
Programming Storage-centric Sensor Networks
with Squirrel

Luca Mottola
Swedish Institute of Computer Science

luca@sics.se

ABSTRACT
We present SQUIRREL, a stream-oriented programming fra-
mework for storage-centric sensor networks. The storage-
centric paradigm—where storage operations prevail over com-
munication activity—applies to scenarios such as batch data
collection, delay-tolerant mobile applications, and discon-
nected operations in static networks. SQUIRREL simplifies
developing such applications by decoupling data processing
from storage, and by transparently handling the latter. We
achieve this through: i) a modular programming abstraction,
and ii) a lightweight run-time layer that efficiently allocates
data to different storage areas, based on size vs. energy trade-
offs. We demonstrate SQUIRREL’s effectiveness based on
three real-world applications, each representing a different
storage-centric scenario. The results show that—while re-
lieving programmers from a significant burden—SQUIRREL
achieves efficient utilization of storage areas, enabling en-
ergy savings independently of the storage technology.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—
Data-flow languages; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Distributed systems

General Terms
Algorithms, Languages, Performance

1. INTRODUCTION
Early deployments of wireless sensor networks (WSNs)

consisted of embedded devices that immediately communica-
ted sensed data to the user [1]. Accordingly, the dominating
design was characterized by a sense-and-send pattern, possi-
bly with some local filtering. In this communication-centric
setting, the storage capabilities of the devices play little role.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$5.00.

This strategy has proved to be not always successful, due
to the difficulties in setting up energy-efficient, real-time col-
lection networks [2]. Moreover, as deployments have grown
in complexity, the amount of data harvested from the envi-
ronment has started to outweigh the capabilities of present
radio devices [3, 4]. WSNs have also entered fields where
real-time data collection is not feasible. For instance, this is
the case when nodes are attached to roaming entities [5, 6],
or when deploying a base station is not possible [7, 8, 9].

A new breed of storage-centric sensing systems has emer-
ged to tackle these issues [8,10,11,3]. In this setting, storage
operations tend to prevail over communication activity. This
paradigm shift—favored by decreasing costs and increasing
capacity of storage hardware—brings several advantages. It
allows the system to perform batch data collection [11, 4],
providing significant energy savings. It also enables delay-
tolerant mobile applications [5, 6] and disconnected opera-
tions in static networks [7, 9], by providing means to retain
data until the first upload opportunity arises.

Challenges. The programming fabric for storage-centric ap-
plications is largely missing. As we discuss in Section 2,
WSN programmers are used to rely on file systems [12,13] to
store data on memory devices such as flash chips. However,
the abstractions offered by WSN file systems are typically
quite far from the application requirements, especially when
in-network processing comes into play. This forces program-
mers to fill the gap “by hand”, translating application-level
functionality into low-level calls. This practice yields entan-
gled implementations that are difficult to debug, re-use, and
maintain. The issue resembles the mismatch in communi-
cation-centric designs between application requirements and
low-level message-passing facilities [14], with file systems
to play the role of the latter.

At system level, key to the efficient operation of a storage-
centric system is deciding where to store data, e.g., whether
to use the energy-efficient, yet limited main memory, or a
more power-hungry, but larger external storage facility. Al-
though there may be no choice due to the data size, it is of-
ten the case that different types of data fit multiple storage
areas. These typically expose different size vs. energy trade-
offs [15]. However, statically allocating data to storage areas
is in general not possible, as data volumes may vary [4,5,7].

Dynamic allocation is a problem that application program-
mers are not keen on tackling, as it shifts their focus away
from the application logic. Virtual memory systems [16, 17]
exist, but they are mostly at the operating system level and in-
cur severe performance penalties. Thus, programmers adopt
the straightforward solution: using exclusively the largest
storage area, even if inefficient from an energy standpoint.

