance. Our results show that our
domain-specific state abstractions provide orders of magnitude im-
provements over standard approaches. This allows ANQUIRO to
verify even large instances of our problem in reasonable time. Sec-
tion 6 concludes the paper with a discussion of our plans for further
development of ANQUIRO and brief concluding remarks.

2. STATE OF THE ART
In the following, we survey current approaches for checking the

correctness of WSN software.

2.1 Simulation/Emulation
Simulators [11, 17] and emulators [23] are routinely used for

performance evaluation. The behavior of WSN software is driven
by random events—such as radio communication or clock drifts—
which simulators mimic using pseudo-random models. For in-
stance, the radio model determines whether a message is lost dur-
ing a particular execution. Such pseudo-random behaviors are de-
termined by simulation parameters, e.g., the choice of the initial
random seed. This determines the random behavior of the entire
simulated execution.

The current state of the art in WSN simulation/emulation in-
cludes well-established tools with mature user support. Using these
tools for verifying WSN software, however, exposes only a partial
subset of the possible system executions. To improve coverage,
multiple random seeds are used to trigger executions, albeit it is not
possible to ensure full coverage. Therefore, no absolute guarantees
are provided on the correctness of the WSN software at hand.

2.2 Debugging
Solutions for in-field debugging of WSN software exist in the

current state of the art. Some of them [13,26] are based on passively

So
ur

ce
 C

od
e

Hardware-specific
Model

Topology File

Hardware-
specific

Checking
Engine

Translator Neighborhood
Model

Neighborhood
Communication

Checking
Engine

System-wide
Communication

Checking
Engine

System-wide
Model

Properties

Us
er

Verification O
utcom

e

Figure 2: Verification flow using ANQUIRO.

monitoring the distributed execution of WSN software, e.g., using
sniffers co-located with the WSN. These solutions, however, may
not have access to all relevant information. Therefore, even if an
issue is found, developers may not have sufficient visibility into the
system operation to understand the corresponding causes.

Alternative solutions [4,14,18,20,21,25,27] gather run-time in-
formation by instrumenting the application code to check proper-
ties of interest, or provide on-line interfaces to inspect the state of
WSN nodes. As already mentioned, these tools are useful to in-
vestigate issues that already emerged at run-time, but might not
anticipate problems prior to deployment. In addition, the possibil-
ity of heisenbugs limits the applicability of these solutions to given
application domains, e.g., scenarios that are not time-sensitive.

2.3 Static Verification
Static verification of embedded software has widely been used

in safety-critical scenarios [5]. The applicability of such solutions
in the WSN domain, however, is limited to few examples focused
on the verification of specific functionality [3, 8, 16, 24]. The lim-
iting factor for a generalization of such approaches, as we pointed
out, lies in the diversity of WSN functionality and the associated
state space explosion problems. Using standard tools for software
verification, these issues may ultimately result in the impossibility
to carry out the verification effort.

We overcome this limitations with a domain-specific verification
tool, described next.

3. THE ANQUIRO MODEL CHECKER
The current design of ANQUIRO includes three abstraction levels

to use depending on the functionality to verify. Figure 2 shows
the typical verification flow using ANQUIRO. The user feeds the
source code to check as input to a dedicated translator, and selects
the abstraction level to consider. Based on this information, the
translator automatically outputs ANQUIRO-specific models to be
used for the verification. Once this completes, ANQUIRO returns
a confirmation message if all properties are satisfied. Otherwise, it
shows the first counter-example found where at least one property
is violated. This includes the complete sequence of actions to reach
the state where the property is violated.

The specifics of the available abstraction levels and an example
property are shown next, along with the network model we adopt.

3.1 Abstraction Levels
The abstraction levels we consider cover a large fraction of the

WSN functionality that users may need to verify. They are:

Hardware-specific: the models describe operations specific to a

hardware architecture. These may include read/write opera-
tions in memory and interactions with external devices, e.g.,
radio chips. This abstraction level is therefore amenable for
verifying low-level functionality, e.g., device drivers.

