
Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art

Luca Mottola

University of Trento, Italy and Swedish Institute of Computer Science, Sweden

and

Gian Pietro Picco

University of Trento, Italy

Wireless sensor networks (WSNs) are attracting great interest in a number of application do-

mains concerned with monitoring and control of physical phenomena, as they enable dense and
untethered deployments at low cost and with unprecedented flexibility.

However, application development is still one of the main hurdles to a wide adoption of WSN

technology. In current real-world WSN deployments, programming is typically carried out very
close to the operating system, therefore requiring the programmer to focus on low-level system

issues. This not only distracts the programmer from the application logic, but also requires a

technical background rarely found among application domain experts. The need for appropriate
high-level programming abstractions, capable of simplifying the programming chore without sac-

rificing efficiency, has been long recognized and several solutions have been hitherto proposed,

which differ along many dimensions.
In this paper, we survey the state of the art in programming approaches for WSNs. We be-

gin by presenting a taxonomy of WSN applications, to identify the fundamental requirements
programming platforms must deal with. Then, we introduce a taxonomy of WSN programming

approaches that captures the fundamental differences among existing solutions, and constitutes

the core contribution of this paper. Our presentation style relies on concrete examples and code
snippets taken from programming platforms representative of the taxonomy dimensions being

discussed. We use the taxonomy to provide an exhaustive classification of existing approaches.

Moreover, we also map existing approaches back to the application requirements, therefore pro-
viding not only a complete view of the state of the art, but also useful insights for selecting the

programming abstraction most appropriate to the application at hand.

Categories and Subject Descriptors: D.3 [Programming Languages]: ; D.3.2 [Language Clas-

sification]: ; D.1 [Programming Techniques]: ; C.2.4 [Distributed Systems]:

Additional Key Words and Phrases: Wireless Sensor Networks, Networked Embedded Systems,

Programming Abstractions, Middleware.

1. INTRODUCTION

Wireless sensor networks (WSNs) are distributed systems typically composed of
embedded devices, each equipped with a processing unit, a wireless communication
interface, as well as sensors and/or actuators. Many applications have been pro-
posed to date that show the versatility of this technology, and some are already
finding their way into the mainstream. Most often, in these scenarios tiny battery-
powered devices are used for ease of deployment and increased flexibility [Akyildiz
et al. 2002]. This enables embedding processing and communication within the
physical world, providing low-cost, fine-grained interaction with the environment.

Although hardware advances play an important role in WSNs, the power of
this technology can be fully harnessed only if proper software platforms are made

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · L. Mottola and G.P. Picco

available to application developers [OnWorld ; CONET ]. However, of the several
experiences reported in the literature where WSN applications have been deployed
in the real-world, only a few exceptions rely on some high-level programming sup-
port [Ceriotti et al. 2009; Buonadonna et al. 2005; Whitehouse et al. 2004]. In
the majority of deployments, programming is instead carried out very close to the
operating system, forcing programmers to deal with low-level system issues as well
as with the design of distributed protocols. This not only shifts the programmer’s
focus away from the application logic, but also requires a technical background
rarely found among application domain experts.

There is a growing awareness about this problem in the research community, and
an increasing number of approaches are being proposed. However, on one hand
existing approaches provide a wide and diverse set of functionality and, on the other
hand, WSN applications have widely different characteristics and requirements.
Choosing the best platform for a given application demands a clear understanding of
the application needs and of the basic differences among programming approaches.
Thus far, the research community has investigated these aspects only to a limited
extent. Therefore, we begin by presenting a taxonomy of WSN applications in
Section 2. Many applications have been proposed to date, which differ greatly along
many dimensions. Therefore, it is useful to identify their fundamental differences, in
that these ultimately determine the applicability of a given programming approach
to the problem at hand.

The main contribution of this paper is an extensive survey and classification of
the state of the art in WSN programming approaches. However, the term “program-
ming abstraction” is widely used in WSNs, with different meanings. For instance,
OS-level concurrency mechanisms [Nitta et al. 2006] as well as service-oriented
interfaces are sometimes termed as “programming abstractions for WSNs”. In this
work, we place the emphasis on the distributed processing occurring inside the
WSN, focusing on solutions that allow programmers to express communication and
coordination among the WSN nodes. These aspects are of utmost importance in
WSN programming and no well-established solution exists yet.

Nonetheless, clearly defining the conceptual boundaries between the subject of
this paper and the overall state of the art is a particularly tricky issue in WSNs,
where abstraction layers often blend for optimizing resources. Section 3 describes
a reference architecture whose purpose is to define clearly what belongs to our
survey and what does not. In addition, it provides the reader with a background
about WSNs by concisely covering issues that bear an influence on programming
abstractions.

The rest of the paper focuses on a taxonomy of WSN programming approaches.
Our work captures the fundamental differences among existing solutions and is
exhaustive in covering the current state of the art. Section 4 contains a brief
overview of the goals and structure of our taxonomy, whose presentation is split in
two complementary parts. Section 5 focuses on the characteristics of the language
constructs provided to the programmer, therefore analyzing the different approaches
for expressing communication and computation, the model used for accessing data,
and the programming paradigm adopted. Section 6 focuses on architectural issues,
by classifying approaches according to whether they replace or complement others,
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 3

to whether they can be used only for building end-user applications or lower-level
mechanisms as well, to the extent they can be configured in their low-level aspects,
and to their execution environment.

We illustrate each dimension in our taxonomy by analyzing the features of ex-
isting systems representative of such dimension. The presentation of each system
always includes some code fragments or small applications, to provide the reader
with a concrete grasp of the differences among approaches. Given the number of
dimensions in our taxonomy, the set of systems we use as examples allows us to
cover in detail a significant fraction of the existing approaches. The overall picture
is completed in Section 7 by a brief description of the remaining systems, therefore
covering the entire state of the art.

This work would not be complete without a mapping of the programming ap-
proaches being surveyed onto the taxonomy proposed. This is presented in Sec-
tion 8. Moreover, in the same section we also map existing programming approaches
onto the application taxonomy we described in Section 2. As a result, the reader
gains not only a complete classification of the systems in the current state of the art,
but also a tool to understand which approach is best suited for a given application.
We believe that these two perspectives—features and applicability of programming
approaches—together constitute an asset for both researchers and practitioners.
The global view on the state of the art is also the opportunity to draw general
observations about the field, and identify themes worth addressing by the research
community. These aspects are discussed in Section 9, which also ends the paper
with brief concluding remarks.

We are not the first to undertake a survey of programming approaches for
WSNs [Sugihara and Gupta 2008; Hadim and Mohamed 2006; Römer 2004; Rubio
et al. 2007; Chatzigiannakis et al. 2007; Henricksen and Robinson 2006]. However,
most of the existing surveys are based on a taxonomy with only few dimensions,
mostly revolving around the well-known duality between node-centric programming
and macroprogramming noted by many authors [Newton et al. 2007; Gummadi
et al. 2005; Bakshi et al. 2005]. Here, instead, we present a taxonomy that sub-
sumes such distinction, and provides a more in-depth analysis through a richer set
of dimensions. Other distinctive traits of our survey are the concrete illustration
through code examples, the distinction between language and architectural issues,
the complementary view on application requirements, and the exhaustive coverage
and mapping of the state of the art.

2. WIRELESS SENSOR NETWORK APPLICATIONS

WSNs are being employed in a variety of scenarios. Such diversity translates into
different requirements and, in turn, different programming constructs supporting
them. In this section we identify some common traits of WSN applications that
strongly affect the design of programming approaches, and cast these aspects in a
dedicated taxonomy. Figure 1 graphically illustrates the dimensions we identified.

Goal. In the applications that made WSNs popular (e.g., [Mainwaring et al.
2002]), the goal is to gather environmental data for later, off-line analysis. Fig-
ure 2(a) illustrates the network architecture traditionally employed to accomplish
this functionality. A network of sensor-equipped nodes funnels their readings, pos-

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · L. Mottola and G.P. Picco

WSN 
Applications 

Interaction 
PatternGoal Space Time

Many-to-many

One-to-many

Many-to-one

Global

Regional

Periodic

Event-triggered

Sense-only

Sense-and-react

Mobility

Mobile nodes

Static

Mobile sinks

Fig. 1. A taxonomy of WSN applications.

sensor

sink

(a) Sense-only.

sensor

actuator

1 2

route to 1
route to 2

(b) Sense-and-react.

Fig. 2. Network architecture in sense-only and sense-and-react applications.

sibly along multiple hops, to a single base station—typically much more powerful
than a WSN node—that acts as data sink by centrally collecting the data.

Along with sense-only scenarios, a new breed of applications emerged where
WSN nodes are equipped with actuators. In wireless sensor and actuator networks
(WSANs) [Akyildiz and Kasimoglu 2004], nodes can react to sensed data, therefore
closing the control loop. The resulting sense-and-react pattern drastically affects
the application scenario. Indeed, in principle the data sensed can still be reported
to a single sink that hosts also the control logic and issues the appropriate com-
mands to the actuators. However, to reduce latency and energy consumption, and
to increase reliability by removing the single point of failure, it is advisable to move
the application and control logic inside the network [Akyildiz and Kasimoglu 2004].
This results in a radically different network architecture, illustrated in Figure 2(b),
where sensor nodes need to report to multiple receivers. The system becomes
heterogeneous, in contrast with the mostly homogeneous architectures employed in
sense-only scenarios. Moreover, the application behavior also changes. Applications
tends to be stateful, i.e., determined by the current conditions and past evolution
of the system, in contrast with the mostly stateless behavior of sense-only applica-
tions. Also, multiple activities must be carried out simultaneously, e.g., to control
actuators installed in different parts of the system as in Heating, Ventilation, and
Air-Conditioning (HVAC) systems in buildings [Deshpande et al. 2005].
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 5

Interaction pattern. Another fundamental distinction is in how the network nodes
interact with each other, which is somehow affected also by the application goal
they are to accomplish. To date, sense-only WSNs mostly feature a many-to-one
interaction pattern, where data is funneled from all nodes in the network to a central
collection point. Nevertheless, one-to-many and many-to-many interactions can
also be found. The former are important when it is necessary to send configuration
commands (e.g., a change in the sampling frequency or in the set of sensors active)
to the nodes in the network. The latter is typical of scenarios where multiple data
sinks are present, a situation commonly found in sense-and-react scenarios.

Mobility. Wireless sensor networks are characterized by highly dynamic topolo-
gies, induced by fluctuations in connectivity typical of wireless propagation and by
duty-cycle patterns necessary to extend the network lifetime. However, some appli-
cations introduce an even greater degree of dynamism, due to the need to support
physically mobile devices.

Mobility may (or may not) manifest itself in different ways:

—In static applications, neither nodes nor sinks move once deployed. This is by far
the most common case in current deployments.

—Some applications use mobile nodes attached to mobile entities (e.g., robots or
animals) or able to move autonomously (e.g., the XYZ nodes [Lymberopoulos and
Savvides 2005]). A typical case is wildlife monitoring where sensors are attached
to animals, as in the ZebraNet project [Liu and Martonosi 2003].

—Some applications exploit mobile sinks. The nodes may be indifferently static
or mobile: the key aspect is that data collection is performed opportunistically
when the sink moves in proximity of the sensors [Shah et al. 2003].

Space and time. The distributed processing required by a given application may
span different portions of the physical space, and be triggered at different instants in
time. These aspects are typically determined by the phenomena being monitored.

The extent of distributed processing in space can be:

—Global, in applications where the processing in principle involves the whole net-
work, most likely because the phenomena of interest span the entire geographical
area where the WSN is deployed.

—Regional, in applications where the majority of the processing occurs only within
some limited area of interest.

For what concerns time, distributed processing can be:

—Periodic, in applications designed to continuously process sensed data. The appli-
cation performs periodic tasks to gather sensor readings, coordinates with other
parts of the system, and possibly performs actuation as needed.

—Event-triggered, in applications characterized by two phases: i) during event
detection, the system is largely quiescent, with each node monitoring the values
it samples from the environment with little or no communication involved; ii) if
and when the event condition is met (e.g., a sensor value raises above a threshold),
the WSN begins its distributed processing.

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · L. Mottola and G.P. Picco

Habitat 
Monitoring

Flood 
Monitoring

Intrusion  
Detection

HVAC in 
Buildings

Time

Sp
ac

e

Periodic Event-triggered

Regional

Global

Fig. 3. Space and time characteristics of the distributed processing in example WSN applications.

Note that, in accordance with the goal of the paper, our focus here is on the
distributed processing required to enable a functionality, not on the functionality
itself. Consider an application required to trigger an alarm whenever a condition
is met. If the condition is checked at the sink by periodically collecting data, such
application would fall in the Periodic class, not in the Event-triggered one.

Interestingly, space and time are orthogonal, and existing WSN applications cover
all combinations of these two dimensions. Figure 3 illustrates the concept using
paradigmatic examples drawn from the literature. For instance, habitat monitor-
ing [Mainwaring et al. 2002] is an application where the distributed processing
is typically global and periodic. Building automation (HVAC) [Deshpande et al.
2005], instead, exemplifies applications with periodic processing that, when imple-
mented in a decentralized fashion, limit their operation to a specific portion of space
(e.g., an air conditioner in a room that operates based on the readings of nearby
temperature sensors). Likewise, in applications with event-triggered processing, the
triggered functionality may be either global or regional. Flood monitoring [Hughes
et al. 2007; IST CRUISE Project ] falls in the first class, as the processing occurring
after a flood is detected still spans the entire WSN. In this scenario, application
domain experts are indeed interested in understanding how the flood may affect
areas where it has not reached yet. In intrusion detection [Arora et al. 2004],
instead, after a potential breach is detected, the system operates only within its
surroundings, as data coming from global observations are no longer relevant.

A more extensive classification is shown in Table I, which maps a representative
set of applications found in the literature to the taxonomy illustrated in Figure 1.
Although the mapping is not exhaustive, several observation can be drawn:

—Sense-only applications are mostly characterized by many-to-one interactions. In
the few ones requiring many-to-many interactions, this is due to the need to
support data access from multiple users at different locations.

—The space and time characteristics of the processing in sense-only applications
covers all combinations. Applications periodically gathering data on a global

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 7

Application Goal Interaction Mobility Space Time

Habitat Monitoring SO Many-to-one Static Global Periodic
[Mainwaring et al. 2002;
Buonadonna et al. 2005]
Zebra Monitoring SO Many-to-one Mobile nodes Global Periodic
[Juang et al. 2002]
Glacier Monitoring SO Many-to-one Static Global Periodic
[Martinez et al. 2004; Padhy
et al. 2006]
Grape Monitoring SO Many-to-one Static Global Periodic
[Burrell et al. 2004]
Landslide Detection SO Many-to-one Static Global Periodic
[Sheth et al. 2005]
Volcano Monitoring SO Many-to-one Static Global Periodic
[Werner-Allen et al. 2006]
Passive Structural SO Many-to-one Static Global Periodic
Monitoring [Lynch and Loh
2006; Ceriotti et al. 2009]
Fence Monitoring SO Many-to-one Static Regional Event-triggered
[Wittenburg et al. 2007]
Industrial Plant Monitoring SO Many-to-one Static Global Periodic
[Krishnamurthy et al. 2005]
Sniper Localization SO Many-to-one Static Regional Event-triggered
[Simon et al. 2004]
Intrusion Detection SO Many-to-one Static Regional Event-triggered
[Arora et al. 2004]
Forest Fire Detection SO Many-to-one Static Global Event-triggered
[Hartung et al. 2006]
Flood Detection SO Many-to-one Static Global Event-triggered
[IST CRUISE Project ;
Hughes et al. 2007]
Health Emergency Response SO Many-to-one Static Regional Periodic
[Lorincz et al. 2004]
Avalanche Victims Rescue SO Many-to-many Static Regional Periodic
[Michahelles et al. 2003]
Smart Tool Box SO Many-to-many Static Global Event-triggered
[Lampe and Strassner 2003]
Vital Sign Monitoring SO Many-to-many Static Global Event-triggered
[Baldus et al. 2004]
Robot Navigation SO Many-to-one Mobile sinks Regional Event-triggered
[Batalin et al. 2004]
Badger Monitoring SO Many-to-one Mobile nodes Global Periodic
[WildSensing Project ]
Sheep Monitoring SO Many-to-many Mobile nodes Global Periodic
[WASP Project ]
Electronic Shepherd SO Many-to-many Mobile nodes Global Periodic
[Thorstensen et al. 2004]
Vehicular Traffic Control SR Many-to-many Static Regional Periodic
[Manzie et al. 2005]
Smart Homes SR Many-to-many Static Regional Periodic
[Petriu et al. 2000]
Assisted Living SR Many-to-one/ Static Regional Periodic
[Stankovic et al. 2005] One-to-many
Building Control and SR Many-to-one/ Static Regional Periodic
Monitoring [Dermibas 2005] One-to-many
Active Structural SR Many-to-many Static Regional Periodic
Monitoring [Lynch and Loh
2006]
Heating Ventilation and SR Many-to-many/ Static Regional Periodic
Air Conditioning Control One-to-many
[Deshpande et al. 2005]
Tunnel Control and SR Many-to-many/ Static Regional Periodic
Monitoring [Costa et al.
2007]

One-to-many

Table I. Mapping example WSN applications onto the taxonomy of Figure 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 · L. Mottola and G.P. Picco

Operating System

Application

Hardware

System Services

Routing

Localization

Tim
e Synch

Storage

Reprogram
m

ing

...

Programming Abstractions

MAC

Fig. 4. Reference architecture.

scale are the most frequent.
—In contrast, sense-and-react applications are typically characterized by periodic

and regional processing. The enforcement of control laws requires continuous
monitoring of the environment, approximated through periodic sampling. More-
over, actuators are limited in the extent to which they can influence the environ-
ment, and therefore they usually do not require to gather sensor readings outside
their range of actuation [Akyildiz and Kasimoglu 2004].

Before moving to the main contribution of this paper, the taxonomy of WSN
programming approaches, we must clearly define its scope. We do so by relying on
a reference architecture, described next.

3. REFERENCE ARCHITECTURE

The boundaries between programming abstractions and the rest of the software ex-
ecuting on a WSN node is often blurred. The scarce computing and communication
resources available in WSNs, along with their application-specific nature, foster a
cross-layer design where the application is often intertwined with system-level ser-
vices. In addition, programming abstractions are intimately related with a number
of other issues in WSNs. These include application and services (e.g., routing)
built on top of the abstractions, down to the hardware and operating system the
abstractions are built upon.

To help delimit clearly what is—and especially what is not—in the scope of
our work, we introduce here a reference architecture, shown1 in Figure 4. In the
following we describe each of its constituents, thus establishing a context for our
taxonomy of WSN programming approaches.