Contribution and road-map. To address the issues above,
we design and implement SQUIRREL1, a storage-centric pro-
gramming framework that transparently manages storage
functionality. Our contribution is twofold:
• we design a stream-oriented, modular programming ab-

straction that cleanly decouples data processing from
storage. As described in Section 3, programmers im-
plement SQUIRREL programs by interconnecting stream
operators that realize different storage policies, provi-
ding application-specific functionality when required.
To ease adoption and leverage the existing code base,
SQUIRREL’s abstractions are reified in the C language.
• to leverage the size vs. energy trade-off of different

storage areas, we map the storage problem to an in-
stance of the “knapsack problem” [18], as we illustrate
in Section 4. Based on the corresponding solution, the
SQUIRREL run-time layer dynamically decides how to
use different storage areas. Our decision procedure
runs in only 20 ms in the most complex configuration
we tested. We trigger its execution when the system
detects a peak in memory consumption. Indeed, we
recognize that this configuration is the one to consider
for optimizing the overall performance.

We evaluate SQUIRREL along two key dimensions. Sec-
tion 5 reports on how SQUIRREL impacts the programming
activity, and discusses its generality. To this end, we con-
sider three real-world applications representative of paradig-
matic storage-centric scenarios, and compare SQUIRREL im-
plementations against the original ones. We observe that
SQUIRREL greatly simplifies the implementations, boosting
code re-use and enabling easier maintenance.

In contrast, Section 6 investigates SQUIRREL’s run-time
performance. Micro-benchmarks show the limited memory
and processing overhead. Experiments based on real-world
data assess the effectiveness of our storage management sche-
me. As example, in batch data collection we show average
reductions of 54.6% in the number of external storage oper-
ations by using main memory as additional storage area. A
report from a prototype deployment completes the picture by
demonstrating the use of SQUIRREL in a real scenario.

Section 7 compares our efforts against the current state of
the art, and Section 8 concludes the paper.

2. MOTIVATION
We study the design and implementation of three real-

world applications. Each of them represents a paradigmatic
1SQUIRRELs are known to be particularly concerned with “effi-
cient” storage of their food supplies.

storage-centric scenario. The insights described here drive
the design of SQUIRREL, illustrated in Section 3.

2.1 Batch Data Collection
Dutta et al. [11] observe that batching data and postponing

communication provides many opportunities for optimiza-
tion. Several real-world deployments leverage similar tech-
niques to circumvent bandwidth limitations [3, 4].

A concrete example. Based on direct experience, we recog-
nize that implementing the functionality for batch data col-
lection is not necessarily trivial. For instance, in the Torre
Aquila deployment [4], WSN nodes sense acceleration at
several hundred Hz to assess the structural condition of a
medieval tower. The end-user dynamically decides the du-
ration and rate of sensing through a remote interface. This
determines the data volumes at hand.

Due to bandwidth limitations, acceleration nodes iterate
in a sense-compress-report loop. The acceleration sensor
is queried at the desired rate and data immediately saved in
blocks on an external FRAM [4] chip. Next, data is moved
from external storage to main memory, each block is com-
pressed, and then written back to external storage. Finally,
compressed data is read from external storage, each block is
divided into packets, and these are handed over to a collec-
tion protocol for transmission. The implementation of this
functionality is one of the most complex in Torre Aquila.

2.2 Delay-tolerant Mobile Applications
WSN devices attached to mobile entities [5, 6] are likely

to be only sporadically in contact with a collection station.
Therefore, programmers must log data locally while await-
ing an upload opportunity. Compression [19] and summa-
rization [5] are used to make room for new data. Data repli-
cation is also applied [5] to increase the chances of delivering
data to the user.

A concrete example. We are working on a typical example
of mobile delay-tolerant application, called BumpInto [20].
Individuals carry WSN nodes to track their encounters and
patterns of movement. Based on these data, social network
experts can study the interactions among individuals.

We register a contact between two individuals when their
WSN nodes are within radio range. We create a record to
describe the encounter and save it on an external flash chip.
The volume of data involved is difficult to predict, as it de-
pends on the number and duration of contacts.

To achieve better utilization of storage space, we locally
compute the social metrics of interest, e.g., the frequency of
encounters. At every hour, we read the contacts recorded in
the last six hours, compute some encounter summaries, and
delete the contacts in the earliest hour. We replicate the sum-
maries on nearby nodes using a gossip-based scheme [21].
A node uploads all summaries to a collection station when-
ever in contact with it.