Neighborhood Communication: we model local processing in a-
tomic steps independently of the hardware platform, and com-
munication only between devices within direct radio range.
This eases the description network-level functionality such
as routing protocols.

System-wide Communication: we model communication betwe-
en any devices in the network. This abstracts away the func-
tionality of the underlying network. Therefore, this abstrac-
tion level is amenable to verify application-level processing
independently of network-level functionality.

3.2 Properties
The properties to verify may describe a desired behavior (life-

ness) or invariants to check against all possible system executions
(safety). In ANQUIRO, we specify properties using Linear Tempo-
ral Logic (LTL), leveraging an existing Bogor plug-in that enables
LTL verification.

The individual formulae may refer to variable names in the orig-
inal source code, as these symbols are preserved during the trans-
lation process, and are quantified over network nodes. Variables in
different source files are distinguished based on the file name. For
instance, a property to check that in a tree-based routing protocol
no nodes ever select themselves as parent is specified as:

∀i ∈ Nodes 2(collection.parenti 6= i) (1)

where collection is the source file where variable parent is found,
and i is any node in the network.

3.3 Network Model
The user must also provide a topology file that describes the

connectivity between nodes. The file lists all node pairs the tool
should consider as possibly able to exchange data. Notably, the use
of such information in ANQUIRO is different from that in simula-
tors. Wireless communication is inherently unreliable. To achieve
complete verification, ANQUIRO must check all possible system
executions corresponding to every packet being delivered or lost.
Therefore, every time the input models describe a send operation
over some network link, ANQUIRO splits the system execution in
two branches: one corresponding to the packet being delivered, the
other representing the case where the packet is lost.

ANQUIRO must do the above for every transmitted message, or
completeness of the verification may compromised. Nevertheless,
there may be system executions where simultaneous link failures
render a node completely disconnected from the network. This
would represent a case where most (if not all) properties of interest
would trivially fail. The tool may thus exclude system executions
where the network is partitioned. This procedure occurs inside our
dedicated checking engine, described next.

4. ANQUIRO INTERNALS
We design and implement ANQUIRO as an extension to the Bo-

gor model checker [19]. This allows us to augment the modeling
language with domain-specific constructs, while providing the in-
ternal hooks necessary to the implementation of the correspond-
ing semantics. To do so, we define the additional constructs in a
Bogor preamble that points to the implementation of their seman-
tics. This implementation has full access to the state space as it
evolves during the verification. Thus, it can drive the generation
and exploration of the system states according to the semantics of
the domain-specific constructs.

1 extension NeighborhoodComm
2 for sics.anquiro.NeighborhoodComm {
3 typedef type<’a>;
4 // Opening a channel
5 expdef NeighborhoodComm.type<’a> openChannel(int);
6 // Communication API
7 actiondef sendUnicast
8 (NeighborhoodComm.type<’a>, ’a, int);
9 actiondef sendBroadcast

10 (NeighborhoodComm.type<’a>, ’a);
11 expdef boolean waitingMessage
12 (NeighborhoodComm.type<’a>);
13 actiondef getNextMessage
14 (NeighborhoodComm.type<’a>, lazy ’a); }

Figure 3: WSN-specific language constructs to model neighbor-
hood communication.

1 extension Timer for sics.anquiro.Timers {
2 typedef type;
3 // Creating a new timer
4 expdef Timer.type createTimer();
5 // Timer operations
6 actiondef startOneShotTimer(Timer.type, int);
7 actiondef startPeriodicTimer(Timer.type, int);
8 actiondef stopTimer(Timer.type);
9 expdef boolean timerFired(Timer.type); }

Figure 4: WSN-specific language constructs to model timers.

We describe next the internals of ANQUIRO. Formally verify-
ing the correctness of both the translation process and our domain-
specific abstractions is in our immediate research agenda. To this
end, we plan to leverage our previous experience [1] in similar sce-
narios. Both the translator and checking engine are written in Java
for easier integration with Bogor.