1The layering shown is purely conceptual, and does not necessarily reflect the code structure of

actual systems, which often break layers to achieve better resource utilization.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 9

Volatile 
Memory

Program 
Memory

External 
Storage

CPU

Radio Ports

Power Source

ActuatorsActuatorsActuators

ActuatorsActuatorsSensors

Fig. 5. A high-level schematic representation of a WSN node hardware.

Hardware. Figure 5 illustrates a very abstract view of the hardware in a typical
WSN node. A plethora of WSN platforms exist both as commercial products and
research prototypes [Crossbow Tech. ; MoteIV ; Body Sensor Network Nodes ;
BTNode ; Eyes WSN Nodes ; Project SunSPOT ; MeshNetics Tech. ; ScatterWeb
Inc. ; Aduino Sensor Node Platform ]. However, the individual components used
do not differ drastically. Many platforms use a 16-bit Texas Instruments MSP430
micro-controller or a 8/16-bit chip of the Atmel ATMega family. Notable exceptions
are the IMote2 and SunSPOT platforms, based on the more powerful Intel PXA
and ARM920T chips, respectively. Typical amounts of volatile memory range from
2 KB to 512 KB. This is used to store run-time data during program execution.
The binary program code is stored in a dedicated memory whose size is typically
between 32 KB and 128 KB. In addition, nodes are often equipped with separate,
external storage devices (e.g., flash memory) whose size may vary from 128 KB to
several gigabytes. Their use depends on the specific application. As for radio hard-
ware, most platforms work in the 2.4 GHz ISM band, and feature IEEE 802.15.4-
compliant [Baronti et al. 2007] radio chips, e.g., the ChipCon 2420. Alternative so-
lutions operate in the 868/916 MHz band, e.g., using the ChipCon 1000 transceiver,
or rely on Bluetooth interfaces. The specific type of sensing and actuating device
is largely application-specific, and often custom-integrated.

Medium Access Control (MAC). MAC protocols for WSNs must guarantee ef-
ficient access to the communication media while carefully managing the energy
budget allotted to the node. The latter goal is typically achieved by switching the
radio to a low-power mode based on the current transmission schedule. In contrast
to other wireless platforms where the MAC functionality is realized in hardware, a
WSN MAC protocol is typically implemented mostly in software, using the low-level
language associated with the operating system.

Most of the existing protocols fall in two categories. Contention-based proto-
cols [Ye et al. 2002; Polastre et al. 2004; van Dam and Langendoen 2003] regulate
the access to the physical layer opportunistically, based on the current transmission
requests. Conversely, time-slotted protocols assign the nodes with predefined time-

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · L. Mottola and G.P. Picco

slots to schedule their transmissions over time [Rajendran et al. 2003; 2006]. The
former class of protocols is easier to implement and better tolerates nodes joining
or leaving. Instead, the latter enables higher reliability and greater energy savings,
but with the additional requirement of tight time synchronization among the nodes
in some k-hop neighborhood.

A survey of the many MAC protocols available can be found in [Demirkol et al.
2006; Naik and Sivalingam 2004].

Operating system. In contrast to mainstream computing, in WSNs the operating
system is essentially a library, linked with the application code to produce a binary
for execution. The operating system usually supports a companion programming
language, which is typically C or a WSN-specific dialect (e.g., nesC [Gay et al.
2003] for the TinyOS [Hill et al. 2000] operating system). A low-level communi-
cation facility is also commonly provided, e.g., the Active Message [Culler et al.
2001] interface of TinyOS. Such companion language and communication primi-
tives define the lowest level abstraction available to programmers. In a sense, they
resemble the use of the C language and sockets in mainstream computing as the
core programming abstractions provided by the operating system.

Several operating systems for WSNs have been proposed so far, the most common
being the aforementioned TinyOS. Alternatives include Contiki [Dunkels et al.
2004], SOS [Han et al. 2005], Mantis [Abrach et al. 2003], RETOS [Cha et al.
2007], LiteOS [Cao et al. 2008], t-Kernel [Gu and Stankovic 2006], and NANO-
rk [Eswaran et al. 2005]. The concurrency model employed varies from event-driven
approaches [Hill et al. 2000] to preemptive, time-sliced multi-threading [Abrach
et al. 2003; Cha et al. 2007; Cao et al. 2008], cooperative multi-threading [Dunkels
et al. 2006], and asynchronous message passing [Han et al. 2005]. Some of the above
operating systems (e.g., SOS, LiteOS, and Contiki) also provide dynamic linking
capabilities, i.e., new code modules can be added at run-time to the application
running on a node. Dynamic linking is particularly important in supporting wireless
reprogramming of the WSN, one of the system services described next.

System services. While applications deliver useful data directly to the end user,
system services are typically useful in support of applications. Examples are lo-
calization mechanisms [Langendoen and Reijers 2003], time synchronization pro-
tocols [Elson and Roemer 2003; Sundararaman et al. 2005], distributed storage
services [Ratnasamy et al. 2002; Luo et al. 2007], code deployment and reprogram-
ming functionality [Wang et al. 2006], and routing protocols [Al-Karaki and Kamal
2004]. Notably, some approaches in routing play at border between system services
and programming abstractions. For instance, in Directed Diffusion [Intanagonwi-
wat et al. 2003] programmers specify the characteristics of the data required using
attribute-value pairs. The emphasis of these approaches, however, is mostly on
routing and communication issues. As a consequence, unlike the systems surveyed
in the rest of the paper, they feature only very limited expressiveness as they do
not provide a well-defined, structured programming abstraction.

System services are built atop the core functionality provided by the operating
system, by using either the operating system language (e.g., nesC) or some of the
programming abstractions we discuss in this paper. For instance, localization and
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 11

routing have been implemented successfully in Hood [Whitehouse et al. 2004]. In
our survey, we distinguish between programming approaches suitable also to the
development of system services, and those geared only towards applications.

4. TAXONOMY OVERVIEW

The focus of our work is on high-level language constructs allowing programmers
to express various forms of distributed processing among the WSN nodes.

In this field, the only characterizing dimension that hitherto received some at-
tention is the one of node-centric programming vs. macroprogramming [Gummadi
et al. 2005]. The former generally refers to programming abstractions used to ex-
press the application processing from the point of view of the individual nodes. The
overall system behavior must therefore be described in terms of pairwise interac-
tions between nodes within radio range. Macroprogramming solutions, instead, are
usually characterized by higher-level abstractions that focus mainly on the behavior
of the entire network, rather than on the individual nodes.

Nonetheless, under many respects the above distinction falls short of expectation
in capturing the essence of currently available programming approaches. As a
result, solutions offering radically different abstraction levels are considered under
the same umbrella, ultimately rendering the distinction ineffective. For instance,
both TinyDB [Madden et al. 2005] and Kairos [Gummadi et al. 2005] are commonly
regarded as macroprogramming solutions. However, the former provides an SQL-
like interface where the entire network is abstracted as a relational table. Therefore,
inter-node interactions are completely hidden from the programmer. The latter,
on the other hand, is an imperative programming language where constructs are
provided to iterate through the neighbors of a given node and communication occurs
by reading or writing shared variables at specific nodes. Therefore, unlike TinyDB,
in Kairos the application processing is still mostly expressed as pairwise interactions
between neighboring nodes, and yet the level of abstraction is very different from
node-centric programming approaches.

These considerations have been our motivation for defining a taxonomy of pro-
gramming approaches that goes beyond the traditional dichotomy between node-
centric and macroprogramming, and examines a wider set of concepts. Our taxon-
omy is structured along two main dimensions, each contained in a separate section
of this paper:

—In Section 5, we study the language aspects of available WSN programming ap-
proaches. These are analyzed to understand the primitives provided to program-
mers for expressing communication and computation, and the peculiarities of the
programming model.

—In Section 6, we consider the architectural aspects related with existing WSN pro-
gramming solutions, by analyzing features such as their intended use, their reach
into the low-level layers of the architecture, and their execution environment.

Our objective is to provide the reader with an understanding of the expressive
power of the various approaches in the first part, while in the second part we intend
to explore how these approaches can be used in application development, and what
is their relationship with the rest of the architecture depicted in Figure 4.

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 · L. Mottola and G.P. Picco

Computation 
Scope

Programming 
Paradigm

Data Access 
Model

Language

Physical 
neighborhood

System-wide

Connected

Non-connected

Local

Group

Global

Hybrid

Database

Data sharing

Mobile code

Message 
passing

Multi-hop 
group 

Explicit

Implicit

Imperative
Sequential

Event-driven

Physical

LogicalCo
m

m
un

ic
at

io
n

Awareness

Scope

Addressing

Declarative
Rule-based

SQL-like

Special-purpose

Functional

Fig. 6. A taxonomy of language aspects in WSN programming abstractions.

For each dimension of classification, we illustrate its meaning first in abstract
terms, and then by focusing on a representative approach taken from the state of
the art. The style of presentation is made concrete by relying on code fragments
and by concisely reporting key implementation details.

5. PROGRAMMING WIRELESS SENSOR NETWORKS: LANGUAGE ASPECTS

Figure 6 provides an overview of the language dimensions in our taxonomy. We
classify the various approaches based on the constructs that allow to express com-
munication and computation, on how these are framed into a data access model, and
on the more traditional dimension related to the programming paradigm adopted.

The communication dimension is particularly important. In most applications,
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 13

(a) Multi-hop, connected group. (b) Multi-hop, non-connected group.

Fig. 7. Topological characteristics of group based communication. Grey nodes are group members.

WSN nodes can hardly perform any useful task if left alone; it is the overall collab-
oration and coordination of numerous devices that allows the system to accomplish
a higher-level goal. As shown in Figure 6, we distinguish further among aspects
related to the scope of communication, the type of addressing used, and the extent
to which the programmer is aware of communication.

5.1 Communication → Scope

We define the scope of communication as the set of nodes that exchange data to
accomplish a given application processing.

Classification. Three approaches emerge in the current state of the art:

—Physical neighborhood: programmers are provided with constructs that allow
data exchange only among nodes within direct radio range.

—Multi-hop group: data exchange is enabled among a subset of nodes across
multiple hops. Two sub-cases can be identified based on the connectivity among
the nodes in the group:
—Connected: the nodes exchanging data may be multiple hops away from each

other, yet any two nodes in the group are connected via nodes that are also
part of the group. An example is depicted in Figure 7(a).

—Non-connected: no assumption is made on the location of nodes belonging
to the group, as in Figure 7(b).

—System-wide: all the nodes in the WSN are possibly involved in some data
exchange.

As an example of a system where communication is restricted to the physical
neighborhood, we illustrate Active Messages [Culler et al. 2001] and the compan-
ion language nesC [Gay et al. 2003]. As for communication within a multi-hop
group, we study EnviroSuite [Luo et al. 2006] for the connected case, and Log-
ical Neighborhoods [Mottola and Picco 2006a; 2006b] for the non-connected one.
Finally, we illustrate TinyDB [Madden et al. 2005] as an example of system-wide
communication.

5.1.1 Physical neighborhood: Active Messages and nesC.
ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · L. Mottola and G.P. Picco

1 interface AMSend {
2 command error_t send(am_addr_t addr, message_t* msg, uint8_t len);
3 command error_t cancel(message_t* msg);
4 event void sendDone(message_t* msg, error_t error );
5 command uint8_t maxPayloadLength ();
6 command void* getPayload(message_t* msg, uint8_t len);
7 }

Fig. 8. nesC Active Message interface.

Overview. Active Messages is a set of interfaces providing basic communication
primitives in the nesC programming language. This is an event-driven program-
ming language for WSNs derived from C, whose goal is to provide programming
support for the TinyOS operating system. Applications are built in nesC by inter-
connecting components that interact by providing or using interfaces. An interface
lists one or more functions, tagged as commands or events. Commands are used
to start operations, while events are used to collect the results asynchronously. A
component providing an interface implements the commands it declares, whereas
the one using the interface implements its events. Therefore, data may flow both
ways between components connected through the same interface.

In Active Messages, messages are tagged with an identifier that specifies which
component must process them upon reception. Components use Active Messages
through nesC interfaces. An example is shown in Figure 8. Additional interfaces
are provided for low-level configuration (e.g., to set the transmission power level).
Although higher-level communication abstractions are available atop nesC [Levis
et al. 2004], they all rely on Active Messages. In a sense, Active Messages play a
role similar to sockets in mainstream distributed computing, by providing a basic
building block enabling the development of higher-level functionality.

Example. Figure 9 shows a code fragment implementing a component that queries
the sensing device and sends the reading in broadcast. The booted event in the
Boot interface is signalled at system start-up. Inside the event handler (line 11-
13), the component calls the read command (line 12) in the TemperatureSensor
interface, whose providing component is bound to the sensing device. This is a
typical split-phase operation [Gay et al. 2003]: the command returns immediately
and the caller is asynchronously notified when the device completes its operation,
in our case using the readDone event (line 15). In the corresponding event handler,
the sensed value is packed in a message and the component calls the AMSend.send
command. To make sure the component does not try to send another message while
an earlier transmission is in progress, a transmitLock flag is set just before calling
the AMSend.send() command (line 19). The flag is unset inside AMSend.sendDone,
which is asynchronously called when the transmission completes (line 26-32). As
this example shows, the level of abstraction provided is quite low. Programmers are
forced to deal directly with message parsing and serialization as well as scheduling
transmissions. In addition, although the nesC Sensor APIs [TinyOS Community
Forum a] provide support for sensing, no dedicated abstractions are offered to con-
trol externally attached devices, e.g., actuators.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 15

1 module Sampler {
2 uses interface Boot;
3 uses interface TemperatureSensor;
4 uses interface AMSend;
5 }
6
7 implementation {
8 bool transmitLock;
9 message_t msgBuffer;

10
11 event void Boot.booted {
12 call TemperatureSensor.read ();
13 }
14
15 event void TemperatureSensor.readDone(uint16_t v){
16 uint16_t* msg_payload = (uint16_t *) call AMSend.getPayload(msgBuffer );
17 *msg_payload = v;
18 if (! transmitLock) {
19 transmitLock = TRUE;
20 if (!call AMSend.send(TOS_BCAST_ADDR, &msgBuffer, sizeof(message_t ))) {
21 transmitLock = FALSE;
22 }
23 }
24 }
25
26 event void AMSend.sendDone(message_t* msg, result_t success) {
27 if(transmitLock && msg == msgBuffer ) {
28 transmitLock = FALSE;
29 } else {
30 // Error ...
31 }
32 }
33 }

Fig. 9. Sense and broadcast component in nesC using Active Messages.

Implementation highlights. The mechanisms implementing the Active Message
interfaces are normally bound to the specific MAC-level mechanisms employed, or
directly to the radio hardware. As a result, most of them are platform-specific.
Generally, the implementations provide (unreliable) 1-hop unicast or broadcast
transmissions. Specific solutions, nonetheless, can offer some form of reliability
when coupled with specific radio chips [Polastre et al. 2004; TinyOS Community
Forum d]. Moreover, there is essentially no support for packet buffering, and the
application must provide its own storage for sending and receiving messages. To
overcome these limitations, multi-hop protocols for data collection and dissemina-
tion have been developed atop the Active Message interface [TinyOS Community
Forum b; c].

5.1.2 Multi-hop group → Connected: EnviroSuite.

Overview. EnviroSuite is an object-based programming framework aimed at mon-
itoring and tracking applications. In EnviroSuite, objects represent physical entities
in the environment. Object instances are dynamically created when the correspond-
ing physical entities are detected, and automatically destroyed when the same enti-
ties move out of sensing range. A one-to-one mapping between objects and physical
entities is maintained as the latter move in the environment. The framework pro-
vides constructs to specify the conditions for object creation, the object attributes
describing the state of the corresponding physical entity, and the logic to update

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · L. Mottola and G.P. Picco

1 object VEHICLE {
2 object condition = ferrous_object () && vehicle_sound ();
3 object_attribute location {
4 attribute_value = AVERAGE(position ());
5 attribute_degree = 2;
6 attribute_freshness = 500 ms;
7 }
8 object_main_function = Vehicle.getLocation;
9 }

Fig. 10. Vehicle tracking in EnviroSuite.

these attributes based on sensor data. The set of nodes maintaining an object in-
stance is assumed to be a connected region around the environmental phenomena
at hand. A remote procedure call mechanism allowing for inter-object interactions
is also included [Blum et al. 2003].

Example. Consider an application to track moving vehicles using magnetometers
and acoustic sensors. The exact vehicle position is computed by averaging the
position estimates reported by a minimum number of sensor nodes.

Figure 10 reports a fragment of the corresponding implementation in EnviroSuite,
adapted from [Luo et al. 2006]. The program defines a VEHICLE object whose cre-
ation occurs when sensors detect a ferrous object coupled with the sound signature
of a vehicle (line 2). The object exports a single attribute named location. Its
value is derived by aggregating the position estimates of at least 2 nodes, updated
every 500 ms (line 3-7). The object main function (line 8) indicates where to find
the nesC code implementing the main object method. In this case, the statement
points to a command getLocation in interface Vehicle, where the programmer
can specify dedicated macros to send data to the base station or invoke methods
on other, possibly remote, objects.

Implementation highlights. EnviroSuite object definitions are fed as input to a
dedicated pre-processor that generates plain nesC code. The framework provides
a library of sensor data processing algorithms to define conditions for object cre-
ation. Based on the object definition at hand, the pre-processor identifies the most
appropriate protocol to manage object creation and destruction. Available choices
include a protocol, based on routing trees, to maintain objects bound to a fixed
set of nodes, and a scheme to deal with objects associated to moving entities. The
latter features mechanisms to maintain the mapping between the objects and the
environmental phenomena as these move in space. A leader is elected in the con-
nected region of nodes sensing the moving target, which collects data from other
nodes in the same region and performs the necessary computation.

5.1.3 Multi-hop group → Non-connected: Logical Neighborhoods.

Overview. Logical Neighborhoods is a programming abstraction that allows pro-
grammers to redefine a node’s neighborhood based on the logical properties of the
nodes in the network, regardless of their physical position. Neighborhoods are
defined using a declarative programming language called Spidey, conceived as an
extension of existing WSN languages. Programmers interact with the nodes in
a logical neighborhood using an API that mimics the traditional broadcast-based
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 17

1 node template Device
2 static Function
3 static Type
4 static Location
5 dynamic BatteryPower
6
7 create node tl from Device
8 Function as "actuator"
9 Type as "traffic_light"

10 Location as "entrance_east"
11 BatteryPower as getBatteryPower ()

Fig. 11. Logical Neighborhoods: node definition and instantiation for an actuator node.

1 neighborhood template TrafficLights(loc)
2 with Function = "actuator" and
3 Type = "traffic_light" and
4 Location = loc
5
6 create neighborhood tl_east
7 from TrafficLights(loc: "entrance_east ")
8 max hops 2 credits 30

Fig. 12. Logical Neighborhoods: neighborhood definition and instantiation in road tunnel moni-

toring.

communication. Instead of the nodes within radio range, however, the message
recipients are the nodes matching a given neighborhood definition. Therefore, pro-
grammers still reason in terms of neighboring relations, but retain control over
how these are established. Logical Neighborhoods is suited to the highly hetero-
geneous and decentralized scenarios typical of sense-and-react applications, where
the processing often revolves around programmer-defined subsets of nodes.