2.3 Disconnected Operations in Static Networks
Design simplifications motivate the use of static WSN de-

vices working in absence of a collection station [7, 9]. Data
may be retrieved using data mules [22], an intermittent long-
range wireless link, e.g., a GPRS connection, or by recol-
lecting the nodes. Programmers leverage local processing to
deal with storage shortages and data redistribution to balance
asymmetries in storage load [8].

A concrete example. In the Klimat [23] project, WSN de-
vices are deployed on buoys in the Baltic sea to monitor en-
vironmental changes. Light and acceleration nodes are in-
stalled on the top of the buoy. The system is powered using
rechargeable batteries fed by solar panels and a device that
harvests energy from sea waves. When the available power
suffices, data is transferred onshore using a GPRS device.

Due to unpredictable energy availability, the system is de-
signed to work in a disconnected fashion. We store sensed
data on a SD card as soon as it is gathered. Data compression
is applied before upload operations to reduce the energy con-
sumption due to the GPRS device. Different nodes may gen-
erate different amounts of data because of data-dependent
variations in the compression ratios. Thus, we redistribute
data among nodes similarly to EnviroStore [8].

2.4 Analysis

 0

 20

 40

 60

 80

 100

Torre Aquila

BumpInto

Klimat

%
 c

o
d
e

 b
re

a
k
d

o
w

n

Application

Processing
Storage

Communication
Configuration

 0

 20

 40

 60

 80

 100

Torre Aquila

BumpInto

Klimat

%
 c

o
d
e

 b
re

a
k
d

o
w

n

Application

Processing
Storage

Communication
Configuration

Figure 1: LOC break-
down depending on func-
tionality for Torre Aquila,
BumpInto, and Klimat.

We study the current im-
plementations of the ap-
plications above to assess
their flexibility. For in-
stance, we note that in all
cases the use of external
storage is hardwired in the
application code. In Torre
Aquila, however, depend-
ing on the duration and
rate of sensing, data may
also fit in main memory.
Similarly, depending on encounter frequency and upload op-
portunities, in BumpInto we may store data in main mem-
ory. Both implementations, however, cannot adapt to varying
data volumes, and always use the more power-consuming ex-
ternal storage. The program binary image, however, is close
to the limit on the nodes employed [24], which makes further
optimizations difficult to achieve.

We also aim to understand how programmers devote their
effort depending on the functionality. Figure 1 depicts a
breakdown of lines of code (LOC) in each application, on a
per-functionality basis. The chart only considers functional-
ity implemented by application programmers, hence exclud-
ing OS mechanisms and general-purpose functionality. By
considering this figure as an indication of programming ef-
fort, it appears that handling storage operations often repre-
sents a significant burden.

In Torre Aquila, storage operations are handled using Tiny-
OS’ DirectStorage interface [25], which provides read()

and write() functions for specific memory blocks. There-
fore, a significant amount of bookkeeping code is needed to
bridge the gap between application-level functionality and
DirectStorage. For instance, programmers must man-
ually implement functionality to rewind the memory buffers
while performing the necessary clean-ups, always doing so
on the basis of physical memory addresses. Moreover, due
to the need of interleaving storage operations with process-
ing, e.g., during compression, the use of DirectStorage
is often intertwined with application-specific functionality.

In both BumpInto and Klimat, storage operations are man-
aged using the Coffee filesystem [12]. This provides tradi-
tional filesystem primitives such as read, write, and ap-
pend. A filesystem API, however, is not sufficiently ex-
pressive to implement the functionality required. In Bump-
Into, we developed an ad-hoc intermediate layer to translate
BumpInto storage operations into filesystem calls. This ap-
pears to be common practice in similar settings [12]. Never-
theless, storage operations are still interleaved with applica-
tion-specific functionality, making the implementation fairly
entangled. Similar observations apply to Klimat as well, as
it uses the same file system API.

3. PROGRAMMING WITH SQUIRREL
To address the issues pointed out in the analysis above, we

design SQUIRREL around two principles: i) processing/stor-
age decoupling, and ii) transparent storage management. We
take inspiration from data stream systems [26] to reify such
design principles.