4.1 Translator
The current implementation of the ANQUIRO translator provides

partial support for WSN software written in the C language for the
Contiki OS [7]. The translation process occurs using simplified ver-
sions of known techniques to convert C programs into finite state
machines [5]. Depending on the chosen abstraction level, some
calls to the underlying operating system or device drivers are re-
placed with domain-specific constructs. We describe next an ex-
ample when the user selects neighborhood communication as ab-
straction level. In Section 4.2, we illustrate the implementation of
the semantics of the domain-specific constructs in this example.

Modeling constructs. Figure 3 shows the Bogor preamble mod-
eling neighborhood communication. The preamble describes an
abstract data type and its associated operations. Mirroring the net-
work support in Contiki, communication is channel based. Every
connection to a different channel is represented as a different in-
stance of the abstract data type. This is parametric in the message
type transmitted through the channel.

Line 1-2 bind the constructs listed in the preamble to the un-
derlying implementation inside the checking engine, included in a
Java class named NeighborhoodComm. We use the expression
in line 5 to open a new channel, obtaining a new instance of the
abstract data type that represents the open connection. Line 7-10
describe operations to send unicast or broadcast messages. Line
11-12 define a guard that yields true when a message is received.
The message is retrieved using the operation defined in line 13-14,
passing a reference to an empty message filled with received data
when the operation returns1.

The translator may also need to describe time-triggered behav-
iors, which are common in WSN implementations. To this end,
we leverage a timer abstraction, whose operations are defined in

1Bogor’s lazy modifier acts as a pass-by-reference.

1 static struct abc_conn abc;
2 PROCESS_THREAD(example_abc_process, ev, data) {
3 static struct etimer et;
4 PROCESS_BEGIN();
5 abc_open(&abc, 128, NULL);
6 while(1) {
7 /* Delay 2 seconds */
8 etimer_set(CLOCK_SECOND * 2);
9 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

10 /* Load packet and send */
11 packetbuf_copyfrom("Hello", 6);
12 abc_send(&abc); }
13 PROCESS_END(); }

Figure 5: Contiki C code sending periodic broadcast messages.

1 // Message definition
2 record MyMessage { string msg; }
3 // Sending of periodic broadcast messages
4 active thread exampleAbcProcess() {
5 NeighborhoodComm.type<MyMessage> abc_ch_128;
6 Timer.type et;
7 loc loc0: // Channel open and timer setup
8 do { abc_ch_128 := NeighborhoodComm.
9 openChannel<MyMessage>(128);

10 et := createTimer();
11 Timer.startPeriodicTimer(et, 2 * SECOND);
12 } goto loc1;
13 loc loc1: // Timer fires: sending message
14 when Timer.timerFired(et) do {
15 MyMessage msg1 := new MyMessage;
16 msg1.msg := ‘‘Hello’’;
17 NeighborhoodComm.
18 sendBroadcast<MyMessage>(abc_ch_128,msg1);
19 } goto loc1; }

Figure 6: ANQUIRO model obtained from the code in Figure 5.

Figure 4. Every timer is represented as a different instance of a
corresponding abstract data type. Line 1 binds the semantics of the
operations in the Timer abstract data type to an underlying Java
class. The expression in line 4 creates a new timer instance, which
serves as parameter for all other functionality. The operations in
line 6-8 serve to start/stop periodic or one-shot timers. The guard
in line 9 yields true when a timer fires.

Translation example. Figure 5 shows a fragment of Contiki C
code implementing periodic broadcasting of messages. It uses Con-
tiki’s timer library to interrupt the while loop every two sec-
onds, and the abc module in Contiki’s network stack to perform
the transmission on channel 128.