Example. The definition of logical neighborhoods is based on two concepts: nodes
and neighborhoods. Nodes represent the portion of a real node’s features made
available to the definition of any logical neighborhood. Their definition is encoded
in a node template, which specifies a node’s exported attributes. This is used to
derive instances of logical nodes, by specifying the actual source of data. Figure
11 reports a fragment of Spidey code that defines a template for a generic actuator
(line 1-5), and instantiates a logical node controlling a traffic light (line 7-11).

A logical neighborhood is defined using predicates over node templates. Anal-
ogously to nodes, a neighborhood is first defined in a template, which essentially
represents the membership function for the node subset targeted by the neighbor-
hood. The neighborhood template is then instantiated by specifying where and how
it is evaluated. For instance, Figure 12 illustrates the definition of a neighborhood
that includes the nodes controlling the traffic lights on a specific tunnel entrance
(line 1-4). The template is instantiated so that it evaluates only on nodes at most 2
(physical) hops away from the one node defining the neighborhood, and by spending
a maximum of 30 “credits” (line 6-8). The latter is an application-defined notion
of communication costs, which allows programmers to affect the trade-off between
accuracy and resource consumption [Mottola and Picco 2006b].

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 · L. Mottola and G.P. Picco

1 SELECT AVG(light), AVG(temp), location
2 FROM sensors
3 SAMPLE PERIOD 2 s FOR 30 s

Fig. 13. Monitoring bird nests using TinyDB.

Implementation highlights. Logical Neighborhoods is available for both TinyOS
and Contiki. A Java version is also available [Mottola et al. 2007]. Spidey defini-
tions are input to a dedicated pre-processor generating custom code for the plat-
form at hand. An efficient routing mechanism enables communication in a logical
neighborhood. Nodes periodically disseminate their profile, i.e., the list of current
attribute-value pairs. To avoid flooding the entire system, the protocol exploits the
redundancy among similar profiles to limit the spreading of information. Applica-
tion messages contain an encoding of the target logical neighborhood. Based on the
attributes it contains, a message follows the routes established by the disseminated
profiles back to the target nodes.

5.1.4 System-wide: TinyDB.

Overview. TinyDB, similarly to its predecessor TAG [Madden et al. 2003], is
a query processing system for WSNs whose focus is to optimize energy consump-
tion by controlling where, when, and how often data is sampled. In TinyDB, the
user submits SQL-like queries at the base station. These are parsed, optimized
depending on the data requested, and injected into the network. Upon reception
of a query, a node processes the corresponding requests, gathers some readings if
needed, and funnels the results back to the base station. The data model revolves
around a single sensors table that logically contains one row per node per in-
stant in time, and one column for each possible data type the node can produce
(e.g., temperature or light). The data in this table is materialized only on request.
Alternatively, materialization points can be created in the network to proactively
gather and process the data. Data collection applications are easily expressed using
TinyDB, as the declarative nature of the database abstraction helps programmers
in focusing on the data to retrieve without specifying how to do so.

Example. Consider an application to monitor the presence of birds in nests, where
the average light and temperature close to a nest must be gathered every 2 seconds
for a total of 30 seconds. This processing can be encoded in a TinyDB query as
illustrated in Figure 13, adapted from [Madden et al. 2005]. The SELECT, FROM
and WHERE clauses have the same semantics as in standard SQL. The location at-
tribute is assumed to be obtained from some external localization mechanism. The
SAMPLE PERIOD construct is used for specifying the rate and lifetime of the query.
The example shows how TinyDB, for this specific kind of application/functionality,
enables a very compact encoding of the desired behavior.

Implementation highlights. When the query is injected from the base station, a
routing tree is built spanning all the nodes in the network. The routes are then
decorated with meta-data to provide information on the type and nature of data
sensed by nodes in a specific portion of the tree. While executing the query at
each node, TinyDB performs several optimizations to reduce the amount of data
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 19

flowing towards the base station. For instance, data sampling and transmissions
are interleaved to minimize power consumption without affecting the quality of the
data reported. A dedicated transmission scheme is also employed to schedule the
transmissions at different levels of the tree. The goal is to make data flow upward
starting from the leaves, so that intermediate nodes can aggregate information
coming from other devices before sending their own.

5.2 Communication → Addressing

Orthogonal to the communication scope, existing solutions differ in the way the
nodes involved are identified, i.e., the specific addressing scheme employed. The
nature of the constructs used to determine the target nodes bears great impact on
the ease in describing the application processing.

Classification. Existing programming frameworks essentially fall in either of the
two classes of addressing:

—Physical addressing: the target nodes are identified using statically assigned
identifiers. Most often, this is used in conjunction with unicast or broadcast
communication within a 1-hop neighborhood.

—Logical addressing: the target nodes are identified through programmer-provided,
application-level properties. For instance, the target nodes may be determined
based on their type or current readings.

The Active Message communication stack we described in Section 5.1.1 is an
example of the former type of addressing. Both the node identifier and the Active
Message identifier that binds sender and receiver components are hard-wired in the
code. The communication target in the AMSend interface of Figure 8 is either a
broadcast identifier or the identifier of a specific node.

In contrast, the Logical Neighborhoods abstraction we illustrated in Section 5.1.3
features a logical addressing scheme. The communication target is determined by
defining the properties characterizing the individual nodes, and by providing the
property values selecting the desired nodes. Thus, the nodes involved may even
change over time without modifying the definition of the neighborhoods themselves,
unlike with static node addresses.

5.3 Communication → Awareness

Another facet of how communication is made available in WSN programming is the
extent to which the programmer is aware of communication, i.e., whether commu-
nication is explicitly exposed to developers, or instead hidden behind some higher-
level construct. In the former case, the functionality necessary to prepare messages
for transmission and to parse them on reception rests mostly on the programmers’
shoulders, often complicating the implementation of the application processing.

Classification. Based on the above consideration, we classify available solutions
as providing:

—Explicit communication: where this functionality is directly in the hands of
programmers, who are in charge of dealing with aspects such as message buffering,

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · L. Mottola and G.P. Picco

1 // Discover region
2 result_t Region.formRegion(<region specific args >, int timeout );
3
4 // Wait for region discovery
5 result_t Region.sync(int timeout );
6
7 // Set and get shared variables
8 result_t SharedVar.put(sv_key_t key, sv_value_t val);
9 result_t SharedVar.get(sv_key_t key, addr_t node, sv_value_t *val, int timeout );

10
11 // Wait for shared variable gets
12 result_t SharedVar.sync(int timeout );
13
14 // Reduce ’value ’ to ’result ’ with given ’operator ’
15 // ’yield ’ returns the percentage of nodes responding
16 result_t Reduce.reduceToOne(op_t operator, sv_key_t value,
17 sv_key_t result, float *yield, int timeout );
18
19 // Reduce and set result in all nodes
20 result_t Reduce.reduceToAll(op_t operator, sv_key_t value,
21 sv_key_t result, float *yield, int timeout );
22
23 // Wait for reductions to complete
24 result_t Reduce.sync(int timeout );

Fig. 14. The API of Abstract Regions.

serialization, and parsing. In addition, programmers may be required to schedule
transmissions explicitly.

—Implicit communication: where it occurs through higher-level language con-
structs with no direct intervention from programmers, who cannot precisely per-
ceive when and how data is exchanged among nodes. For instance, this is similar
to remote procedure calls in traditional distributed computing.

An exemplary solution belonging to the former class is again Active Messages,
described in Section 5.1.1. In this case, programmers are in charge of serializing and
parsing data by accessing the various fields of a generic message t data structure.
Moreover, in the absence of buffering mechanisms, programmers must schedule
transmissions directly. As an example of the latter category, here we illustrate the
Abstract Regions [Welsh and Mainland 2004] programming framework.

5.3.1 Implicit communication: Abstract Regions.

Overview. Abstract Regions is a set of general-purpose programming primitives
providing addressing, data sharing, and aggregation among a subset of nodes de-
fined as a region. For instance, a region may include all nodes within a given
distance from each other. Data sharing is accomplished using an associative array
associated to the region, while dedicated constructs are provided to aggregate in-
formation stored at different nodes within a region. Although Abstract Regions are
built atop nesC/TinyOS, they also employ a lightweight thread-like concurrency
model called Fibers to provide blocking operations. The Abstract Regions API is
depicted in Figure 14 [Welsh and Mainland 2004]. By their nature, Abstract Re-
gions target applications exhibiting spatial locality, e.g., tracking moving objects
or identifying the contours of a physical area [Liu et al. 2002].
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 21

1 location = get_location ();
2
3 // Region setup to include 8 nearest neighbors
4 region = k_nearest_region.create (8);
5
6 while (true) {
7 reading = get_sensor_reading ();
8
9 // Store data as shared variables

10 region.put(reading_key, reading );
11 region.put(reg_x_key, reading * location.x);
12 region.put(reg_y_key, reading * location.y);
13
14 if (reading > threshold) {
15 // Retrieve the id of the node with max reading
16 max_id = region.reduceToOne(OP_MAXID, reading_key );
17
18 // If this node is leader
19 if (max_id == my_id) {
20 // Compute centroid
21 sum = region.reduceToOne(OP_SUM, reading_key );
22 sum_x = region.reduceToOne(OP_SUM, reg_x_key );
23 sum_y = region.reduceToOne(OP_SUM, reg_y_key );
24 centroid.x = sum_x / sum;
25 centroid.y = sum_y / sum;
26 send_to_basestation(centroid );
27 }
28 }
29 sleep(periodic_delay );
30 }

Fig. 15. Object tracking in Abstract Regions.

Example. We illustrate a simple object tracking application developed using the
API in Figure 14. The application takes periodic measures from sensor devices
(e.g., magnetometers), and compares them against a threshold. Nodes sensing a
value above the threshold coordinate to elect the node with the highest reading as
the leader. The leader computes the centroid of all readings, and transmits the
result back to a base station.

Figure 15 shows the code to implement the above object tracking application
using Abstract Regions, adapted from [Welsh and Mainland 2004]. Initially, each
node initializes the region to include the 8 geographically closest nodes (k nearest-
region.create() in line 4). In the main loop (line 6-30), each node queries the sen-

sor and makes the output available to other nodes in the region, along with its phys-
ical location. This is achieved using different shared variables and region.put()
to set their value. If the sensor reading is above the threshold, every node first
determines the highest reading in the region by using region.reduceToOne() with
operation OP MAXID (line 16). If the local node is the one with the highest reading,
sum-reductions are performed over the shared variables in the region to compute
the centroid, and the result is sent to the base station.

Implementation highlights. Abstract Regions leverages nesC to produce execu-
table code. The implementation of the mechanisms behind the Abstract Regions
API depends on the particular region employed. For instance, the region used
in the example is implemented using geographically-limited flooding. In contrast,
a planar-mesh region used in a contour-finding application can be implemented

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 · L. Mottola and G.P. Picco

based on Yao graphs [Li et al. 2002]. In general, different regions require different
implementations, which in turn may require a considerable effort.

5.4 Computation Scope

In WSNs, the duality between communication and computation plays an important
role, e.g., for minimizing communication through local aggregation. The provision
of language constructs that ease the description of the very application processing
is therefore key to achieve efficient implementations. To address this need, WSN
programming approaches provide a variety of language constructs. Besides the
particular programming paradigm employed, discussed next, available solutions
mainly differ w.r.t. the computation scope, i.e., the set of nodes directly affected by
the execution of a single instruction in the program.

Classification. In the current state of the art, the computation scope offered to
programmers is one of the following:

—Local: the effect of an instruction is limited to the node where it is executed.
—Group: an instruction can alter the state of some subset of nodes at once.
—Global: an instruction can possibly affect the state of all nodes in the system.

A local scope characterizes the computation in nesC, where all instructions have
only a local effect. This includes those concerned with message passing, which
indeed do not have a direct effect (e.g., a state change) on neighboring nodes.
At the other extreme, the TinyDB system we previously described is a natural
example of a global computation scope. Indeed, the processing triggered at the
sink is perceived by the programmer as directly affecting the entire system. As for
group computation, we use the Regiment system [Newton et al. 2007; Newton and
Welsh 2004] as a concrete example.

5.4.1 Group computation: Regiment.

Overview. Regiment is a functional language geared towards applications ex-
hibiting spatial locality, e.g., object tracking or intrusion detection. In Regiment,
programmers manipulate sets of data streams called signals. These represent read-
ings of individual nodes, the outcome of a node’s local computation, or an aggregate
value obtained by processing multiple input signals. Regiment also features a notion
of region similar to Abstract Regions, e.g., a region may include the sensor readings
generated by nodes in a limited geographic area. The processing is expressed by
applying programmer-provided functions to signals in a region.

Example. Consider a system for early detection of plumes. Key to the correctness
of the application is to avoid false positives due to noisy readings. Programmers are
thus to make sure that the overall sum of the readings gathered by nodes around
the phenomena exceeds a pre-specified threshold.

Figure 16 depicts an example Regiment program to implement the above process-
ing, adapted from [Newton et al. 2007]. The program first defines a set of functions
used in the rest of the program (line 1-3) to filter sensed data (abovethreshold),
gather the reading from the sensor (read), or sum all signals in a region (sum). In
the latter, rfold is used to aggregate all values in region r into a single signal,
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 23

1 fun abovethreshold(t) { t > CHEM_THRESHOLD }
2 fun read(n) { sense(" concentration", n) }
3 fun sum(r) { rfold ((+), 0, r) }
4
5 readings = rmap(read, world);
6 detects = rfilter(abovethreshold, readings );
7
8 hoods = rmap( fun(t, nd){ khood (1,nd) }, detects );
9 sums = rmap (sum, hoods);

10 base <- rfilter( fun(t){ t > CLUSTER_THRESHOLD }, sums);

Fig. 16. Plume monitoring in Regiment.

using the + operator and 0 as initial value. Next, the program identifies a region
of nodes that exceeds the local threshold value. This is accomplished by first gath-
ering the local readings at all nodes in the system, and then performing a filtering
step. The former operation is expressed as the application of read() to all the
nodes in the system, using rmap (line 5). This takes as input a function and a
region, and applies the function to all values in the region. The world region in
the example represents all nodes in the system. The filtering part is accomplished
using rfilter, which takes a boolean function and a region as inputs, and returns
the region that includes values for which the input function yields true (line 6).

In the example, hoods is instead a nested region. It consists of the nodes in
the one-hop neighborhood of each node in the detects region (line 8). This is
obtained by applying a region formation function (khood) to all nodes in detects.
The remaining instructions are used to sum the readings in the nested regions
created earlier, and to send a notification to the base station in case any of the
sums turns out to be above the safety threshold.

Implementation highlights. The Regiment system relies on multiple steps of com-
pilation to generate the final, node-level executable. A Regiment program is first
translated into an intermediate language called RQuery. Subsequently, the region
streams are translated into local streams. The output of the compiler is event-driven
code written in an intermediate language called Token Machine Language [Newton
et al. 2005]. This language does not assume a threaded concurrency model, and is
therefore suited for implementation on top of event-driven WSN operating systems,
such as TinyOS. As for communication, nodes in a given region exchange data us-
ing spanning trees. These are created and maintained by the Regiment run-time
support on every node.

5.5 Data Access Model

Existing solutions provide different abstractions to provide access to the data. The
specific data access model heavily influences the way programmers deal with both
communication and computation, and therefore impacts significantly the develop-
ment process.

Classification. Four approaches emerge in the current WSN literature:

—Database: the WSN is treated as a relational database and programmers pose
SQL-like queries to access the information. Data is returned as a stream of
records, possibly with no reference to the specific node that output the data.

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · L. Mottola and G.P. Picco

—Data sharing: data is shared in the form of remotely accessible variables or
tuples. Nodes can read or write data in the shared memory space using dedicated
constructs.

—Mobile code: data is accessed locally to a node, by migrating the accessing
code onto the node where data resides. Often, this is complemented by a data
sharing scheme, although mostly for local coordination.

—Message passing: data is accessed through messages exchanged among the
nodes involved.

The TinyDB system, described in Section 5.1.4, is an obvious representative of
the first class. In TinyDB, sensed data are indeed made available as entries of a
sensors table, and the user accesses the table using SQL-like queries. To cater with
the peculiarities of WSN applications, however, further constructs are provided to
express, for instance, the lifetime and period of queries.

To illustrate the remaining classes of data access models, here we present Teeny-
Lime [Costa et al. 2007] for data sharing, Agilla [Fok et al. 2005] for mobile code,
and DSWare [Li et al. 2004] for message passing.

5.5.1 Data sharing: TeenyLime.

Overview. TeenyLime is based on the tuple space abstraction made popular by
Linda [Gelernter 1985]. A tuple space is a shared memory space where different
processes read/write data in the form of tuples. To blend with the asynchronous
programming model of WSN operating systems such as TinyOS, however, in Teeny-
Lime operations are non-blocking and return their results through a callback. Tu-
ples are shared among nodes within radio range. In addition to Linda’s operations
to insert, read, and withdraw tuples, reactions allow for asynchronous notifications
when data of interest appears in the shared tuple space. In addition, several WSN-
specific features are provided. For instance, capability tuples enable on-demand
sensing, therefore sparing the energy required to keep sensed information up to
date in the shared tuple space in the absence of data consumers. TeenyLime pro-
vides constructs useful to develop stand-alone applications as well as system level
mechanisms, e.g., routing protocols, as demonstrated by the real-world deployment
described by Ceriotti et al. [2009].

Example. Consider an application for fire control in buildings. Sensor nodes
are deployed to monitor temperature, along with actuator nodes triggering their
attached devices (e.g., a water sprinkler) when temperature is above a threshold.

To implement the latter functionality, actuators install a reaction on their neigh-
bors to watch for tuples reporting a temperature above the safety threshold. This
is shown in the code fragment of Figure 17, adapted from [Costa et al. 2007].
In particular, the first parameter to the addReaction primitive (line 4) indicates
whether reaction notifications must be reliably delivered to the requesting node.
In addition, tempTemplate identifies the data of interest using a pattern match-
ing mechanism that, unlike the original Linda model, allows for constraints on the
value of the tuple fields. Temperature sensors periodically take a sample and pack
it in a tuple stored in the local tuple space as shown in Figure 18. Insertion is
accomplished using an out operation (line 10) by setting the target parameter to
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 25

1 command result_t StdControl.start () {
2 tuple tempTemplate = newTuple (2, actualField_uint16(TEMPERATURE),
3 greaterField(TEMPERATURE_SAFETY_THRESHOLD ));
4 call TS.addReaction(TRUE, TL_NEIGHBORHOOD, &tempTemplate );
5 return SUCCESS;
6 }
7 event result_t TS.tupleReady(TLOpId_t operationId,
8 tuple *tuples, uint8_t number) {
9 // Notification triggered ...