3.1 Abstraction
A SQUIRREL program is structured as a graph of stream

operators. We provide six primitive types of operators, de-
scribed in Figure 2. Nevertheless, programmers may straight-
forwardly implement additional custom operators as descri-
bed next in Section 4.2. Every operator realizes a different
storage policy and has an associated buffer space. Program-
mers supply application-specific functionality for data pro-
cessing and to trigger the execution of operators. Data is rep-
resented as items of a predefined type whose internal format
is application-dependent. Application-specific functionality
operating on the same data must agree on its format.

We adopt this model for several reasons. First, our model
belongs to the larger class of data flow paradigms that al-
ready demonstrated to be suited to WSN applications [27,28,
29,30,31], albeit rarely in storage-centric scenarios. Second,
the stream abstraction helps factor out application-specific
data processing from generic storage functionality. Third,
structuring the application as subsequent manipulations of a
data stream maps well to the step-wise execution of many
storage-centric scenarios.

In the following, we revisit the design and implementation
of the applications in Section 2 using SQUIRREL.

Torre Aquila. Figure 3 depicts a SQUIRREL implementation
of batch data collection in Torre Aquila. The Create opera-

Operator Description
Create Generates a stream of items out of a programmer-provided function. It also timestamps every item using a predefined clock source.
DataSlide(X,Y) Maintains a window of at most X items. After execution, it advances the window by Y items.
TimeSlide(X,Y) Maintains a window of items with timestamps within the latest X time instants. It then advances the window by the items in the earliest Y time instants.
Move(X,destination) Moves X data items from its local buffer to (1-hop) node destination. Receives moved items from other nodes and outputs them as a stream.
Join(X,Y) Maintains two buffers of at most X and Y items, and outputs a single stream based on a programmer-provided function.
Execute(X,Y) Executes a programmer-provided function for every item in its associated buffer.

Figure 2: SQUIRREL stream operators and their functioning.

timer_compress()

DataSlide(windowSize, windowSize)

huffman_compress()

Create

sense_accel()

timer_sense()

Execute

collection_send(),
current_pkt

timer_collect()Trigger

 Data processing Operator name Operator connection

Figure 3: SQUIRREL implementation of Torre Aquila.
(Grey areas indicate application-specific functionality).

new_gossip_neighbor()

TimeSlide(6h, 1h)

compute_summary()

Create

process_contact()

Move(1, gossipNeighbor)
Move(ALL,

collectionStation)

new_contact() timer_hourly()

collection_station()

from other nodes to other devicesto collection station

Figure 4: SQUIRREL implementation of BumpInto.
tor uses the sense_accel() function to create a stream
of items carrying acceleration readings. The processing is
triggered according to a timer_sense() function.

We use the DataSlide operator to implement the compres-
sion step. When timer_compress() triggers the opera-
tor, windowSize items are compressed using huffman-
_compress(). The window then advances by window-
Size items to process the next block of readings.

We use the Execute operator to bind the stream to a col-
lection protocol. When timer_collect() signals that
reporting is to begin, collection_send() is executed
for every item currently in the buffer. As multiple items may
fit a single packet, a state variable current_pkt is carried
across different executions to fill up a packet before trans-
mission. Programmers may use state variables in all opera-
tors that accommodate programmer-provided processing.

BumpInto. As shown in Figure 4, we use Create to build
an item upon detection of a contact with another node, using
new_contact() as trigger and process_contact()
to create the item. The TimeSlide operator buffers items cre-
ated in the last six hours and, after execution, slides the win-
dow downstream by the items created in the earliest hour. We
use this form of rolling computation to compute encounter
summaries. The data processing is implemented in compu-
te_summary(), and triggered every hour.

We argue that the Move operator captures most communi-
cation needs arising in storage-centric applications. In such
scenarios, interactions are typically 1-hop. In BumpInto,
for instance, we use Move to implement two functionality.

Using new_gossip_neighbor() as trigger, we realize
gossip-based replication [21]. The trigger implements the
neighbor discovery functionality and decides whether to use
the new neighbor to replicate data. If so, it makes Move ex-
ecute to migrate 1 data item. On the receiver side, the same
Move operator receives items from other devices, and hands
them over to the following operators in the chain.