Figure 6 shows the ANQUIRO model output by the translator
from the code in Figure 5. The translator automatically maps every
Contiki process to a Bogor thread. The use of Contiki’s timer
library is translated into the use of the timer extension in Figure 4.
The use of the abc module is mapped to the operations model-
ing neighborhood communication, listed in Figure 3. Specifically,
in state loc0 we perform all setup operations and start a periodic
timer. In loc1, a guard suspends the execution of the model until
the timer fires. When so, we create and fill the message, which is
sent in broadcast before returning to checking the guard.

4.2 Checking Engine
We employ a custom reduction technique that leverages local-

ized executions at given subsets of nodes. Especially in large scale
systems, there may be executions that replicate identically in dif-
ferent parts of the system. If so, it is not necessary to re-examine
these executions if they only differ in the subsets of nodes involved.
To recognize these situations, we employ a dedicated hashing tech-
nique to tag the local node states. Our technique separates the state
of a node as determined by the code it is running from node-specific
information, e.g., its identifier. The former information is used to
recognize the same state at different nodes, and thus to identify ex-

ecutions that only differ in the subsets of nodes involved.
In addition, inside the checking engine we implement the seman-

tics of the modeling constructs at the different abstraction levels.

Hardware-specific. We are currently investigating how to hook
existing hardware emulators to the checking engine. Instead of us-
ing the emulator for a complete execution of the code, the checking
engine asks it to perform single steps in given computations, corre-
sponding to given transitions in the state space. The checking en-
gine continuously exchanges state information with the emulator:
the execution step needs to start from a given initial state and the
results of the computation must be returned to the checking engine
as next state information.

Neighborhood communication. The implementation revolves a-
round modeling broadcast communications and packet losses. The
former is a form of multi-point communication that is difficult to
model using standard approaches [15]. Embedding the implemen-
tation of such semantics inside the model checker allows us to ab-
stract away states that are irrelevant for the functionality to verify,
e.g., those generated to demultiplex the content of messages ad-
dressed to different receivers.

According to our network model, we generate two different sys-
tem executions at every 1-hop packet transmission. These corre-
spond to whether a packet is delivered or not, on a per-link ba-
sis. The loss occurs independently of what may cause it in reality,
e.g., collisions or external interference, which is irrelevant from the
network-level perspective. Nevertheless, not distinguishing these
aspects allows us to abstract away different executions that are per-
ceived as equivalent by network functionality. The checking en-
gine may also exclude executions where the network is partitioned,
which may cause most properties of interest to fail trivially.

System-wide communication. The implementation of this seman-
tics focuses on abstracting away the effects of multi-hop commu-
nication. At this abstraction level, the user is interested in the end-
to-end behavior of the communication network. Therefore, unlike
the case of neighborhood communication, different system execu-
tions are generated for every packet transmission independently of
the relative position of sender and receiver(s). In case of system-
wide broadcast transmissions, we use the same techniques as in the
neighborhood case to abstract away details of multi-point commu-
nication that are irrelevant for the verification.

5. EVALUATION
We demonstrate the use of ANQUIRO to verify a widely used data

dissemination protocol against the specification of the core guaran-
tee it is to provide. Throughout the study, we leverage neighbor-
hood communication as abstraction level.

5.1 Data Dissemination with Trickle
We may expect that the software running on the nodes needs to

be updated after deployment, e.g., to correct software bugs. To
accomplish this task, data dissemination protocols are used. Their
objective is to distribute new data to all nodes. The dissemination
process starts at a base station that first injects the data to distribute.
A fundamental guarantee such protocols are to provide is that all
nodes eventually receive the data. For instance, it may be fatal if
some nodes do not receive a software update and continue to run a
possibly incompatible version of the code.

A widely used dissemination protocol is Trickle [12]. It achieves
eventual delivery of data by making nodes periodically broadcast in
the 1-hop neighborhood meta-data representing the current state,
e.g., the latest version number of the software. Based on this infor-
mation, a node may recognize that another device has more recent
information. If so, the node proactively pulls the more recent data

from the more up-to-date device. This guarantees that, if the net-
work is connected, all nodes eventually receive the most recent data
and the version numbers are eventually consistent.