10 }

Fig. 17. TeenyLime code for an actuator node interested in temperature values.

1 command result_t StdControl.start () {
2 return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER );
3 }
4 event result_t SensingTimer.fired() {
5 return call TemperatureSensor.getData ();
6 }
7 event result_t TemperatureSensor.dataReady(uint16_t reading ){
8 tuple temperatureValue = newTuple (2, actualField_uint16(TEMPERATURE),
9 actualField_uint16(reading ));

10 call TupleSpace.out(FALSE,TL_LOCAL,&temperatureValue );
11 return SUCCESS;
12 }

Fig. 18. TeenyLime code for a temperature node.

TL LOCAL. This operation, by virtue of one-hop sharing, automatically triggers the
aforementioned reaction on neighboring nodes. Actuator nodes process the tuple
that caused the reaction firing in the tupleReady event in Figure 17 (line 7-10).

Implementation highlights. TeenyLime is built atop nesC/TinyOS and Active
Messages. Remote reactions rely on a soft-state approach to deal with nodes join-
ing or failing. Each node periodically sends messages containing control data for
all remote reactions. Upon receipt of this message, a timer associated with in-
stalled reactions is refreshed. If and when the timer expires, the corresponding
reaction is removed. To implement reliable operations, solutions such as [van Dam
and Langendoen 2003; Rajendran et al. 2006]) can be plugged into TeenyLime
with minimal effort. The current TMote Sky [MoteIV ] port includes a dedicated
reliability layer based on hardware-level acknowledgements.

5.5.2 Mobile code: Agilla.

Overview. Agilla is a mobile agent [Fuggetta et al. 1998] system for WSNs.
Programs are composed of one or more software agents able to migrate across
nodes. An Agilla agent is similar to a virtual machine with its own instruction
set and dedicated data/instruction memory. Local coordination among agents is
accomplished using a Linda-like tuple space. Agents can insert data in a local data
pool to be read by different agents at later times. The use of tuple spaces allows
programmers to decouple the application logic residing in the agents from their
coordination and communication. Agilla therefore provides a powerful mechanism
to implement applications requiring on-the-fly reconfiguration of some functionality

ACM Journal Name, Vol. V, No. N, Month 20YY.



26 · L. Mottola and G.P. Picco

1 BEGIN pushn fir
2 pusht LOCATION
3 pushc 2
4 pushc FIRE
5 regrxn // Register fire alert reaction
6 wait // Wait for reaction to fire
7 FIRE pop
8 sclone // Strong clone to the node detecting fire
9 ... // Fire tracking code

Fig. 19. Fire tracking with Agilla.

in response to external phenomena.

Example. Consider a fire monitoring application in a forest. Fire-detection agents
are deployed to monitor the temperature in various regions. When a rise in tem-
perature is detected, fire-detection agents spawn fire-tracking agents that swarm
around to collect information about the exact location of the fire.

To implement such an application, Agilla provides an API to interact with the
tuple space at each node, and to clone agents. As for the former aspect, Agilla
provides operations to insert, read, and remove tuples. In addition, similarly to
TeenyLime, it gives programmers the ability to add reactions to the tuple space,
although the matching mechanism is here limited to type-based matching and reac-
tions are local. Migration is accomplished either by relocating the agent with smove
and wmove, or by cloning it on a different node with sclone and wclone. The w
and s in front of the operation name specifies whether strong or weak mobility is
required [Fuggetta et al. 1998]. Strong mobility ensures that the execution state is
retained across movement, enabling the agent to resume execution right after the
migration instruction. Instead, weak mobility moves only the agent code, whose
execution restarts from scratch.

Figure 19, adapted from [Fok et al. 2005], shows how a fire tracking agent is
notified about the presence of an increase in temperature. When such an agent
is injected into a node, it registers a reaction for FireAlert tuples and waits for
it to be triggered (line 1-5). This occurs when a fire detection agent outputs the
corresponding tuple in the tuple space. Upon triggering of the reaction, the agent
immediately clones itself to a different node (line 7-8). Once there, it possibly keeps
cloning itself to gather information in regions around the phenomena.

Implementation highlights. Agilla is implemented on top of TinyOS. The instruc-
tion set and the mechanisms enabling on-the-fly execution of code are based on the
Maté [Levis and Culler 2002] virtual machine. An agent manager maintains each
agent’s context, allocates memory when the agent arrives, and deallocates the same
memory when the agent leaves or dies. The latter aspects are dealt with using a
lightweight implementation of dynamic memory, as this functionality is not avail-
able in TinyOS. A context manager determines the node location and maintains
the list of reachable neighbors, whereas a tuple space manager implements the
operations to read/write from/to the tuple space, and registers/triggers reactions
when required. Migrating agents requires reliable transmissions. This is achieved
using a hop-by-hop retransmission scheme where messages not yet acknowledged
are re-sent upon expiration of a timeout.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 27

1 INSERT INTO EVENT_LIST
2 (EVENT_ID, RANGE_TYPE, DETECTING_RANGE, SUBEVENT_SET, REGISTRANT_SET,
3 REPORT_DEADLINE, DETECTION_DURATION [, SPATIAL_RESOLUTION ])

Fig. 20. Subscription format in DSWare.

1 INSERT INTO EVENT_LIST
2 (explosion, AREA, [0,0;200 ,200],
3 SUBEVENT_SET, user_base_station, 1 sec,
4 1 hour)
5
6 SUBEVENT_SET (
7 SAFETY_TIMEOUT,
8 MIN_CONFIDENCE,
9 (temperature > 60),

10 (light > 200),
11 (compareSound(sound,explosionSignature ))
12 )

Fig. 21. Detecting explosions with DSWare.

5.5.3 Message passing: DSWare.

Overview. DSWare is a message passing middleware whose focus are real-time
applications for detection of sporadic events. It employs a form of publish/sub-
scribe [Eugster et al. 2003] paradigm in which users specify subscriptions express-
ing the characteristics of the phenomena of interest, and are notified upon the
occurrence of matching phenomena. A higher-level notion of event enables pro-
grammers to infer the occurrence of a phenomenon from raw sensor observations.
For instance, an event can be defined as the composition of two physical sub-events
occurring within a specific time interval from each other. Confidence levels can
also be defined to fine-tune the relationships among sub-events, e.g., their relative
importance or fitness to a pattern.

Subscriptions are issued at the user’s base station using a dialect of SQL, ac-
cording to the format in Figure 20. Besides the event identifier, RANGE TYPE and
DETECTING RANGE specify the group of sensors responsible for detecting the event.
The corresponding notification is reported before the REPORT DEADLINE to every
node in the REGISTRANT SET. DETECTION DURATION specifies the total duration of
this subscription, whereas SPATIAL RESOLUTION determines the geographical gran-
ularity for the event’s detection. Finally, SUBEVENT SET specifies a group of sub-
events that must occur for this event to be observed, their timing constraints and
confidence levels.

Example. Consider an application to detect explosions in a given geographical
area. Temperature, light, and acoustic sensors are deployed to accomplish the
task. Figure 21 illustrates how to describe the required processing in DSWare. The
program defines a high-level temperature sub-event occurring when the temperature
is higher than a safety threshold, a light sub-event corresponding to a sharp change
in the light intensity, and an acoustic sub-event representing the occurrence of a
sound whose signature resembles that of an explosion (line 9-11). The higher-level
explosion event is defined as the combination of the aforementioned sub-events

ACM Journal Name, Vol. V, No. N, Month 20YY.



28 · L. Mottola and G.P. Picco

when occurring within a specified time interval from each other and within the
same geographical region (line 2-3). In addition, upon detection of such event, the
program requires a notification to be reported to the user within one second (line
3). A further option specifies that the application must monitor these types of
events for one hour (line 4).

Implementation highlights. Subscriptions are propagated in the network until
they reach the area of interest, or all the nodes in the system. In doing so, a
routing tree is built connecting the base station to the relevant sensor nodes. Two
optimizations are performed in case multiple nodes subscribe to the same infor-
mation. First, in case subscriptions are for the same data yet they have different
rates, DSWare places copies of the relevant information at intermediate nodes to
limit the amount of information flowing in the network. Second, DSWare tries
to merge paths leading to different base stations to minimize redundant transmis-
sions [Kim et al. 2003]. To guarantee real-time delivery of event notifications, an
earliest-deadline-first scheduling mechanism is employed. An alternative, energy-
aware scheduling technique is also provided, although it may occasionally fail to
meet the requested deadlines.

5.6 Programming Paradigm

The programming paradigm determines the abstractions used to represent the indi-
vidual elements of a program. These include functions and variables, as well as the
steps that compose a computation, e.g., assignments and iterations. The solutions
hitherto described already highlight the variety of programming paradigms avail-
able. This aspect bears great influence on the learning curve for new programmers,
and ultimately on their productivity.

Classification. Looking at the current state of the art in WSN programming,
three major paradigms can be identified:

—Imperative: the intended application processing is expressed through state-
ments that explicitly indicate how to change the program state. By far the most
widespread, it can be further classified into sequential or event-driven.

—Declarative: the application goal is described without specifying how it is ac-
complished. Relevant sub-classes of declarative approaches include functional,
rule-based, SQL-like, and special-purpose.

—Hybrid: the programming approach is a combination of multiple programming
paradigms, e.g., imperative and declarative.

The nesC language, illustrated in Section 5.1.1, features an imperative event-
driven paradigm based on split-phase operations. The control flow is divided across
different operations that are asynchronously executed when some events occur, e.g.,
upon receiving a message. Although this increases parallelism, it generally makes
implementations more entangled and difficult to reason about. Next, we illus-
trate Pleiades [Kothari et al. 2007], which instead adopts an imperative sequential
paradigm.

The Regiment system, illustrated in Section 5.4, is representative of the declara-
tive functional paradigm. Constructs are provided to apply given functions to nodes
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 29

in a region and store the output at a single node or at all devices in a region. In
the following, we describe Snlog [Chu et al. 2007] to illustrate declarative solutions
that adopt a rule-based approach. The TinyDB system described in Section 5.1.4
is an example of a declarative approach based on SQL-like constructs. TinyDB
programmers specify constraints on the data of interest without specifying the ex-
act procedure to gather the data themselves. Logical Neighborhoods, described
in Section 5.1.3, exemplifies a special-purpose declarative paradigm, whose custom
constructs are used to identify the target nodes.

Finally, the ATaG [Bakshi et al. 2005] framework, illustrated in the following,
features a hybrid approach. Communication among tasks executed on separate
nodes is described in a declarative manner, whereas the local node computation
is expressed using an imperative language. This choice decouples local processing
from inter-node coordination.

5.6.1 Imperative → Sequential: Pleiades.

Overview. Pleiades is a programming language providing a centralized view on
the sensor network. It extends the C language with constructs to address the nodes
in the network and to access their local state. A Pleiades program normally features
a single sequential thread of control, i.e., execution unfolds with only one node in
the system executing any Pleiades instruction at any point in time. Nonetheless, a
dedicated language construct cfor is provided to introduce concurrent executions at
multiple nodes. Whenever required, the underlying run-time guarantees serializable
execution of cfor statements. Because of these features, Pleiades targets concurrent
applications that require guarantees on their distributed execution. An example of
a similar scenario follows.

Example. Figure 22 depicts a Pleiades program implementing a street-parking
application, adapted from [Kothari et al. 2007]. The goal is to identify the free
spot closest to the driver’s destination. To do so, sensors are deployed in parking
spots to monitor their occupancy. The control flow iterates among the nodes in the
network in search of the first free spot, starting from the node closest to the desired
destination. The program makes use of most of the language features in Pleiades:

—The node data type abstracts a single WSN device, whereas nodeset represents
a collection of nodes. Helper functions are provided to obtain such collections.
For instance, get network nodes() returns a nodeset containing all nodes in
the system, and get neighbors(n) returns n’s one-hop neighbors.

—Variables are normally shared across all nodes in the system, unless they are
tagged by programmers with the nodelocal attribute, e.g., isfree in Figure 22
(line 2). Node-local variables are accessed using the notation var@e, where var
is a nodelocal variable and e is a node.

—The cfor construct works as a normal for loop, except the execution of its body
is concurrent w.r.t. the nodes in a nodeset. The Pleiades run-time can ensure
that the effect of a cfor corresponds to some sequential execution of the loop.
Here, this is required to make sure that only one free node is reserved for the
car arriving (line 20-39). Access to loose variables, on the other hand, is not
synchronized inside cfor loops.

ACM Journal Name, Vol. V, No. N, Month 20YY.



30 · L. Mottola and G.P. Picco

1 #include "Pleiades.h"
2 boolean nodelocal isFree=TRUE;
3 nodeset nodelocal neighbors;
4 node nodelocal neighborIter;
5
6 void reserve (pos dst) {
7 boolean reserved = FALSE;
8 node nodeIter, reservedNode = NULL;
9 node n=closest_node(dst);

10 nodeset loose nToExamine = add_node(n, empty_nodeset ());
11 nodeset loose nExamined = empty_nodeset ();
12
13 if (isfree@n) {
14 reserved = TREE; reservedNode = n;
15 isfree@n = FALSE;
16 return;
17 }
18
19 while (! reserved && !empty(nToExamine )) {
20 cfor (nodeIter=get_first(nToExamine );
21 nodeIter !=NULL;
22 nodeIter = get_next(nToExamine )) {
23 neighbors@nodeIter=get:neighbors(nodeIter );
24 for (neighborIter@nodeIter=get_first(enighors@nodeIter );
25 neighborIter@nodeIter !=NULL;
26 neighborIter@nodeIter=get_next(neighbors@nodeIter )) {
27 if (! member(neighborIter@nodeIter,nExamined ))
28 add_node(neighborIter@nodeIter,nToExamine );
29 }
30 if (isfree@nodeIter) {
31 if (! reserved) {
32 reserved=TRUE; reservedNode=nodeIter;
33 isfree@nodeIter=FALSE;
34 break;
35 }
36 }
37 remove_node(nodeIter,nToExamine );
38 add_node(nodeIter,nExamined );
39 }
40 }
41 }

Fig. 22. A street-parking application in Pleiades.

Implementation highlights. The Pleiades compiler performs data-flow analysis to
partition the program in independent execution units called nodecuts, each running
on a single node. The compiler assigns nodecuts to nodes based on the expected
communication cost for accessing variables at remote nodes. At run-time, the
execution flow moves from one node to the other in case the flow transitions between
nodecuts assigned to different devices. A dedicated locking mechanism is provided
to implement serializable execution of cfors. A coordinator is elected among the
nodes involved. It manages the locks on shared variables according to the current
state of execution, and monitors the execution state of the other nodes involved to
determine the presence of deadlocks, e.g., caused by nested cfor statements.

5.6.2 Declarative → Rule-based: Snlog.

Overview. Snlog is a rule-oriented approach inspired by logical programming.
The core language constructs are predicates, tuples, facts, and rules. Predicates
specify schemas for data as ordered sequences of fields, analogously to how tables
in relational databases specify the format of records. Tuples represent the actual
data, similarly to instantiated records in database tables. Facts are particular tuples
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 31

1 builtin(trackingSignal, ’TargetDetectorModule.c’).
2 import(tree.snl).
3
4 message(@Src, Src, Head, SrcX, SrcY, Val) :-
5 trackingSignal(@Src, Val), detectorNode(@Src),
6 location(@Src, SrcX, SrcY), clusterHead(@Src, Head).
7 message(@Next, Src, Dst, X, Y, Val) :-
8 message(@Crt, Src, Dst, X, Y, Val),
9 nextHop(@Crt, Dst, Next, Cost).

10
11 trackingLog(@Dst, Epoch, X, Y, Val) :-
12 message(@Dst, Src, Dst, X, Y, Val), epoch(@Dst, Epoch ).
13 estimation(@S, Epoch, <AVG, X>, <AVG, Y>) :-
14 trackingLog(@S, Epoch, X, Y, Val), epoch(@S, Epoch).
15
16 timer(@S, epochTimer, Period) :- timer(@S, epochTimer, Period ).
17 epoch(@S, Epoch ++) :- timer(@S, epochTimer, _), epoch(@S, Epoch).

Fig. 23. An object tracking application in Snlog.

that are instantiated at system start-up, whereas rules express the actual process-
ing. Similarly to Datalog-like languages, rules consists of a head and body part.
Programmers express in the body the conditions for outputting the tuples specified
in the head. Distributed executions are described using a location specifier, which
represents the node hosting a tuple in case this is not co-located with the node
executing a given rule. Only 1-hop interactions are supported. Atomicity is guar-
anteed at the rule level. Native C or nesC code can be linked to the rule engine to
interact with low-level devices or implement efficient memory management. Snlog
has been used at different levels of the stack, to implement applications such as
tracking moving objects as well as routing protocols.

Example. Figure 23 reports the implementation of a simplified object tracking
application in Snlog, adapted from [Chu et al. 2007]. Compared to the analogous
applications we described for EnviroSuite and Abstract Regions, here the leader
(cluster-head in this example) processing the sensor measurements is statically de-
termined. In [Chu et al. 2007], the authors mention that only 4 additional rules
are needed to dynamically identify the leader.

At the beginning of Figure 23, the import construct includes an external Snlog
file implementing a tree-based collection protocol. Essentially, this makes available
the nextHop tuple used to direct data towards the leader (line 9). When a node
detects the target, it creates a tuple to report the node position to the cluster-head
(line 4-9). Upon receipt, this information is timestamped with the current epoch
value (line 11-12) and then used to average the position of the moving object (line
13-14). Periodic timers are used to update the epoch value (line 16-17), where a
timer predicate in a rule body indicates a timer firing and the same timer predicate
in a rule head represents the timer being set.

Implementation highlights. The Snlog compiler outputs executable nesC code. A
generic run-time layer is provided to support rule execution, whereas the individ-
ual rules are compiled into a data-flow chain of database operators such as joins,
selection, and projection. Each operator is mapped to a nesC component obtained
from a generic template that the compiler customizes depending on the nature of

ACM Journal Name, Vol. V, No. N, Month 20YY.



32 · L. Mottola and G.P. Picco

Fig. 24. A cluster-based data collection program in ATaG.

the rules involved. Optimization goals can also be set at compile-time, e.g., to
minimize code size as opposed to data size. Communication is handled using the
Active Message stack described in Section 5.1.1.

5.6.3 Hybrid: Abstract Task Graph (ATaG).

Overview. ATaG is a programming framework providing a mixed declarative-
imperative approach. The notions of abstract task and abstract data item are at
the core of the programming model. A task is a logical entity encapsulating the
processing of one or more data items, which represent the information. Different
copies of the same task may run on different nodes. The flow of information between
tasks is specified declaratively with abstract channels connecting a data item to the
tasks that produce or consume it.