The last Move operator in the chain accumulates items un-
til the collection station is in range. Whenever this occurs,
the collection_station() function makes the sec-
ond Move operator execute. This transfers ALL items in the
buffer to the collection station. There, a corresponding Move
operator receives the items, and an Execute operator dumps
their content on a serial interface (not shown).

Klimat. We use two instances of Create to query different
sensors, as Figure 5 shows. We use the Join operator to com-
bine the two streams using the application-specific process-
ing in combine_accel_light(). In this case, we use a
“default” trigger (not shown). This makes Join execute when
the maximum size for both buffers is reached. We use a de-
fault trigger also with DataSlide, which executes as soon as
windowSize items are available2.

In contrast to the use in BumpInto, here we use Move
to implement balancing of storage load similarly to Enviro-
Store [8]. Using a dedicated function, nodes send periodic
beacons carrying the current memory occupation. When we
detect an unbalance, storage_unbalance() triggers the
execution of Move. The number of items to move and the tar-
get neighbor are decided to avoid data “ping-pong” [8].

The operator chain in Klimat ends with an Execute opera-
tor that uses the GPRS device to send data onshore. This is
triggered by a function that checks whether the current en-
ergy level is sufficient to operate the GPRS transceiver.

3.2 Language Constructs
Reifying a programming abstraction in a dedicated lan-

guage may achieve greater conciseness and elegance. This
comes at the cost of more difficult adoption and no re-use
of the existing code-base. One may address these issues by
embedding the abstraction within an existing language.

In the current version of SQUIRREL, we choose to adopt
the latter approach by leveraging the C language. We believe
that smoothing the waters for adoption by programmers is
fundamental in a setting where the foundations are already
available, but the programming fabric is largely missing.

As an example, Figure 6 reports the SQUIRREL code cor-

2Non-windowed operators using default triggers execute as soon as
data is available.

DataSlide(windowSize, windowSize)

huffman_compress()

Create

sense_accel()

accel_timer()

Execute

gprs_send()

gpsr_available()storage_unbalance()

Move(D, emptyNeighbor)

Create

sense_light()

light_timer()

Join(accelItems, lightItems)

combine_accel_light()

from other devices to other devices

Figure 5: SQUIRREL implementation of Klimat.

1 /*-CREATE OPERATOR-*/
2 item_t sense_accel() {
3 item_t accel_data;
4 // Sensing from the accelerometer...
5 return accel_data; }
6 CREATE_OPERATOR(sense, sense_accel);
7 void timer_sense() {
8 TRIGGER_CREATE(sense);
9 // ... }

10 /*-DATASLIDE OPERATOR-*/
11 item_t huffman_compress(item_t* first_item,
12 uint16_t window_size) {
13 item_t compressed_accel;
14 // Compressing window_size items...
15 return compressed_accel; }
16 DATASLIDE_OPERATOR(compress, huffman_compress,
17 WINDOW_SIZE, WINDOW_SIZE);
18 void timer_compress() {
19 // ...
20 TRIGGER_DATASLIDE(compress); }
21 /*-EXECUTE OPERATOR-*/
22 item_t collection_send(item_t* item,void* current_pkt){
23 // Updating current_pkt and possibly sending data ...
24 return NULL; }
25 EXECUTE_OPERATOR(collect,collection_send,current_pkt);
26 void timer_collect() {
27 // ...
28 TRIGGER_EXECUTE(collect); }
29 /*-SETUP-*/
30 void setup() {
31 CONNECT(sense, compress);
32 CONNECT(compress, collect); }

Figure 6: SQUIRREL code for Torre Aquila.
responding to the operator chain in Figure 3. We make exten-
sive use of standard C macros. For instance, CREATE_OPE-
RATOR (line 6) instantiates a Create operator, taking as pa-
rameters the name of the operator instance (sense) and that
of the application-specific sensing function (sense_ac-
cel). The macro DATASLIDE_OPERATOR (line 16) ac-
cepts two more parameters representing the size of the win-
dow and the number of items to slide after execution. Similar
macros are available for all other types of operators.