To alleviate the overhead due to periodic broadcasting of meta-
data, Trickle employs a form of “polite gossiping” to suppress re-
dundant transmissions. Whenever a node hears that at least k of its
neighbors already transmitted its same version number, it does not
broadcast during the same period. To preserve the eventual consis-
tency guarantee, nodes with more recent state always broadcast if
they hear one of their neighbors with older meta-data.

5.2 Verifying Trickle with Anquiro
We consider Trickle’s implementation in the default Contiki net-

work stack and the corresponding default values for all protocol
parameters. First, we isolate Trickle-specific code by eliminating
functionality that is not directly tied to its operation, e.g., packet
fragmenting and reassembling. Next, we develop a simple applica-
tion to trigger the dissemination process. This distributes a single
integer value after a given boot-up time. Finally, we assemble the
minimal set of C source files to run the dissemination. These in-
clude the aforementioned application and a subset of Contiki’s net-
work stack down to the abc module. Using neighborhood commu-
nication, this is the lowest layer to considered, as it maps directly to
domain-specific modeling constructs, as described in Section 4.1.

As property to verify, we specify Trickle’s eventual consistency
guarantee as follows:

∀i ∈ Nodes 3(dissemination.versioni = 1) (2)

When nodes boot, their version number is initialized to 0. After the
first dissemination process, their version number should eventually
advance to 1 once they receive the disseminated data.

We configure ANQUIRO not to model network partitions, as they
would make property (2) fail trivially. We investigate several topolo-
gies, in particular, i) grid topologies where every node talks to four
immediate neighbors, ii) random topologies obtained with TOS-
SIM’s random topology generator [11], and iii) some peculiar to-
pologies that may be critical for dissemination protocols [22].

base
station

Figure 7: A topology
where Trickle fails in de-
livering data to all nodes.

Outcome. ANQUIRO verifies
property (2) for grid and ran-
dom topologies. However, we
find a set of peculiar topologies
where eventual consistency is not
satisfied. Figure 7 depicts one
such topology. ANQUIRO shows
the grey node never updating its
version number. Based on the
counter-example, we understand
that this is due to the black node
constantly suppressing its broadcasting of meta-data. In turn, this
is because the white nodes always broadcast first, which causes the
black node to constantly surpass the threshold of k neighbors al-
ready broadcasting the same meta-data. In this situation, the grey
node never hears meta-data reporting a version number greater than
its, and never requests the data.

The issue above is due to an aspect that the Trickle’s original de-
scription [12] overlooks, which reflects in most existing implemen-
tations: nodes must broadcast meta-data also when they have not
received any data yet. By doing so, the grey node would eventually
broadcast version number 0. According to the protocol operation,
the black node would then broadcast version number 1 even if all
its neighbors already broadcasted the same information. This al-
lows the grey node to be informed of the new version number and
to request the disseminated data. This feature is not present in the
implementation considered, which caused the issue to emerge dur-

Nodes States CPU time (min) Memory (Mb)
10 10986 68.23 456.76
20 50871 234.01 765.76
30 109841 562.23 1282.76
40 NC NC Out of memory

Table 1: Performance in the absence of domain-specific ab-
stractions. (NC indicates incomplete verification).

ing the verification. Nevertheless, understanding the causes of the
issue enables devising a fix quite easily.

5.3 Run-Time Performance
We leverage our case study to investigate ANQUIRO’s run-time

performance. We use grid and random topologies with a varying
the number of nodes. In the latter case, we test 100 randomly gen-
erated topologies with the same average density as the grid config-
uration, and average the results. We do not report results obtained
from the peculiar topologies, as they represent specific cases that
are not representative of the average use of our tool.

As performance metrics, we measure the number of states and
peak memory consumption during the verification, as well as the
CPU time to complete the verification. The former figure is indica-
tive of the effectiveness of our domain-specific state abstractions,
which aim to reduce the size of the state space. The peak mem-
ory consumption measures the maximum amount of computing re-
sources spent during the verification. This is usually the bottleneck,
as the verification may not complete because of memory overflows.
The CPU time to complete the verification is an indication of how
practical the approach may be when the verification does complete.