The code in a task is written in an imperative language, and relies on a shared
data pool for local communication, allowing tasks to output data or to be no-
tified when some data of interest becomes available. To support the former, a
putData(DataItem) operation is made available. As for the latter, programmers
are provided with a task template that lists an empty handleDataItem() function
for each incoming channel. ATaG helps programmers in expressing multi-stage,
data-centric processing. It is therefore suited to sense-and-react applications, where
the application typically requires complex operations to decide on the actions to
take.

Example. Figure 24 illustrates a sample ATaG program, adapted from [Pathak
et al. 2007], specifying a cluster-based data gathering application. Sensors within a
cluster take periodic temperature readings collected by the corresponding cluster-
head. The former behavior is encoded in the Sampler task, while the latter is
specified in Cluster-Head. The Temperature data item is connected to both tasks
using a channel originating from Sampler, and a channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules. The former specify
when the processing in a task must be triggered. In our example, the Sam-
pler task is triggered every 10 seconds according to the periodic rule. The
Cluster-Head fires whenever at least one data item is available on any of its in-
coming channels, according to the any-data firing rule. Tasks run on the indi-
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 33

1 // ...
2 while (TRUE) {
3 sleep (10000);
4
5 // Written by the programmer
6 int temperature = getTemperature ();
7 TemperatureDataItem t = newTemperatureDataItem(temperature );
8 putData(t);
9 }

10 // ...

Fig. 25. Fragment of the imperative code for the Sampler tasks of Figure 24.

1 // Asynchronously called when data is available on some input channel
2 void handleDataItem(TemperatureDataItem t) {
3
4 // Written by the programmer
5 int temperature = getDataFrom(t);
6 updateAverage(temperature)
7 }
8 // ...

Fig. 26. Fragment of the imperative code for the Cluster-Head tasks of Figure 24.

vidual nodes according to the instantiation rules specified by programmers. The
nodes-per-instance:1 construct requires the task to be instantiated once on ev-
ery node. The area-per-instance construct, instead, partitions the geographical
space according to the given parameter, and determines the deployment of one task
instance per partition.

Abstract channels are annotated to express the interest of a task in a data item.
In this example, the Sampler task generates data items of type Temperature which
remains local to the node where they were generated. The Cluster-Head uses the
domain annotation to gather data from the temperature sensors in its cluster, which
binds to the system partitioning obtained from area-per-instance by connecting
tasks running in the same partition. ATaG has also been extended with instan-
tiation rules and channel annotations based on application-level properties of the
nodes [Mottola et al. 2007], e.g., the sensing devices they are equipped with.

Based on the declarative part of an ATaG program, the compiler generates a set
of templates for the different task types that programmers fill with the imperative
code required. Figure 25 depicts a fragment of imperative code for the Sampler
task. The ATaG compiler generates a loop containing only the sleep instruction
whose parameter reflects the periodic rule used for the same task. In the case of
Cluster-Head, as illustrated in Figure 26, the handleDataItem function is entirely
filled by programmers to process temperature readings arriving through one of the
input channels.

Implementation highlights. The ATaG compiler takes as input the description of
tasks and channels, examines the corresponding flow of data, and decides on the
allocation of tasks to nodes depending on information on the target environment,
e.g., the location of nodes. The output of the compiler targets a dedicated node-
level run-time layer designed to be highly modular [Bakshi et al. 2005]. Some of the

ACM Journal Name, Vol. V, No. N, Month 20YY.



34 · L. Mottola and G.P. Picco

Programming 
Support

Architecture

Layer Focus

Execution 
Environment

Low-level 
Configuration

Holistic

Building block

Application

Vertical

Fixed

Interface

Hardware

Simulation

Fig. 27. A taxonomy of architectural aspects in WSN programming abstractions.

mechanisms are, however, not provided beforehand. For instance, the programmer
must provide the most appropriate routing scheme depending on the specific appli-
cation and target environment. Logical Neighborhoods, described in Section 5.1.3,
is used as underlying communication layer when task allocation is determined based
on application-level properties of the nodes.

6. PROGRAMMING WIRELESS SENSOR NETWORKS: ARCHITECTURAL ASPECTS

The objective of this section is to understand the impact of a given programming
approach on the design and development of WSN applications. Specifically, we
study the relationships among the various programming solutions in the context of
the reference architecture we identified in Section 3. Figure 27 provides a bird’s eye
view on our taxonomy of architectural aspects.

6.1 Programming Support

The first dimension we investigate deals with the extent to which a given pro-
gramming abstraction provides support to the programmer. Some of the existing
approaches are meant to be the only tool that programmers use in developing
applications. However, recently it has been observed that smaller, composable
building-blocks could be a way to tackle the complexity of WSN applications [Em-
bedded WiSeNts Project ].

Classification. Based on the observations above, we make a distinction along the
following lines:

—Holistic solutions are intended to be used as the only programming support,
and are unable to work in combination with other approaches.

—Building blocks are conceived to be used in conjunction with other solutions,
each targeting independent issues.

The above distinction is further illustrated in Figure 28(a) and Figure 28(b).
The majority of existing WSN programming approaches falls in the former class.
For instance, TinyDB [Madden et al. 2005], illustrated in Section 5.1.4, addresses
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 35

Application

Hardware

TinyOS

TinyDB

(a) TinyDB: Holistic program-

ming support, Application
layer focus.

Application

Hardware

TinyOS

nesC

GRA

(b) GRA: Building block pro-

gramming support.

Application

Hardware

TinyOS
Routing

Localization

Hood nesC

(c) Hood: Vertical layer focus.

Fig. 28. Architectural issues: Programming Support vs. Layer Focus.

the needs of most data collection applications by itself, without leaving room for
integration with other programming solutions, as shown in Figure 28(a). In con-
trast, as an example of a building-block solution, here we describe Generic Role
Assignment (GRA) [Frank and Römer 2005; 2006]. As shown in Figure 28(b),
GRA is not meant to provide complete support for application development, rather
it is designed to focus on a specific facet of WSN programming, and to work in
conjunction with other approaches.

6.1.1 Building-block: Generic Role Assignment (GRA).

Overview. GRA tackles the problem of dynamically self-configuring WSN nodes
according to programmer-specified requirements, whereas it leaves concerns such as
data collection and dissemination to other, complementary solutions. To address
the configuration issue, GRA provides a declarative role specification language and
distributed algorithms for dynamic role assignment. A role specification is a list
of role-rule pairs. For each role, the corresponding rule describes the conditions
for the role to be assigned to the local node. Rules are expressed as boolean
predicates referring to the properties of the node considered (e.g., remaining energy
or geographical location), or to the properties of other nodes within a given number
of hops (e.g., how many temperature sensors are reachable within 3 hops). Using
the constructs provided, a wide range of role assignment problems can be expressed,
from cluster-head election to coverage, as described next.

Example. Consider the classic coverage problem. A certain geographical area is
said to be covered if every physical point in the area lies within the observation
range of at least one sensor node. If nodes are densely deployed, redundant nodes
can be turned off to save energy. However, when active nodes run out of power,
the redundant nodes must be switched back on.

The above application essentially requires a proper assignment of the roles ON and
OFF to nodes, and an update of the assignment when nodes join or fail. Figure 29,
adapted from [Frank and Römer 2005], shows the corresponding role specification.

ACM Journal Name, Vol. V, No. N, Month 20YY.



36 · L. Mottola and G.P. Picco

1 ON :: {
2 temp -sensor == true &&
3 battery >= threshold &&
4 count (2 hops) {
5 role == ON &&
6 dist(super.pos, pos) <= sensing -range
7 } <= 1 }
8 OFF :: else

Fig. 29. A GRA role specification for the coverage problem.

For a given node to take the ON role, it must have a temperature sensor, a minimum
battery level, and at most another node with role ON within the node’s sensing range
(line 1-7). The latter condition is specified using the count operator. This takes
as input a number of hops and returns the number of nodes within such range
matching the specification in curly braces. If a node does not match the conditions
for the ON role, it defaults to OFF (line 8).

Implementation highlights. All nodes in the network are provided with the com-
plete role specifications. Based on these rules, the nodes evaluate how many hops
they need to push their local information to let other nodes evaluate their rules.
To account for changing node properties and network dynamics, the role specifi-
cations are periodically re-evaluated. In the former case, a node re-evaluates the
specification only if the property change may affect its own role or the one of some
other node. As each node is aware of the complete role specification, this decision
can be taken locally. As for topology changes, distributed protocols are provided
to recognize when nodes join or fail and to trigger a re-evaluation of the current
role assignment.

6.2 Layer Focus

In contrast to the previous dimension, here we look at which architectural layers are
the main focus of the approach under consideration. Essentially, we are considering
whether a programming approach provides support only for the application level
or spans other levels of the reference architecture in Figure 4.

Classification. The above considerations suggest the following classification:

—Application-level solutions are intended to support development only of end-
user applications, i.e., the topmost layer in Figure 4.

—Vertical solutions, instead, provide support potentially throughout all layers.
These approaches can be used, for instance, to implement localization or routing
mechanisms.

The distinction can be understood by relying again on Figure 28. TinyDB is
an example of a system that focuses entirely and solely on the application layer.
In contrast, Figure 28(c) shows that the Hood system [Whitehouse et al. 2004],
described next, can be used to implement any of the software layers on top of the
operating system.

Interestingly, Figure 28 also clarifies the relation between the two dimensions of
classification just introduced, i.e., Programming Support and Layer Focus. Loosely
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 37

1 generate attribute LightAttribute from int;
2
3 generate neighborhood LightHood {
4 wire filter LightThrehshold;
5 set max_neighbors to 5;
6 reflection LightRefl from LightAttribute;
7 }

Fig. 30. Reading light values using Hood.

speaking, the former focuses on whether multiple approaches can coexist horizon-
tally below the application layer, whereas the latter focuses on whether a single
approach is able to extend vertically throughout the reference architecture.

6.2.1 Vertical: Hood.

Overview. Hood provides a notion of neighborhood as a programming primitive
in nesC. Constructs are provided to identify a subset of a node’s physical 1-hop
neighbors based on application criteria, and to share state with them. A node ex-
ports information in the form of attributes, defined by the programmer at compile-
time. Membership in a Hood neighborhood is specified by filters, boolean functions
determining whether a node is part of a neighborhood based on the value of its
attributes. If so, a mirror for that particular neighbor is created on the local node.
The mirror contains both reflections, i.e., local copies of the neighbor’s attributes
used to access the shared data, and scribbles, which are local annotations about
that neighbor. The complexity of node discovery and data sharing is dealt with by
the underlying Hood run-time. According to Whitehouse et al. [2004], Hood can
provide support in developing a wide range of functionality, including applications,
time synchronization and other system services, and MAC protocols. This natu-
rally fosters cross-layer interactions. Whitehouse et al. [2004] indeed describe an
object tracking application that exploits different neighborhoods for routing, local-
ization, and application-level processing of tracking information, where information
is shared across different functionality through scribbles.

Example. Consider an application to monitor the light intensity. Figure 30 de-
picts a fragment of Hood code, adapted from [Whitehouse et al. 2004], that defines
a neighborhood containing light sensors whose current reading is above a threshold.

The generate construct is used to define an attribute or to declare a new neigh-
borhood. As for the former, programmers create a LightAttribute out of an inte-
ger value (line 1), while the LightHood neighborhood is created (line 3-7) by specify-
ing the filter for establishing membership in this neighborhood (LightThreshold),
the maximum number of members of this neighborhood (5), and the specific at-
tribute mirrored on the local node. The actual processing to implement the filter
is supposed to be provided as a nesC module implementing a standard interface.

A simple API is provided to interact with the neighborhood in the application
code. nesC commands can be used to iterate through the current members of a
neighborhood and access their local mirrors, while nesC events are defined that fire
when the value of a locally mirrored attribute changes.

ACM Journal Name, Vol. V, No. N, Month 20YY.



38 · L. Mottola and G.P. Picco

Implementation highlights. The Hood constructs to define attributes and neigh-
borhoods are given as input to a dedicated pre-processor that outputs plain nesC
code. The underlying distributed implementation is based on a periodic 1-hop
broadcasting, along with filtering on the receiver side. This mechanism is also em-
ployed for neighbor discovery and maintenance. In case the application wishes to
control the dissemination of local information directly (e.g., because of a sudden
increase in a sensed value or to adhere to specific timing constraints) it can also
force a broadcasting of the local attributes on demand.

6.3 Low-Level Configuration

Some of the existing solutions provide interfaces to the lower layers to give ap-
plications the ability to adapt the system behavior to changes in the application
goals or in the network conditions. This feature is essential to enable cross-layer
interactions and reduce resource consumption.

Classification. We can therefore distinguish between systems where:

—the configuration parameters are fixed at compile-time. Programmers are re-
lieved from the burden of handling details deep down in the stack. However, this
prevents adaptation strategies to percolate down the architecture.

—dedicated interfaces are provided to access the lowest layers. Programmers can
fine-tune various system aspects and explore trade-offs between performance and
resource-consumption. However, the responsibility of ensuring that this tuning
preserves an acceptable system behavior lies on the programmer’s shoulders.

A relevant fraction of the available approaches falls in the former category. For
instance, in Pleiades the communication layer is essentially a black box that cannot
be tuned at run-time. To exemplify the latter category, we illustrate next the
MiLAN middleware [Heinzelman et al. 2004].

6.3.1 Interface to lower-levels: MiLAN.

Overview. MiLAN focuses on applications where programmers are to trade off
system lifetime for data quality, e.g., health monitoring applications. MiLAN allows
applications to specify their requirements using a notion of Quality of Service (QoS)
for different variables of interest, where the QoS of a variable is a function of the
specific sensors used to compute the variable’s value. As these requirements may
change over time, the application is described using a state machine with different
QoS requirements associated to different states. Programmers also specify the
quality of data provided by physical sensors to the evaluation of every variable of
interest. Based on this information, MiLAN computes the application feasible set,
i.e., the subset of nodes that collectively provide a QoS greater than or equal to
the minimum acceptable by the application. In the presence of multiple feasible
sets, MiLAN chooses the order in which they should be applied to minimize energy
costs and maximize the system lifetime. As the application state changes, MiLAN
recomputes the feasible sets and possibly performs the reconfiguration needed to
gather data from a different subset of physical sensors.

Example. Consider an application to implement a personal health monitor using
various WSN devices. Depending on the current patient status, a different QoS is
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 39

Normal

30% 30%

High/Low

Respiratory 
Rate

Blood 
Oxygen

Respiratory rate

80%

(a) Variables and required QoS based on the
application state.

Respiratory
sensor ECG

Respiratory 
rate

90% 70%

(b) QoS provided by different sensors
to different variables of interest.

Fig. 31. Specifying QoS with MiLAN in a health care application.

required.
Figure 31(a) describes the QoS requirements depending on the patient’s respi-

ratory status, adapted from [Heinzelman et al. 2004]. In normal situations, it is
sufficient to monitor the respiratory rate with 30% quality. When the patient has
some respiratory problem—and the application state changes accordingly—it be-
comes necessary to gather more information to explain the cause of the problem.
Thus, the application requires to obtain the respiratory rate with a minimum of
80% quality, and to measure the percentage of blood oxygen with at least 30%
quality. Figure 31(b) describes how the respiratory rate can be obtained from the
physical sensors. A respiratory sensor can provide such a reading with 90% quality
(in the aforementioned QoS sense), whereas an ECG device can provide the same
information with 70% quality. Based on these information, MiLAN determines that
under normal conditions the respiratory rate can be obtained with either the respi-
ratory sensor or the ECG. The one maximizing the system lifetime is configured to
provide the actual reading. On the contrary, when the patient is experiencing some
respiratory problem, MiLAN recognizes that the only device providing a sufficient
QoS is the respiratory sensor, and reconfigures the network accordingly.

Implementation highlights. MiLAN is implemented in C. The internal architec-
ture is designed to use different network plug-ins for inter-operating sensors of
different nature, ranging from 802.11-based devices to Bluetooth nodes. The spe-
cific network plug-in is aware of all the network-specific features (e.g., routing) and
tuning parameters that can be exploited to prolong the lifetime of a feasible set. A
service discovery protocol such as SDP [Avancha et al. 2002] is used to find new
nodes and to trigger a reconfiguration in case of failing devices.

6.4 Execution Environment

WSN implementations are generally difficult to port. Therefore, when it comes to
applying a given programming approach in a real application, programmers must
consider the specific hardware platforms that are explicitly supported. Neverthe-
less, despite the plethora of available approaches, the range of officially supported

ACM Journal Name, Vol. V, No. N, Month 20YY.



40 · L. Mottola and G.P. Picco

platforms—as reported in the current literature—is surprisingly narrow.

Classification. Existing systems can typically be executed in two different ways:

—on real hardware: with the exception of Logical Neighborhoods, which runs
also on Contiki, all systems surveyed rely on TinyOS as operating system, and
should in principle support any TinyOS-compliant WSN platform. However,
efficiently supporting a given hardware platform often requires a considerable
effort in custom optimizations.

—through simulation: typically used to assess the performance of a given solution,
rather than providing direct support to the programmer. TOSSIM [Levis et al.
2002], the TinyOS simulator, or custom-made simulators are common choices. A
few works (e.g., [Li et al. 2004]) relied on simulators borrowed from research on
mobile ad hoc networks, such as GlomoSim [Zeng et al. 1998].

7. COMPLETING THE PICTURE

In this section we complete our survey of the state of the art in WSN program-
ming approaches by describing systems other than those we used as examples thus
far. However, due to space reasons here we cannot provide complete descriptions
including code fragments.

Cougar [Yao and Gehrke 2002]. Similarly to TinyDB, Cougar provides program-
mers with a SQL-like interface to query the WSN, yet it lacks constructs to express
fine-grained control flows. Thus, it is geared towards pure data collection applica-
tions. At the system level, Cougar is also based on a routing tree rooted at the
user base station, like TinyDB. The techniques used to achieve energy efficiency
are, however, different. For instance, Cougar tries to push selection operators down
the routing tree to reduce the amount of data flowing up, yet it does not consider
acquisitional issues, as TinyDB does.

FACTS [Terfloth et al. 2006]. The FACTS middleware provides a rule-based
programming model inspired by logical reasoning in expert systems. Data is rep-
resented as facts in a dedicated repository. The appearance of new facts triggers
the executions of one or more rules, which may generate new facts or remove ex-
isting ones. Pure C functions can be used to interact with sensing devices and
provide inputs to the creation of new facts. Facts can be shared among different
nodes. The basic communication primitives provide 1-hop data sharing, although
multi-hop protocols can be employed in collaboration with the basic rule engine.