Application-specific functionality exchange data with op-
erators using a predefined item_t data type. To feed an
operator with data, the functions simply return the data at
the end of the processing (e.g., lines 5 and 15). Application-
specific triggers use a dedicated macro to make an operator
execute, which takes the name of the operator as parameter.
For instance, TRIGGER_CREATE (line 9) causes the execu-
tion of sense, which is an instance of Create.

To configure the operator chain, programmers use a CON-
NECT macro (lines 31-32), which takes a 〈source, sink〉 pair
of operator instances as parameters.

4. RUN-TIME SUPPORT
Data stream systems are most often designed to optimize

the real-time operation, e.g., to maximize throughput [26].
In contrast, our objective is to optimize storage operations

by exploiting the size vs. energy trade-offs of multiple stor-
age areas. For instance, current WSN platforms often host a
large storage facility, e.g., a flash chip, in addition to the lim-
ited main memory. These exhibit a size vs. energy trade-off
that is expected to remain [15]. To improve energy consump-
tion, we reduce the number of operations on flash by taking
advantage of main memory whenever possible. Because of
this, our work is also different from solutions that optimize
the low-level operations depending on the storage technol-
ogy at hand [10, 12, 13, 32]. Indeed, our goal is to avoid the
use of external storage in favor of more energy-efficient, but
possibly smaller, storage areas.

The kind of optimizations we aim at is difficult in the
the general case. However, our stream-oriented abstractions
limit the patterns of storage operations, enabling simple, yet
effective techniques at system level. In this sense, although
our approach resonates with memory hierarchies in main-
stream computing, our solution differentiates from the latter
in leveraging the characteristics of the data stream abstrac-
tion, rather than aiming at general-purpose functionality.

The following discussion considers two storage areas, main
memory and one external facility. This is the common case
in current WSN architectures. Multiple external storage ar-
eas with different size vs. energy trade-offs are also starting
to appear [33]. Our approach requires straightforward exten-
sions to take advantage of them.

4.1 Storage Management
Identifying an efficient mapping of data to different stor-

age areas is not trivial, especially if data volumes change
unpredictably. We discuss next an illustrative example.

Example. Consider a simplified version of the program in
Figure 3. Say Create generates one item every 10 sec. Da-
taSlide buffers up to six items and then applies compression,
thus outputting one item per minute. Every six minutes, Ex-
ecute hands six items over to the collection protocol.

Figure 7(a) illustrates the storage operations performed dur-
ing a one minute execution of this application. These are
either push or pop operations on a specific buffer, and in-
clude: i) six push operations in DataSlide as sensed data ar-
rive (point A); ii) six pop operations when DataSlide com-
presses data (point B); iii) one push operation in Execute to
store the item coming from DataSlide (point C). Moreover,
every six minutes the system performs six pop operations in
Execute to hand data over to the collection protocol. Say
60 bytes in main memory are available as storage area, and
a single item occupies 10 bytes. Even in this simple setting,
we may apply different storage policies.

Using a greedy policy, we store every item in main mem-

Push
(DataSlide)

Pop
(DataSlide)

Push
(Execute)

6 push 6 pop

A B C

Push
(DataSlide)

Pop
(DataSlide)

(a) Storage operations during a one minute execution.

Execute
DataSlide
DataSlide
DataSlide
DataSlide
DataSlide

DataSlide

DataSlide
DataSlide
DataSlide
DataSlide
DataSlide
DataSlide

Execute
Execute
DataSlide
DataSlide
DataSlide
DataSlide

DataSlide
DataSlide

pu
sh

po
p

pu
sh

pu
sh

po
p

pu
sh

pu
sh

po
p

0-60 sec 60-120 sec 120-180 sec

m
ai

n
m

em
or

y

Execute
Execute
Execute
Execute
Execute
DataSlide

DataSlide
DataSlide

pu
sh

pu
sh po
p

300-360 sec

DataSlide
DataSlide
DataSlide

Execute
Execute
Execute
Execute
Execute
Execute

pu
sh

po
p

360 sec

ex
te

rn
al

st

or
ag

e

(b) Greedy storage policy during a six minute execution.
Figure 7: Storage management example.