We run the experiments using a Linux desktop PC with a P4
3.2Ghz CPU and 2 Gb RAM, a standard Sun JVM version 1.5, the
DJProf tool [6] to measure memory consumption, and Linux time
command to measure the total CPU time.

Results. To provide a baseline for comparison, we run an ini-
tial set of experiments by exposing as generated states informa-
tion that ANQUIRO would normally hide to the checking engine.
This makes our tool operate in a way very similar to standard ap-
proaches, shown in Figure 1(a). Table 1 shows ANQUIRO’s perfor-
mance in this configuration, using grid topologies. The results for
random topologies are essentially the same. If all states were ex-
posed to the checking engine, the tool would be unable to complete
the verification even with only 40 nodes, due to memory overflows.

Our domain-specific state abstractions provide orders of magni-
tude improvements: Figure 8(a) depicts the number of states in-
spected under this setting. The chart shows a quadratic increase in
this metric. This is expected, because the system state is obtained
from the combination of the local states at the different nodes. As
the number of them grows, the number of possible combinations
increases. Random topologies show about the same behavior as
grid ones. Thus, the performance is mainly dictated by the number
of nodes, rather than by topological characteristics.

The quadratic trend in Figure 8(a) does not reflect in the CPU
time to complete the verification, shown in Figure 8(b). ANQUIRO
completes the verification within minutes even in large scenarios,
demonstrating its general applicability. The trend here is essentially
linear. This is due to the local state hashing technique, illustrated
in Section 4. Even if several nodes are considered, the state of
many of them may be the same. ANQUIRO recognizes this situation
and avoids inspecting system executions where the behavior of the
system is the same but it manifests at different nodes.

The above reasoning applies to Figure 8(c) as well, showing the
peak memory consumption. The absolute values are well within the
limits of today’s PCs. The trend is linear as well. Indeed, memory
is consumed mainly to store information about system executions
that are actually inspected during the verification.

 0

 100

 200

 300

 400

 500

 600

 200 400 600 800 1000

N
u
m

b
e
r

o
f
s
ta

te
s
 (

th
o
u
s
a
n
d
s
)

Number of nodes

grid topology
random topologies

(a) States generated.

 0

 5

 10

 15

 20

 200 400 600 800 1000

T
im

e
 t
o
 c

o
m

p
le

te
 (

m
in

s
)

Number of nodes

grid topology
random topologies

(b) Time to complete the verification.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200 400 600 800 1000

P
e
a
k
 m

e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
b
)

Number of nodes

grid topology
random topologies

(c) Peak memory consumption.
Figure 8: ANQUIRO performance.

6. CONCLUSION AND FUTURE WORK
We presented ANQUIRO, a domain-specific model checker for

static verification of WSN software. ANQUIRO overcomes state
space explosion problems by providing different abstraction levels
based on the property to verify, and by leveraging domain-specific
state abstractions to reduce the number of states inspected. We il-
lustrated the use of ANQUIRO in verifying Trickle, discovering an
issue that is commonly overlooked. ANQUIRO’s run-time perfor-
mance demonstrated that our techniques provide orders of magni-
tude improvements over standard solutions. Our research agenda
includes completing the implementation of the ANQUIRO transla-
tor and the hardware-specific abstraction level, as well as applying
ANQUIRO to the verification of entire WSN applications.

Acknowledgements. The authors thank Adam Dunkels for the
feedback received on early versions of this paper.

7. REFERENCES
[1] L. Baresi, G. Gerosa, C. Ghezzi, and L. Mottola. Playing with time in

publish-subscribe using a domain-specific model checker. In Proc. of
the SAVCBS Workshop, 2007.