Flask [Mainland et al. 2008]. A data-flow language is at the core of Flask’s
programming model. The flow is specified by wiring data operators in an acyclic
graph. Each operator is a computational unit taking multiple inputs and producing
a single output value. The control flow migrates across operators in a depth-first
manner. Different operators can be located on different nodes, and are intercon-
nected using a publish/subscribe infrastructure. The underlying routing scheme
can be changed by programmers on a per-application basis. Flask programs are
translated into executable nesC code by a dedicated pre-processor. Flask is also
designed for building higher-level abstractions in terms of data-flow operators. As
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 41

an example, Mainland et al. [2008] show how to map SQL constructs to Flask
primitives, building a database abstraction based on Flask.

Kairos [Gummadi et al. 2005]. The Kairos programming model adopts a central-
ized perspective similar to Pleiades. Three fundamental programming constructs
are provided as extensions to the Python language. Programmers use these con-
structs to read/write variables at nodes, to address specific nodes, and to iterate
through the 1-hop neighbors of a node. This enables expressing the required func-
tionality in a way that resembles the high-level descriptions of algorithms used in
textbooks. Unlike Pleiades, Kairos only provides an eventual consistency model for
data shared among nodes. As a result, most of the complexity required to imple-
ment the Kairos programming model can be dealt with by a dedicated pre-processor,
while only a minimalistic run-time support is required on the WSN nodes.

MacroLab [Hnat et al. 2008]. MacroLab is a programming model based on vec-
tor operations, similarly to MatLab programs. The authors introduce a notion
of macrovector where one dimension in the vector is indexed by node identifiers.
For instance, light readings in the system may be stored in a macrovector, and
a node identifier may be used to access the reading at a specific device. In ad-
dition, a neighborhood-based extension of macrovectors may be used to slice a
large macrovector to include only data at neighboring nodes. The system allows
programmers to use operators for standard vector arithmetic, and a “dot-product”
operator useful to select different elements of a vector at different nodes. MacroLab
programs are fed as input to a “decomposer” that outputs executable code operat-
ing in a distributed fashion, at a central base station, or halfway between the two
extremes. The decision on which implementation to use is taken by a dedicated
cost analyzer. This examines the expected system performance based on a cost
profile associated to the target deployment, which includes information such as the
characteristics of the topology or the power profile of the hardware employed.

Market-based programming [Mainland et al. 2004]. In this programming frame-
work, the objective is to obtain globally efficient behavior under dynamic conditions.
Every node is characterized by the actions it can take, the corresponding cost, and
a possible reward the node receives in exchange to performing a given action. To
maximize its own profit, nodes autonomously decide which actions to take based
on the current rewards, the actions’ cost, and the surrounding context. The user
induces the desired behavior by dynamically changing the rewards given to nodes
for each type of action. Communication is delegated to a specific routing scheme
chosen by programmers depending on the application’s requirements.

Pieces [Liu et al. 2003]. The focus of Pieces is on collaborative applications
where multiple, geographically related data must be processed, supported by a pro-
gramming abstraction based on a notion of group. Similarly to Abstract Regions,
system support must be provided on a per-group basis. Constructs are provided
to determine the role of nodes in a group (e.g., to determine when a node is to be
elected as the leader), and to share information. The application processing is ex-
pressed in discrete steps as input/output operations on state variables. The inputs
are governed by sensed data, whereas the outputs are the result of some processing

ACM Journal Name, Vol. V, No. N, Month 20YY.



42 · L. Mottola and G.P. Picco

based on the previous values of state variables and the current inputs.

RuleCaster [Bischoff and Kortuem 2007]. The programming model of RuleCaster
is centered on a logical partitioning of the network in several spatial regions. Each
region is in one discrete state. Rules specify state transitions in each region based
on sensed data. Similarly to to Datalog-like languages, each rule consists of a
body part specifying the conditions for the rule to fire, and a head part specifying
the actions to perform. The RuleCaster compiler takes as input the application
rules and a network model describing node locations and capabilities, and decides
how to split the actual processing among the nodes. The compiler also determines
whether to use a centralized distribution scheme where a single node is in charge of
the entire processing, or a distributed strategy with one node per region managing
the corresponding processing.

SensorWare [Boulis et al. 2003; Boulis et al. 2007]. Similarly to Agilla, Sen-
sorWare allows to move TCL-based scripts from node to node, providing support
for multiple applications running concurrently on the same network. Nonetheless,
unlike Agilla, it only provides weak mobility (i.e., the state does not move with
code), which results in the program execution always restarting from the beginning
on arrival on a new node. Coordination is accomplished using direct communica-
tion instead of shared memory spaces. When migrating code, policies regarding the
energy required by a given script can be specified to determine its acceptance on a
node. The current implementation targets fairly powerful devices, e.g., PDAs like
Compaq iPAQs or embedded devices with XScale processors.

SINA [Shen et al. 2001]. The SQL dialects used in TinyDB and Cougar do not
allow easy integration of custom data operators in addition to the built-in ones.
SINA overcomes this limitation by complementing SQL-like declarative constructs
with an imperative language called SQTL. This enables the injection of arbitrary
code into the network. Support is provided to export the outcome of SQTL-based
processing as query results. For instance, an additional aggregation function can
be injected in the network at run-time, and made available to programmers for use
in later SQL queries. Thus, programmers can dynamically enrich the set of SQL
primitives depending on changing requirements. This enables the description of
more sophisticated coordination patterns w.r.t. pure SQL. For instance, cluster-
based data collection can be implemented using SQTL, and the results gathered
using an enhanced SQL query.

snBench [Ocean et al. 2006]. This programming framework targets shared,
multi-user sensor networks and provides a strongly-typed, functional language to ex-
press the application processing. However, loops and assignments to local variables
are also allowed, therefore partially deviating from a purely functional paradigm.
In the implementation, a central entity keeps track of the current status of every
node in the system, and injects processing units in the network. In doing so, the
processing units are optimized to take advantage of programs’ shared dependencies,
with the goal of making more efficient use of computation, network, and storage
resources. Processing occurs on fairly powerful nodes controlling several sensors, as
opposed to mote-class nodes usually equipped with a few sensing devices.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 43

Spatial Programming [Borcea et al. 2004]. The system is based upon a logi-
cal addressing scheme coupled with a lightweight form of mobile code. In Spatial
Programming, the environment is viewed as a single address space, and nodes are
accessed using spatial references. These references refer to the expected physical
location of a node (e.g., hill:camera[0]), and may optionally point to some prop-
erty of the node itself, e.g., whether the node is currently active. A dedicated
run-time system maintains the mapping from spatial references to the physical
nodes. Smart Messages, a lightweight scripting language, are used to migrate code
and data across nodes. A shared memory space is provided for coordination among
Smart Messages, and also used to determine how to route a smart message at each
hop. This allows to change the routing policy dynamically.

Virtual Nodes [Ciciriello et al. 2006]. As an extension of Logical Neighborhoods,
described in Section 5.1.3, Virtual Nodes abstract programmer-specified subsets of
nodes into a single, logical one, which takes the form of a virtual sensor or a virtual
actuator. The former abstracts the data sensed by real sensors into the reading
of single, fictitious node, whereas the latter provides a single handle to control a
distributed set of actuators. Virtual nodes are specified using the Spidey language
of Logical Neighborhoods, by binding some node attributes to previously defined
neighborhoods. Communication support for virtual actuators is provided by the
Logical Neighborhood routing layer. The routing scheme in [Ciciriello et al. 2007]
is used to support virtual sensors, with further automatic customizations performed
by the Spidey compiler to enable in-network aggregation.

8. APPLYING THE TAXONOMY:
A VIEW OF THE STATE OF THE ART & RESEARCH DIRECTIONS

In this section, we take a snapshot of the current state of the art in WSN pro-
gramming approaches, by classifying the systems we described thus far along the
dimensions we identified in our taxonomy. The systems and corresponding ref-
erences in the literature are summarized in Figure 32. Figure 33 and 34 map the
systems on the taxonomy of language issues presented in Section 5. Figure 35 maps
the systems on the architectural issues discussed in Section 6. Finally, Figure 36
concludes by mapping the systems back to the application requirements distilled in
the taxonomy of WSN applications we presented in Section 2. In discussing these
mappings, we take the opportunity to draw some general considerations.

Figures 33 and 34 suggest the following considerations about language aspects:

—Making communication implicit is a common design choice to raise the level of
abstraction. Relieving programmers from the burden of dealing with message
parsing and serialization is indeed fundamental to make application development
more rapid and less error-prone. Not surprisingly, the few proposals forcing
programmers to deal directly with communication rely on message passing prim-
itives, and are therefore closer to the communication pattern made available by
the operating system. On the other hand, the use of messages in the program-
ming model does not necessarily entail explicit communication. Systems such as
Flask and DSWare do embody some notion of message to provide access to data,
yet they hide communication from programmers to a great extent. In these sys-
tems, messages are used at a higher-level of abstraction, essentially as containers

ACM Journal Name, Vol. V, No. N, Month 20YY.



44 · L. Mottola and G.P. Picco

Programming References
Abstraction

Abstract Regions [Welsh and Mainland 2004]
Abstract Task Graph [Bakshi et al. 2005; Mottola et al. 2007]
Active Messages/nesC [Culler et al. 2001; Gay et al. 2003]
Agilla [Fok et al. 2005]
Cougar [Yao and Gehrke 2002]
DSWare [Li et al. 2004]
EnviroSuite/ EnviroTrack [Abdelzaher et al. 2004; Luo et al. 2006]
FACTS [Terfloth et al. 2006]
Flask [Mainland et al. 2008]
Generic Role Assignment [Frank and Römer 2005; 2006]
Hood [Whitehouse et al. 2004]
Kairos [Gummadi et al. 2005]
Logical Neighborhoods [Mottola and Picco 2006a; 2006b]
MacroLab [Hnat et al. 2008]
Market-based programming [Mainland et al. 2004]
MiLAN [Heinzelman et al. 2004]
Pieces [Liu et al. 2003]
Pleiades [Kothari et al. 2007]
Regiment [Newton and Welsh 2004; Newton et al. 2007]
RuleCaster [Bischoff and Kortuem 2007]
SensorWare [Boulis et al. 2003; Boulis et al. 2007]
Spatial Programming [Borcea et al. 2004]
SINA [Shen et al. 2001]
snBench [Ocean et al. 2006]
Snlog [Chu et al. 2007]
TeenyLIME [Costa et al. 2006; 2007]
TinyDB [Madden et al. 2005]
Virtual Nodes [Ciciriello et al. 2006]

Fig. 32. Literature references related to the programming approaches surveyed.

of information.

—There appears to be a relationship between the communication scope (Figure 33)
and the data access model (Figure 34) provided by a given programming ap-
proach. Essentially all systems providing a system-wide communication scope
adopt a database access model. Similarly, systems supporting multi-hop groups
usually export a data sharing model, with the only exception of Logical Neighbor-
hoods. Behind the relationship between communication scope and data access
model is the objective of providing the programmer with higher levels of abstrac-
tion as the communication span approaches the entire system. At an extreme,
when the entire system is abstracted away, it can be regarded just like any other
data source and therefore accessed like a database. The singularity of Logical
Neighborhoods is motivated by its role as a building-block for higher-level func-
tionality. In this respect, it is the operating system interface (i.e., the message
passing facility) whose abstraction level is raised, instead of the application pro-
gramming interface.
Although we noted that the communication scope implies the data access model,
the vice versa does not hold. Indeed, the data sharing model (unlike the database
one) can be useful also when the communication scope is limited to the physi-
cal neighborhood, as witnessed by FACTS, Hood, Kairos, Pleiades, Snlog, and
TeenyLime.

—Interestingly, another relationship exists between the communication scope and
the computation scope. Looking at the corresponding columns in Figure 33

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 45

Programming Communication
Abstraction Scope Addressing Awareness

Abstract Regions Multi-hop group, Non-connected Logical Implicit
Abstract Task Graph Multi-hop group, Non-connected Logical Implicit
Active Messages/nesC Physical neighborhood Physical Explicit
Agilla Routing dependent Physical Implicit
Cougar System-wide Logical Implicit
DSWare System-wide Physical Implicit
EnviroSuite/ EnviroTrack Multi-hop group, Connected Logical Implicit
FACTS Physical neighborhood Physical Implicit
Flask Routing dependent Routing Implicit
Generic Role Assignment Multi-hop group, Connected Logical Implicit
Hood Physical neighborhood Logical Implicit
Kairos Physical neighborhood Physical Implicit
Logical Neighborhoods Multi-hop group, Non-connected Logical Explicit
MacroLab System-wide Physical Implicit
Market-based programming System-wide Logical Implicit
MiLAN Routing dependent Physical Explicit
Pieces Multi-hop group, Connected Logical Implicit
Pleiades Physical neighborhood Physical Implicit
Regiment Multi-hop group, Connected Logical Implicit
RuleCaster Multi-hop group, Connected Logical Implicit
SensorWare Physical neighborhood Physical Implicit
Spatial Programming Multi-hop group Non-connected Logical Implicit
SINA System-wide Logical Implicit
snBench Multi-hop group, Non-connected Logical Implicit
Snlog Physical neighborhood Physical Implicit
TeenyLIME Physical neighborhood Physical Implicit
TinyDB System-wide Physical Implicit
Virtual Nodes Multi-hop group, Non-connected Logical Implicit

Fig. 33. Mapping WSN programming abstractions to the taxonomy in Figure 6—language aspects

dealing with Communication.

and 34, a global computation scope always implies a system-wide communication
scope and, similarly, a group computation scope always implies a multi-hop group
communication scope. This is natural, as the ability to affect nodes through com-
putation implies the ability to restrict communication to such nodes. However,
once more, the reverse does not necessarily hold. While all systems supporting
system-wide communication naturally support a global computation scope, there
are systems (i.e., ATaG, GRA, and Logical Neighborhoods) that support a group
communication scope but resort to local computation.
It is interesting to note that these aspects are not captured by alternative classi-
fications based on the notion of macroprogramming and/or a simple distinction
among node-, group-, and network-level approaches [Sugihara and Gupta 2008].
In this case, the two aspects of communication and computation are fused to-
gether, resulting in the inability to sharply distinguish between these orthogonal
aspects. Therefore, systems with rather distinct characteristics (e.g., Kairos and
Regiment, or Abstract Regions and Hood) are classified under the same umbrella.

—Finally, the computation scope also bears some influence on the programming
paradigm adopted. All the systems with a global computational scope adopt
a declarative approach. Indeed, this choice provides a great expressive power
and enables very concise descriptions of the application behavior. At the other
extreme, imperative approaches are common when the computation is local and
therefore affects only individual nodes, a choice that mirrors the mainstream ap-
proach to developing distributed applications. However, declarative approaches

ACM Journal Name, Vol. V, No. N, Month 20YY.



46 · L. Mottola and G.P. Picco

Programming Computation Data Access Programming
Abstraction Scope Model Paradigm

Abstract Regions Group Data sharing Imperative, Sequential
Abstract Task Graph Local Data sharing Hybrid
Active Messages/nesC Local Message passing Imperative, Event-driven
Agilla Local Mobile code Imperative, Sequential
Cougar Global Database Declarative, SQL-like
DSWare Global Message passing Declarative, SQL-like
EnviroSuite/
EnviroTrack

Group Data sharing Imperative, Event-driven

FACTS Local Data sharing Declarative, Rule-based
Flask Local Message passing Declarative, Functional
Generic Role
Assignment

Local Data sharing Declarative, Special-purpose

Hood Local Data sharing Imperative, Event-driven
Kairos Local Data sharing Imperative, Sequential
Logical Neighborhoods Local Message passing Declarative, Special-purpose
MacroLab Global Data sharing Imperative, Sequential
Market-based
programming

Global Data sharing Declarative, Special-purpose

MiLAN Local Message passing Imperative, Event-driven
Pieces Group Data sharing Imperative, Event-driven
Pleiades Local Data sharing Imperative, Sequential
Regiment Group Data sharing Declarative, Functional
RuleCaster Group Data sharing Declarative, Rule-based
SensorWare Local Mobile code Imperative, Sequential
Spatial Programming Group Mobile code Imperative, Sequential
SINA Global Database/Mobile code Hybrid
snBench Group Data sharing Declarative, Functional
Snlog Local Data sharing Declarative, Rule-based
TeenyLIME Local Data sharing Imperative, Event-driven
TinyDB Global Database Declarative, SQL-like
Virtual Nodes Group Data sharing Imperative, Event-driven

Fig. 34. Mapping WSN programming abstractions to the taxonomy in Figure 6—language aspects
dealing with Computation Scope, Data Access Model, and Programming Paradigm.

(e.g., FACTS, GRA, and Snlog) targeting local computations also exist.

As for architectural aspects, Figure 35 prompts the following remarks:

—The diversity of WSN applications we pointed out in Section 2 is likely to require
an overarching approach where different programming abstractions collaborate
into a single, coherent framework [Embedded WiSeNts Project ]. Unfortunately,
very few programming solutions (i.e., GRA, Hood, and Logical Neighborhoods)
are designed as building blocks, meant to work in collaboration with others.
Although most existing approaches are well-suited to particular application do-
mains, they lack the ability to be extended by or composed with others. The
modularization of functionality into building blocks that provide generic, reusable
support for higher-level functionality appears to be an open research issue and,
possibly, an enabling factor for a wider adoption of WSN technology.

—It is often said that WSNs greatly benefit from cross-layer solutions or, more
generally, from the ability to manipulate low-level aspects in order to optimize
resource consumption [Akyildiz et al. 2002]. Unfortunately, this trend is not
reflected in the current state of the art, where only a handful of systems provides
some form of access to the layers underlying the programming one. The reason
probably lies in the difficulty faced by programmers in understanding how fine-
grained tuning of low-level parameters can affect the overall system performance,

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 47

Programming Programming Layer Low-level Execution
Abstraction Support Focus Configuration Environment

Abstract Regions Holistic Application Interface TOSSIM
Abstract Task Graph Holistic Application Fixed JiST SWANS,

SunSPOT
Active Messages/nesC Holistic Vertical Interface All TinyOS

platforms
Agilla Holistic Application Fixed Mica2
Cougar Holistic Application Fixed NS-2
DSWare Holistic Application Fixed GlomoSim
EnviroSuite/
EnviroTrack

Holistic Application Fixed Mica2, XSM

FACTS Holistic Vertical Fixed ESB, ScatterWeb
Flask Holistic Vertical Fixed TMote Sky
Generic Role
Assignment

Building block Vertical Fixed jSIM

Hood Building block Vertical Interface Mica2
Kairos Holistic Application Fixed Mica2, Mica2Dot
Logical Neighborhoods Building block Vertical Interface TMote Sky, Mica2
MacroLab Holistic Application Fixed TMote Sky
Market-based
programming

Holistic Application Fixed TOSSIM

MiLAN Holistic Application Interface N/A
Pieces Holistic Application Fixed Custom simulator
Pleiades Holistic Application Fixed TelosB
Regiment Holistic Application Fixed Custom simulator
RuleCaster Holistic Application Fixed N/A
SensorWare Holistic Application Fixed iPAQ, XScale
Spatial Programming Holistic Application Interface iPAQ
SINA Holistic Application Fixed Custom simulator
snBench Holistic Application Fixed Custom simulator
Snlog Holistic Vertical Fixed TMote Sky
TeenyLIME Holistic Vertical Fixed TMote Sky

Chess MyriaNed
TinyDB Holistic Application Fixed Mica2
Virtual Nodes Holistic Application Fixed Mica2

Fig. 35. Mapping WSN programming abstractions to the taxonomy in Figure 27—architectural

aspects.

and by the absence of a general, agreed-upon interface to low-level layers. How-
ever, the absence of such “hooks” is likely to yield systems that are too rigid, and
that may render the programming solutions unable to adapt to different needs.

Architectural issues, however, are not entirely separated from language ones:

—All systems meant to support “vertical” development across all layers feature
a local computation scope. Indeed, developing low-level mechanisms demands
control over the behavior of individual nodes (e.g., as in the case of routing),
therefore inherently clashing with the perspective adopted by group and global
computation, where nodes tend to disappear into higher-level aggregates.

—Dually, none of the approaches characterized by a global computation scope fea-
ture hooks into the lower levels of the stack. The level of abstraction provided in
these cases is usually too high to accommodate a similar functionality without
affecting the overall programming framework.

An important question is to what extent the current state of the art in program-
ming covers the needs of WSN applications. As we pointed out in the introduction,
as of today only few real-world deployments leverage high-level programming ab-
stractions [Whitehouse et al. 2004; Buonadonna et al. 2005], and among these only

ACM Journal Name, Vol. V, No. N, Month 20YY.



48 · L. Mottola and G.P. Picco

Programming Goal Interaction Mobility Space Time
Abstraction Pattern

Abstract Regions Sense-only Depending Static Regional Periodic/
on region Event-triggered

Abstract Task
Graph

Sense-and-react Many-to-many Static Regional Periodic

Active Messages/ Sense-only Many-to-many Static Regional Periodic/
nesC Event-triggered
Agilla Sense-only Many-to-many Static Regional Event-triggered
Cougar Sense-only Many-to-one Static Global Periodic
DSWare Sense-only Many-to-one Static Regional Event-triggered
EnviroSuite/
EnviroTrack

Sense-only Many-to-one Static Regional Event-triggered

FACTS Sense-only Many-to-many Static Regional Event-triggered
Flask Sense-only Many-to-many Static Global Periodic/

Event-triggered
Generic Role Sense-only Many-to-many Static Global Periodic/
Assignment Event-triggered
Hood Sense-only Many-to-many Static Regional Periodic
Kairos Sense-only Many-to-many Static Global Periodic/

Event-triggered
Logical Sense-and-react One-to-many Static Regional Periodic/
Neighborhoods Event-triggered
MacroLab Sense-only Many-to-one Static Global Periodic/

Event-triggered
Market-based Sense-only Many-to-one Static Global/ Periodic
programming Regional
MiLAN Sense-only Many-to-one Static Global Periodic
Pieces Sense-only Many-to-one Static Regional Event-triggered
Pleiades Sense-only Many-to-many Static Global Periodic/

Event-triggered
Regiment Sense-only Many-to-one Static Regional Event-triggered
RuleCaster Sense-and-react Many-to-many Static Regional Event-triggered
SensorWare Sense-only Many-to-one Static Global Periodic
Spatial
Programming

Sense-only Many-to-one Static Regional Event-triggered

SINA Sense-only Many-to-one Static Global Periodic
snBench Sense-only Many-to-one Static Regional Event-triggered
Snlog Sense-only Many-to-many Static Global Periodic/

Event-triggered
TeenyLIME Sense-only/ Many-to-many Static Regional Periodic/

Sense-and-react Event-triggered
TinyDB Sense-only Many-to-one Static Global Periodic
Virtual Nodes Sense-and-react Many-to-many Static Regional Periodic/

Event-triggered

Fig. 36. Mapping WSN programming abstractions to the application taxonomy in Figure 1.

the deployment by Ceriotti et al. [2009] has been running continuously for months.
However, the mapping of programming abstraction onto applications we provide
in Figure 36 helps understanding what kinds of applications have been targeted so
far. Albeit somewhat academical in nature, this helps identifying areas not fully
covered by the current state of the art. Indeed, the mapping highlights how current
approaches are definitely skewed in the applications they target:

—Only a small fraction of existing solutions appears to be appropriate for sense-
and-react applications. As we already pointed out, the latter usually require
many-to-many interactions, as well as continuous monitoring limited to specific
portions of the system. The current state of the art appears in general ill-suited
to these requirements, in that most systems privilege many-to-one interactions
and/or a rather rigid definition of communication scope, appropriate for applica-

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 49

tions revolving around pure data collection. Interestingly, the systems surveyed
appear to support regional interactions to a greater extent in applications with
event-triggered processing.

—A large body of research on communication issues in mobile sensor networks
has been carried out [Wang et al. 2007; Al-Karaki and Kamal 2004]. Nonethe-
less, none of the programming solutions considered in our survey specifically
addresses applications with mobile nodes or sinks. The requirements to meet in
these scenarios are, however, quite different from the challenges in static applica-
tions. Location is usually of paramount importance, the network topology is even
more dynamic, and delay-tolerant interactions often are the only way to achieve
communication. Therefore, programmers must implement, on a per-application
basis, mechanisms such as neighbor discovery as well as store-and-forward mech-
anisms. Ideally, higher-level programming abstractions should be developed to
shield programmers from these aspects.

9. CONCLUSIONS AND OUTLOOK

Wireless sensor networks are a powerful technology with the potential to make
the vision of a truly pervasive computing environment become a reality. However,
despite the advancements bringing smaller devices, more computation and commu-
nication power, and an ever-increasing range of sensors and actuators, programming
these myriads of devices remains the weakest link in the chain that leads to rapid
and reliable WSN deployments. This situation, currently hampering a wider accep-
tance of this technology, will be overcome only when programming platforms will
be simple enough to be used by a domain expert, and yet provide acceptable and
predictable levels of performance and reliability.

The research field is still relatively far from this goal, although a number of
approaches have already been proposed. In this paper, we provided a systematic
treatment of the topic, proposing a taxonomy that identifies the fundamental di-
mensions characterizing and distinguishing the various approaches. We extensively
surveyed the state of the art in programming WSNs, by classifying existing solu-
tions against our taxonomy as well as the application requirements typically posed
by WSNs. This comprehensive view of current efforts in simplifying the program-
ming of WSNs was also the opportunity to identify at a glance areas that require
more research effort.

We conclude this paper by pointing out a few additional open research issues that,
albeit not germane to our taxonomy, are however strongly related to programming
WSNs and for which solutions are sorely missing. Here we briefly comment on those
we believe are most significant:

—Tolerance to failures. Various types of hardware faults are often observed in real
deployments [Werner-Allen et al. 2006]. However, most of the programming
approaches we examined provide only limited guarantees in these exceptional
circumstances. Nodes running out of battery power, for instance, are eventually
recognized and excluded from processing, although no time bounds are provided
w.r.t. when this happens. Transient faults, e.g., those arising from sensors tem-
porarily providing erroneous readings [Sharma et al. 2007], are usually not con-
sidered. Little or no support is offered to programmers for dealing with these

ACM Journal Name, Vol. V, No. N, Month 20YY.



50 · L. Mottola and G.P. Picco

situations. As a result, they are frequently forced to implement dedicated mech-
anisms on a per-application basis. High-level programming frameworks where
faults are a first-class notion are necessary to ease development of WSN appli-
cations targeted to harsh environments. For instance, programming constructs
to identify erroneous sensor readings and temporarily exclude a node from the
processing may help programmers in improving the fidelity of data.

—Debugging and testing. A few works recently addressed the problem of debug-
ging WSN applications. However, these systems are usually tied to a specific
operating system [Krunic et al. 2007; Yang et al. 2007], or are independent
of the programming language [Ringwald et al. 2007]. Consequently, they may
signal to programmers that something is not working, but without any detailed
clue regarding the cause of the problem or what part of the application might be
the culprit. On the other hand, none of the programming systems we considered
in this paper provides dedicated support for testing the behavior of applications
built using them. Further research is required to augment high-level program-
ming abstractions with the mechanisms necessary to validate the system.

—Evaluation methodology. In the current state of the art, programming frameworks
are usually evaluated quantitatively w.r.t. system performance. Most often, this
is achieved using ad-hoc examples of application- or system-level functionality,
and some form of simulation. This practice, however, is largely unsatisfactory,
along two complementary dimensions:
—The examples used to evaluate the system performance span drastically differ-

ent functionality and are implemented at considerably different levels of details.
This may bear great impact on the outcome of the evaluation, ultimately ren-
dering the experiments not reproducible and the results not comparable. To
address this issue, the WSN community may take inspiration from other fields
(e.g., databases) and conceive a set of clearly-defined metrics and benchmark
functionality to be used in the evaluation of the system performance. These
may be based on staple WSN mechanisms, e.g., data collection and time syn-
chronization, to widen the validity of the results obtained.

—Although system performance is an important aspect, it is only half of what
it takes to assess the effectiveness of a programming approach. The gains
brought to the programmers’ productivity must also be evaluated. However,
to investigate this aspect, the only quantitative metric used in most of the
existing approaches is the number of lines of code. Among other things, this
makes it almost impossible to compare solutions based on different program-
ming paradigms. This is a problem by itself, and the software engineering
community has long been working on code metrics [Fenton and Pfleeger 1998].
Because of the specific characteristics of WSN programming, however, dedi-
cated metrics are likely to be required.

—Real-world use. As already pointed out, real-world deployments based on high-
level programming frameworks are rarely reported in the literature. When it
comes to developing real-life WSN applications, programmers—often computer
science or networking researchers themselves—prefer to spend the additional ef-
fort required to use low-level abstractions and keep every single bit under control,
rather than endeavor to use programming frameworks they cannot fully trust.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 51

However, this is not a sustainable strategy, especially if application development
is to be placed directly into the hands of the domain experts. Therefore, more
effort is required in moving WSN programming abstractions from the labs to
real deployments, not only to evaluate their effectiveness concretely, but also by
gathering fundamental feedback in steering the design of the next generation of
programming solutions.

Acknowledgments. This work is partially supported by the Autonomous Province
of Trento under the call for proposals “Major Projects 2006” (project ACube), by
the Cooperating Objects Network of Excellence (CONET) under EU contract FP7-
2007-2-224053, and by the Swedish Foundation for Strategic Research (SSF).

REFERENCES

Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He,

T., Krishnamurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., and Wood, A. 2004.
EnviroTrack: Towards an environmental computing paradigm for distributed sensor networks.

In Proc. of the 24th Int. Conf. on Distributed Computing Systems (ICDCS).

Abrach, H., Bhatti, S., Carlson, J., Dai, H., Rose, J., Sheth, A., Shucker, B., Deng, J.,
and Han, R. 2003. MANTIS: System support for MultimodAl NeTworks of In-situ Sensors.

In Proceedings of the 2nd Int. Conf. on Wireless Sensor Networks and Applications (WSNA).

Aduino Sensor Node Platform. www.arduino.cc.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. 2002. A survey on sensor

networks. IEEE Communication Mag. 40, 8.

Akyildiz, I. F. and Kasimoglu, I. H. 2004. Wireless sensor and actor networks: Research

challenges. Ad Hoc Networks Journal 2, 4.

Al-Karaki, J. and Kamal, A. E. 2004. Routing techniques in wireless sensor networks: A survey.
IEEE Wireless Communications 11, 6.

Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal, V.,

Cao, H., Demirbas, M., Gouda, M., Choi, Y., Herman, T., Kulkarni, S., Arumugam, U.,
Nesterenko, M., Vora, A., and Miyashita, M. 2004. A line in the sand: A wireless sensor

network for target detection, classification, and tracking. Computer Networks 46, 5.

Avancha, S., Joshi, A., and Finin, T. 2002. Enhanced service discovery in bluetooth. IEEE

Computer 35, 6.

Bakshi, A., Pathak, A., and Prasanna, V. K. 2005. System-level support for macroprogram-
ming of networked sensing applications. In Int. Conf. on Pervasive Systems and Computing

(PSC).

Bakshi, A., Prasanna, V. K., Reich, J., and Larner, D. 2005. The Abstract Task Graph:
A methodology for architecture-independent programming of networked sensor systems. In
Workshop on End-to-end Sense-and-respond Systems (EESR).

Baldus, H., Klabunde, K., and Müsch, G. 2004. Reliable set-up of medical body-sensor net-

works. In Proc. of 1st European Workshop on Wireless Sensor Networks (EWSN).

Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., and Hu, Y. F. 2007. Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards.

Comput. Commun. 30, 7.

Batalin, M. A., Sukhatme, G. S., and Hattig, M. 2004. Mobile robot navigation using a sensor
network. In Proc. of the Int. Conf. on Robotics and Automation (ICRA).

Bischoff, U. and Kortuem, G. 2007. A state-based programming model and system for wireless
sensor networks. In Proc. of the 3rd Int. Workshop on Sensor Networks and Systems for

Pervasive Computing (PerSens).

Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T., Son, S., and Stankovic, J. 2003. An
entity maintenance and connection service for sensor networks. In Proc. of the 1st Int. Conf.

on Mobile Systems, Applications and Services (MobiSys).

ACM Journal Name, Vol. V, No. N, Month 20YY.



52 · L. Mottola and G.P. Picco

Body Sensor Network Nodes. vip.doc.ic.ac.uk/bsn/index.php?article=926.

Borcea, C., Intanagonwiwat, C., Kang, P., Kremer, U., and Iftode, L. 2004. Spatial pro-

gramming using smart messages: Design and implementation. In Proc. of the 24th Int. Conf.
on Distributed Computing Systems (ICDCS).

Boulis, A., Han, C.-C., Shea, R., and Srivastava, M. B. 2007. SensorWare: Programming
sensor networks beyond code update and querying. Elsevier Pervasive and Mobile Computing

Journal 3, 4.

Boulis, A., Han, C.-C., and Srivastava, M. B. 2003. Design and implementation of a framework

for efficient and programmable sensor networks. In Proc. of the 1st Int. Conf. on Mobile
Systems, Applications and Services (MobiSys).

BTNode. www.btnode.ethz.ch.

Buonadonna, P., Gay, D., Hellerstein, J., Hong, W., and Madden, S. 2005. TASK: Sensor

network in a box. In Proc. of the 2th European Conf. on Wireless Sensor Networks (EWSN).

Burrell, J., Brooke, T., and Beckwith, R. 2004. Vineyard computing: Sensor networks in

agricultural production. IEEE Pervasive Computing 3, 1.

Cao, Q., Abdelzaher, T., , Stankovic, J., and He, T. 2008. The LiteOS operating system:
Towards unix-like abstractions for wireless sensor networks. In Proc. of the 7th ACM/IEEE

Int. Conf. on Information Processing in Sensor Networks (IPSN).

Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corrà, M., Pozzi, M.,

Zonta, D., and Zanon, P. 2009. Monitoring heritage buildings with wireless sensor networks:
The Torre Aquila deployment. In Proc. of the 8th ACM/IEEE Int. Conf. on Information

Processing in Sensor Networks (IPSN). Best Paper Award.

Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J., and Yoon, C. 2007. RETOS: Resilient,

expandable, and threaded operating system for wireless sensor networks. In Proc. of the 6th

Int. Conf. on Information Processing in Sensor Networks (IPSN).

Chatzigiannakis, I., Mylonas, G., and Nikoletseas, S. 2007. 50 ways to build your application:
A survey of middleware and systems for wireless sensor networks. In Proc. of the Int. Conf. on

Emerging Technologies and Factory Automation (ETFA).

Chu, D., Popa, L., Tavakoli, A., Hellerstein, J., Levis, P., Shenker, S., and Stoica, I. 2007.

The design and implementation of a declarative sensor network system. In Proc. of the 5th Int.
Conf. on Embedded Networked Sensor Systems (SenSys),.

Ciciriello, P., Mottola, L., and G.P. Picco. 2006. Building virtual sensors and actuator over

Logical Neighborhoods. In Proc. of the 1st ACM Int. Workshop on Middleware for Sensor

Networks (MidSens).

Ciciriello, P., Mottola, L., and Picco, G. P. 2007. Efficient routing from multiple sources to
multiple sinks in wireless sensor networks. In Proc. of 4th European Conf. on Wireless Sensor

Networks (EWSN).

CONET. Research roadmap of the cooperating objects network of excellence. www.

cooperating-objects.eu/roadmap/.

Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G. P., Sivaha-

ran, T., Weerasinghe, N., and Zachariadis, S. 2007. The RUNES middleware for networked
embedded systems and its application in a disaster management scenario. In Proc. of the 5th

Int. Conf. on Pervasive Communications (PerCom).

Costa, P., Mottola, L., Murphy, A. L., and Picco, G. P. 2006. TeenyLime: Transiently

shared tuple space middleware for wireless sensor networks. In Proc. of the 1st Int. Workshop
on Middleware for Sensor Networks (MidSens).

Costa, P., Mottola, L., Murphy, A. L., and Picco, G. P. 2007. Programming wireless sensor

networks with the TeenyLime middleware. In Proc. of the 8th ACM/USENIX Int. Middleware

Conf.

Crossbow Tech. www.xbow.com.

Culler, D., Hill, J., Buonadonna, P., Szewczyk, R., and Woo, A. 2001. A network-centric
approach to embedded software for tiny devices. In Proc. of the 1st Int. Workshop on Embedded

Software (EMSOFT).

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 53

Demirkol, I., Ersoy, C., and Alagoz, F. 2006. MAC protocols for wireless sensor networks: A

survey. IEEE Communications Magazine 44, 4.

Dermibas, M. 2005. Wireless sensor networks for monitoring of large public buildings. Tech.

Report, University of Buffalo. Available at www.cse.buffalo.edu/tech-reports/2005-26.pdf.

Deshpande, A., Guestrin, C., and Madden, S. 2005. Resource-aware wireless sensor-actuator

networks. IEEE Data Engineering 28, 1.

Dunkels, A., Grönvall, B., and Voigt, T. 2004. Contiki - A lightweight and flexible operating
system for tiny networked sensors. In Proc. of 1st Workshop on Embedded Networked Sensors.

Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. 2006. Protothreads: Simplifying event-
driven programming of memory-constrained embedded systems. In Proc. of the 4th Int. Conf.

on Embedded Networked Sensor Systems (SenSys).

Elson, J. and Roemer, K. 2003. Wireless sensor networks: A new regime for time synchroniza-

tion. SIGCOMM Comput. Commun. Rev. 33, 1.

Embedded WiSeNts Project. Embedded WiSeNts Research Roadmap. www.embedded-wisents.

org/dissemination/roadmap.html.

Eswaran, A., Rowe, A., and Rajkumar, R. 2005. Nano-rk: An energy-aware resource-centric

rtos for sensor networks. In Proc. of the 26th International Real-Time Systems Symposium
(RTSS).