[2] L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic
verification of publish-subscribe architectures. In Proc. of the 29th

Int. Conf. on Software Engineering (ICSE), 2007.
[3] D. Bucur and M. Kwiatkowska. Bug-free sensors: The automatic

verification of context-aware TinyOS applications. In Proc. of the
European Conference on Ambient Intelligence (AmI), 2009.

[4] W. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo.
Declarative tracepoints: a programmable and application independent
debugging system for wireless sensor networks. In Proc. of the Int.
Conf. on Embedded Network Sensor Systems (SENSYS), 2008.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2004), 2004.
[6] DJProf. Java Memory Profiler.

www.mcs.vuw.ac.nz/djp/djprof/.
[7] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors. In Proc. of
the Workshop on Embedded Networked Sensors (EmNetS), 2004.

[8] Y. Hanna, H. Rajan, and W. Zhang. Slede: A domain-specific
verification framework for sensor network security protocol
implementations. In Proceedings of the ACM Conf. on Wireless
network security, 2008.

[9] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5), 1997.

[10] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes:
experiences from a pilot sensor network deployment in precision
agriculture. In Proceedings of the 20th Int. Parallel and Distributed
Processing Symposium (IPDPS 2006), 2006.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and
scalable simulation of entire tinyos applications. In Proc. of the Conf.
on Embedded Networked Sensor Systems (SENSYS), 2003.

[12] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and maintenance in
wireless sensor networks. In Proc. of NSDI, Mar. 2004.

[13] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong. Passive diagnosis
for wireless sensor networks. In Proc. of the Conf. on Embedded
Network Ssensor Systems (SENSYS), 2008.

[14] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic.
Achieving repeatability of asynchronous events in wireless sensor
networks with EnviroLog. In Proc. of INFOCOM, 2006.

[15] P. Merino and J. M. Troya. Modelling and verification of the ITU-T
multipoint communication service with SPIN. In Proc. of the 2nd

Int. Wrkshp. on SPIN Verification, 1996.
[16] NESL. Lighthouse Project.

projects.nesl.ucla.edu/public/lighthouse/.
[17] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.

Cross-level sensor network simulation with COOJA. In Proc. of the
Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp), 2006.

[18] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the sensor network debugger. In Proc. of the
Conf. on Embedded Networked Sensor Systems (SENSYS), 2005.

[19] Robby, M.-B. Dwyer, and J. Hatcliff. Bogor: an extensible and
highly-modular software model checking framework. In Proc. of the
9th European Software Engineering Conf., 2003.

[20] K. Römer and J. Ma. PDA: passive distributed assertions for sensor
networks. In Proc. of the Conf. on Information Processing in Sensor
Networks (IPSN), 2009.

[21] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse.
Macrodebugging: global views of distributed program execution. In
Proc. of the Conf. on Embedded Networked Sensor Systems
(SENSYS), 2009.

[22] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza. RBP: robust
broadcast propagation in wireless networks. In Proc. of the Conf. on
Embedded Networked Sensor Systems (SENSYS), 2006.

[23] B. Titzer, D. Lee, and J. Palsberg. Avrora: scalable sensor network
simulation with precise timing. In Proc. of Conf. on Information
Processing in Sensor Networks (IPSN), 2005.

[24] S. Tschirner, L. Xuedong, and W. Yi. Model-based validation of QoS
properties of biomedical sensor networks. In Proc. of the 8th ACM
Int.Conf. on Embedded Software (EMSOFT), 2008.

[25] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong,
J. Hui, P. Dutta, and D. Culler. Marionette: using RPC for interactive
development and debugging of wireless embedded networks. In Proc.
of Conf. on Information Processing in Sensor Networks (IPSN), 2006.

[26] M. Woehrle, C. Plessl, J. Beutel, and L. Thiele. Increasing the
reliability of wireless sensor networks with a distributed testing
framework. In Proc. of the Workshop on Embedded Networked
Sensors, 2007.

[27] J. Yang, M. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a
comprehensive source-level debugger for wireless sensor networks.
Proc. of the Conf. on Embedded Networked Sensor Systems
(SENSYS), 2007.