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.-M. 2003. The many faces of
Publish/Subscribe. ACM Computing Surveys 2, 35.

Eyes WSN Nodes. www.eyes.eu.org.

Fenton, N. E. and Pfleeger, S. L. 1998. Software Metrics: A Rigorous and Practical Approach.

PWS Publishing Co., Boston, MA, USA.

Fok, C.-L., Roman, G.-C., and Lu, C. 2005. Rapid development and flexible deployment of

adaptive wireless sensor network applications. In Proc. of the 25th Int. Conf. on Distributed
Computing Systems (ICDCS).

Frank, C. and Römer, K. 2005. Algorithms for generic role assignment in wireless sensor

networks. In Proc. of the 3rd ACM Conf. on Embedded Networked Sensor Systems (SenSys).

Frank, C. and Römer, K. 2006. Solving generic role assignment exactly. In Proc. of the 14th

Int. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS).

Fuggetta, A., Picco, G. P., and Vigna, G. 1998. Understanding code mobility. IEEE Trans-

actions Softw. Eng. 24, 5.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler, D. 2003. The nesC

language: A holistic approach to networked embedded systems. In Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI).

Gelernter, D. 1985. Generative communication in Linda. ACM Computing Surveys 7, 1.

Gu, L. and Stankovic, J. A. 2006. T-Kernel: Providing reliable OS support to wireless sensor
networks. In Proc. of the 4th Int. Conf. on Embedded Networked Sensor Systems (SenSys).

Gummadi, R., Gnawali, O., and Govindan, R. 2005. Macro-programming wireless sensor net-

works using Kairos. In Proc. of the 1st Int. Conf. on Distributed Computing in Sensor Systems
(DCOSS).

Hadim, S. and Mohamed, N. 2006. Middleware challenges and approaches for wireless sensor
networks. IEEE Distributed Systems Online 7, 3.

Han, C.-C., Kumar, R., Shea, R., Kohler, E., and Srivastava, M. 2005. A dynamic operating

system for sensor nodes. In Proc. of the 3rd Int. Conf. on Mobile Systems, Applications, and

Services (MobiSys).

Hartung, C., Han, R., Seielstad, C., and Holbrook, S. 2006. FireWxNet: A multi-tiered

portable wireless system for monitoring weather conditions in wildland fire environments. In
Proc. of the 4th Int. Conf. on Mobile Systems, Applications and Services (MobiSys).

Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., and Perillo, M. A. 2004. Middleware
linking applications and networks. IEEE Network 18.

ACM Journal Name, Vol. V, No. N, Month 20YY.



54 · L. Mottola and G.P. Picco

Henricksen, K. and Robinson, R. 2006. A survey of middleware for sensor networks: state-

of-the-art and future directions. In Proc. of the 1st ACM Int. Workshop on Middleware for
Sensor Networks (MidSens).

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System

architecture directions for networked sensors. In Proc. of the 9th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX).

Hnat, T., Sookoor, T., Hooimeijer, P., Weimer, W., and Whitehouse, K. 2008. Macrolab:
A vector-based macroprogramming framework for cyber-physical systems. In Proc. of the 6th

Int. Conf. on Embedded Networked Sensor Systems (SenSys).

Hughes, D., Greenwood, P., Blair, G., Coulson, G., Grace, P., Pappenberger, F., Smith,
F., and Beven, K. 2007. An experiment with reflective middleware to support grid-based flood

monitoring. Concurrency and Computation: Practice and Experience 23, 4.

Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., and Silva, F. 2003. Directed

Diffusion for wireless sensor networking. IEEE/ACM Transactions Networking 11, 1.

IST CRUISE Project. Flood detection using sensor networks. www.ist-cruise.eu/cruise/

business-deck/wsns-applications/flood-detection-1.

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. 2002. Energy-

efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet.
SIGPLAN Not. 37, 10.

Kim, S., Son, S. H., Stankovic, J. A., Li, S., and Choi, Y. 2003. Safe: A data dissemination
protocol for periodic updates in sensor networks. In Proceedings of the Int. Workshop on Data

Distribution for Real-time Systems.

Kothari, N., Gummadi, R., Millstein, T., and Govindan, R. 2007. Reliable and efficient
programming abstractions for wireless sensor networks. In Proc. of the ACM SIGPLAN Conf.

on Programming Language Design and Implementation (PLDI).

Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Kushalnagar,

N., Nachman, L., and Yarvis, M. 2005. Design and deployment of industrial sensor networks:

experiences from a semiconductor plant and the north sea. In Proc. of the 3rd Int. Conf. on
Embedded Networked Sensor Systems (SenSys).

Krunic, V., Trumpler, E., and Han, R. 2007. NodeMD: Diagnosing node-level faults in remote

wireless sensor systems. In Proc. of the 5th Int. Conf. on Mobile Systems, Applications and
Services (MobiSys).

Lampe, M. and Strassner, M. 2003. The potential of RFID for moveable asset management.
In Proc. of the Workshop on Ubiquitous Commerce at UbiComp.

Langendoen, K. and Reijers, N. 2003. Distributed localization in wireless sensor networks: A

quantitative comparison. Computer Networks 43, 4.

Levis, P. and Culler, D. 2002. Maté: A tiny virtual machine for sensor networks. In Proc. of the

10th Int. Conf. on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-X).

Levis, P., Lee, N., Welsh, M., and Culler, D. 2002. TOSSIM: Accurate and scalable simulation

of entire TinyOS applications. In Proc. of 5th Symp. on Operating Systems Design and Imple-
mentation (OSDI).

Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E., and
Culler, D. 2004. The emergence of networking abstractions and techniques in TinyOS. In
Proc. of 1st Symp. on Networked System Design and Implementation (NSDI).

Li, S., Lin, Y., S.H. Son, J.A. Stankovic, and Wei, Y. 2004. Event detection services using
data service middleware in distributed sensor networks. Telecommunication Systems 26, 2.

Li, X.-Y., Wan, P.-J., Wang, Y., and Frieder, O. 2002. Sparse power efficient topology for

wireless networks. In Proc. of the 35th Annual Hawaii International Conference on System
Sciences (HICSS).

Liu, J., Cheung, P., Zhao, F., and Guibas, L. 2002. A dual-space approach to tracking and

sensor management in wireless sensor networks. In Proc. of the 1st Int. Workshop on Wireless
Sensor Networks and Applications (WSNA).

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 55

Liu, J., Chu, M., Reich, J., and Zhao, F. 2003. State-centric programming for sensor-actuator

network systems. IEEE Pervasive Computing 2, 4.

Liu, T. and Martonosi, M. 2003. Impala: A middleware system for managing autonomic, parallel
sensor systems. In Proc. of the 9th SIGPLAN Symposium on Principles and Practice of Parallel

Programming.

Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnayder, V., Main-
land, G., Welsh, M., and Moulton, S. 2004. Sensor networks for emergency response:

Challenges and opportunities. IEEE Pervasive Computing 3, 4.

Luo, L., Abdelzaher, T. F., He, T., and Stankovic, J. A. 2006. EnviroSuite: An environmen-

tally immersive programming framework for sensor networks. IEEE Transactions on Embedded
Computing Systems 5, 3.

Luo, L., Huand, C., Abdelzaher, T., and Stankovic, J. 2007. EnviroStore: A cooperative

storage system for disconnected operation in sensor networks. In Proc. of the 26th Int. Conf.
on Computer Communications (INFOCOM).

Lymberopoulos, D. and Savvides, A. 2005. XYZ: A motion-enabled, power-aware sensor node

platform for distributed sensor network applications. In Proc. of the 4th Int. Symp. on Infor-
mation Processing in Sensor Networks (IPSN).

Lynch, J. P. and Loh, K. J. 2006. A summary review of wireless sensors and sensor networks

for structural health monitoring. Shock and Vibration Digest .

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2003. TAG: A tiny aggre-

gation service for ad-hoc sensor networks. In Proc. of 1st Int. Conf. on Embedded Networked
Sensor Systems (SenSys).

Madden, S., M.J. Franklin, J.M. Hellerstein, and Hong, W. 2005. TinyDB: An acquisitional

query processing system for sensor networks. ACM Transactions on Database Systems 30, 1.

Mainland, G., Kang, L., Lahaie, S., Parkes, D. C., and Welsh, M. 2004. Using virtual
markets to program global behavior in sensor networks. In Proc. of the 11th ACM SIGOPS

European Workshop.

Mainland, G., Morrisett, G., and Welsh, M. 2008. Flask: Staged functional programming for
sensor networks. In Proc. of the 13th Int. Conf. on Functional Programming.

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J. 2002. Wireless

sensor networks for habitat monitoring. In Proc. of the 1st ACM Int. Workshop on Wireless

Sensor Networks and Applications (WSNA).

Manzie, C., Watson, H. C., Halgamuge, S. K., and Lim, K. 2005. On the potential for improv-

ing fuel economy using a traffic flow sensor network. In Proc. of the Int. Conf. on Intelligent

Sensing and Information Processing.

Martinez, K., Hart, J. K., and Ong, R. 2004. Environmental sensor networks. Computer 37, 8.

MeshNetics Tech. www.meshnetics.com.

Michahelles, F., Matter, P., Schmidt, A., and Schiele, B. 2003. Applying wearable sensors

to avalanche rescue. Computer and Graphics 27, 6.

MoteIV. www.moteiv.com.

Mottola, L., Pathak, A., Bakshi, A., Picco, G. P., and Prasanna, V. K. 2007. Enabling
scope-based interactions in sensor network macroprogramming. In Proc. of the the 4th Int.

Conf. on Mobile Ad-Hoc and Sensor Systems (MASS).

Mottola, L. and Picco, G. P. 2006a. Logical Neighborhoods: A programming abstraction for

wireless sensor networks. In Proc. of the 2nd Int. Conf. on Distributed Computing on Sensor
Systems (DCOSS).

Mottola, L. and Picco, G. P. 2006b. Programming wireless sensor networks with Logical

Neighborhoods. In Proc. of the 1st Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense).

Naik, P. and Sivalingam, K. 2004. A survey of mac protocols for sensor networks. Chapter in

Wireless sensor networks, Kluwer Academic Publishers.

Newton, R., Arvind, and Welsh, M. 2005. Building up to macroprogramming: An intermediate
language for sensor networks. In Proceedings of the 4th Int. Symp. on Information Processing

in Sensor Networks (IPSN).

ACM Journal Name, Vol. V, No. N, Month 20YY.



56 · L. Mottola and G.P. Picco

Newton, R., Morrisett, G., and Welsh, M. 2007. The Regiment macroprogramming system.

In Proc. of the 6th Int. Conf. on Information Processing in Sensor Networks (IPSN).

Newton, R. and Welsh, M. 2004. Region streams: Functional macroprogramming for sensor

networks. In Proc. of the 1st Int. Workshop on Data Management for Sensor Networks.

Nitta, C., Pandey, R., and Ramin, Y. 2006. Y-threads: Supporting concurrency in wireless
sensor networks. In Proc. of the 2nd Int. Conf. on Distributed Computing on Sensor Systems

(DCOSS).

Ocean, M. J., Bestavros, A., and Kfoury, A. J. 2006. snBench: Programming and virtualiza-
tion framework for distributed multitasking sensor networks. In Proc. of the 2nd Int. Conf. on

Virtual Execution Environments (VEE).

OnWorld. Emerging wireless research. www.onworld.com.

Padhy, P., Dash, R. K., Martinez, K., and Jennings, N. R. 2006. A utility-based sensing

and communication model for a glacial sensor network. In Proc. of the 5th Int. Conf. on

Autonomous Agents and Multiagent Systems (AAMAS).

Pathak, A., Mottola, L., Bakshi, A., Prasanna, V. K., and Picco, G. P. 2007. Expressing

sensor network interaction patterns using data-driven macroprogramming. In Proc. of the 3rd

Int. Workshop on Sensor Networks and Systems for Pervasive Computing (PerSens).

Petriu, E., Georganas, N., Petriu, D., Makrakis, D., and Groza, V. 2000. Sensor-based

information appliances. IEEE Instrumentation and Measurement Mag. 3.

Polastre, J., Hill, J., and Culler, D. 2004. Versatile low power media access for wireless sensor
networks. In Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems (SenSys).

Project SunSPOT. www.sunspotworld.com.

Rajendran, V., Obraczka, K., and Garcia-Luna-Aceves, J. J. 2003. Energy-efficient collision-
free medium access control for wireless sensor networks. In Proc. of the 1st Int. Conf. on

Embedded Networked Sensor Systems (SenSys).

Rajendran, V., Obraczka, K., and Garcia-Luna-Aceves, J. J. 2006. Energy-efficient, collision-
free medium access control for wireless sensor networks. Wireless Networks 12, 1.

Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S. 2002.

GHT: A geographic hash table for data-centric storage. In Proc. of the 1st Int. Workshop on
Wireless Sensor Networks and Applications (WSNA).

Ringwald, M., Römer, K., and Vitaletti, A. 2007. Passive inspection of sensor networks. In

Proc. of the the 3rd Int. Conf. on Distributed Computing on Sensor Systems (DCOSS).

Römer, K. 2004. Programming paradigms and middleware for sensor networks. In GI/ITG

Workshop on Sensor Networks.

Rubio, B., Diaz, M., and Troya, J. M. 2007. Programming approaches and challenges for
wireless sensor networks. In Proceedings of the 2nd Int. Conf. on Systems and Networks
Communications (ICSNC).

ScatterWeb Inc. www.scatterweb.com.

Shah, R., Roy, S., Jain, S., and Brunette, W. 2003. Data MULEs: Modeling and analysis of

a three-tier architecture for sparse sensor networks. Elsevier Ad Hoc Networks Journal 1, 2–3.

Sharma, A., Golubchik, L., and Govindan, R. 2007. On the prevalence of sensor faults in real-
world deployments. Proc. of the 4th Sensor, Mesh and Ad Hoc Communications and Networks

Conference (SECON).

Shen, C.-C., Srisathapornphat, C., and Jaikaeo, C. 2001. Sensor information networking
architecture and applications. IEEE Personal Communications 8, 4.

Sheth, A., Tejaswi, K., Mehta, P., Parekh, C., Bansal, R., Merchant, S., Singh, T., Desai,

U. B., Thekkath, C. A., and Toyama, K. 2005. Senslide: A sensor network based landslide
prediction system. In Proc. of the 3rd Int. Conf. on Embedded Networked Sensor Systems

(SenSys).

Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J.,
and Frampton, K. 2004. Sensor network-based countersniper system. In Proc. of the 2nd Int.

Conf. on Embedded Networked Sensor Systems (SenSys).

ACM Journal Name, Vol. V, No. N, Month 20YY.



Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art · 57

Stankovic, J. A., Cao, Q., Doan, T., Fang, L., He, Z., Kiran, R., Lin, S., Son, S., Stoleru, R.,

and Wood, A. 2005. Wireless sensor networks for in-home healthcare: Potential and challenges.
In Proc. of High Confidence Medical Device Software and SystemsWorkshop (HCMDSS).

Sugihara, R. and Gupta, R. K. 2008. Programming models for sensor networks: A survey. ACM

Transactions on Sensor Networks 4, 2.

Sundararaman, B., Buy, U., and Kshemkalyani, A. D. 2005. Clock synchronization for wireless
sensor networks: A survey. Ad Hoc Networks 3, 3.

Terfloth, K., Wittenburg, G., and Schiller, J. 2006. FACTS - A rule-based middleware

architecture for wireless sensor networks. In Proc. of the 1st Int. Conf. on Communication

System Software and Middleware (COMSWARE).

Thorstensen, B., Syversen, T., Bjornvold, T., and Walseth, T. 2004. Electronic shepherd—

A low-cost, low-bandwidth, wireless network system. In Proc. of the 2nd Int. Conf. on Mobile

Systems, Applications, and Services (MobiSys).

TinyOS Community Forum. TinyOS TEP 109 - Sensors and Sensor Boards. www.tinyos.net/

tinyos-2.x/doc/txt/tep109.html.

TinyOS Community Forum. TinyOS TEP 118 - Dissemination. www.tinyos.net/tinyos-2.x/

doc/txt/tep118.html.

TinyOS Community Forum. TinyOS TEP 119 - Collection. www.tinyos.net/tinyos-2.x/doc/

txt/tep119.html.

TinyOS Community Forum. TinyOS TEP 126 - CC2420 radio stack. www.tinyos.net/tinyos-2.

x/doc/html/tep126.html.

van Dam, T. and Langendoen, K. 2003. An adaptive energy-efficient MAC protocol for wireless
sensor networks. In Proc. of the 1st Conf. on Embedded Networked Sensor Systems (SenSys).

Wang, Q., Zhu, Y., and Cheng, L. 2006. Reprogramming wireless sensor networks: Challenges

and approaches. IEEE Network 20, 3.

Wang, Y., Dang, H., and Wu, H. 2007. A survey on analytic studies of delay-tolerant mobile

sensor networks. Wireless Communication and Mobile Computing 7, 10.

WASP Project. www.wasp-project.org.

Welsh, M. and Mainland, G. 2004. Programming sensor networks using abstract regions. In

Proc. of 1st Symp. on Networked Systems Design and Implementation (NSDI).

Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. 2006. Fidelity and

yield in a volcano monitoring sensor network. In Proc. of 7th Symp. on Operating Systems
Design and Implementation (OSDI).

Whitehouse, K., Sharp, C., Brewer, E., and Culler, D. 2004. Hood: A neighborhood ab-

straction for sensor networks. In Proc. of 2nd Int. Conf. on Mobile Systems, Applications, and
Services (MobiSys).

WildSensing Project. www.dcs.bbk.ac.uk/~assent/WILDSENSING/index.html.

Wittenburg, G., Terfloth, K., Villafuerte, F. L., Naumowicz, T., Ritter, H., and

Schiller, J. 2007. Fence monitoring - Experimental evaluation of a use case for wireless
sensor networks. In Proc. of the 4th European Conf. on Wireless Sensor Networks (EWSN).

Yang, J., Soffa, M. L., Selavo, L., and Whitehouse, K. 2007. Clairvoyant: A comprehensive
source-level debugger for wireless sensor networks. In Proc. of the 5th Int. Conf. on Embedded

Networked Sensor Systems (SenSys).

Yao, Y. and Gehrke, J. 2002. The Cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31, 3.

Ye, W., Heidemann, J., and Estrin, D. 2002. An energy-efficient MAC protocol for wireless

sensor networks. In Proc. of the 21st Int. Conf. on Computer Communications (INFOCOM).

Zeng, X., Bagrodia, R., and Gerla, M. 1998. GloMoSim: A library for parallel simulation
of large-scale wireless networks. In Proc. of the 12th Workshop on Parallel and Distributed

Simulation (PADS).

ACM Journal Name, Vol. V, No. N, Month 20YY.