ory when possible and resort to external storage otherwise.
The memory occupation thus evolves as shown in Figure 7(b).
From 0 to 60 sec, DataSlide pushes six items. At 60 sec,
DataSlide pops the same six items, Execute then finds the
main memory empty, and it stores there the item it receives
from DataSlide. From 60 sec to 120 sec, because of the
item stored earlier by Execute, DataSlide finds space in main
memory for all but the last item. This is thus saved on ex-
ternal storage. The same processing occurs from 120 sec
to 180 sec, when DataSlide fits in main memory all but the
last two items. Execution continues this way until the fifth
minute, when DataSlide can store only one item in main
memory. At 360 sec, Execute pops all items in its buffer,
and main memory is newly empty. Using this strategy, the
system performs a total of 30 operations on external storage.

Storage strategy. In the example above, a more efficient
strategy is to reserve main memory for buffers with higher
frequency of push/pop operations. By using main memory
only for DataSlide, the number of operations on external
storage becomes only 12, a 60% reduction.

To achieve this functionality in the general case, we map
the problem at hand to the “knapsack problem” [18]. We are
given a set of objects with associated weight wi and value
pi. We must determine which objects to include in a collec-
tion (knapsack) so that: i) the total value of objects in the
collection is maximized, and ii) the total weight is less than
a limit W . In our mapping, the knapsack is the MCU’s main
memory, and an object is an item in a buffer. The object’s
weight is the size of the item in memory, and its value is the
frequency of push/pop operations on the buffer it belongs to.

Based on a snapshot of the memory occupation at a given
point in time, a solution to the knapsack problem determines
a combination of “preferred” items that fit in main memory
and belong to buffers with high frequency of push/pop op-
erations. From that point on, we use the greedy strategy
explained earlier for preferred items, and we allocate non-
preferred items immediately on external storage. The former
is needed in case the data volumes change w.r.t. the inputs
used to run the knapsack algorithm.

Dynamic behavior. To decide when to run the knapsack
algorithm, we observe that the evolution of memory occupa-
tion is likely to follow specific patterns, exemplified in Fig-
ure 8. Over time, the maximum of memory occupation keeps
growing until the node has an opportunity to flush all items.
For instance, this happens when reporting finishes in batch
data collection, a mobile node comes in contact with a col-
lection station, or a data mule passes by in a disconnect sce-
nario. We also note that most often there is just one operator
that is mainly responsible for the maximum, e.g., operator
A in Figure 8. This is typically at the end of the chain, and
accumulates items awaiting an upload opportunity.

maxima in
memory
occupation

time

flush flush

operator A
operator B
operator C

Figure 8: Typical evolu-
tion of maxima in mem-
ory occupation.

Leveraging these observa-
tions, we choose to run the
knapsack algorithm when
the system reaches a new
peak in memory consump-
tion in a given period, called
“knapsack period”. This al-
lows the knapsack algorithm
to obtain a memory snapshot
where all operators that con-
tribute to the peak appear.
Implicitly, this allows to optimize how this worst-case sit-
uation creates. For instance, in Figure 7(b) the execution at
360 sec is the one ultimately taken into account. This shows
that only the six DataSlide items should be allocated in main
memory. Their frequency of push/pop operations is indeed
higher than Execute items, and they fill up the main memory.

Keeping track of memory peaks only in the knapsack pe-
riod allows the system to adapt to varying data volumes. If
these changes affect memory consumption, the system may
reach different peaks, not necessarily greater than in previous
executions. Therefore, the system should eventually forget
about past peaks. The length of the window is decided based
on the application dynamics, as we exemplify in Section 6.

Knapsack algorithm. We adapt a well-known approximate
algorithm [18]. First, the algorithm sorts the items in de-
creasing order of value per unit of weight pi/wi. Then, it
inserts the items into the knapsack starting with the one with
highest pi/wi, until there is no space to fit more items.

By definition, all items belonging to the same buffer have
the same pi and wi. Thus, we can carry out the ordering step
on a per-buffer basis. For the same reason, insertion in the
knapsack can occur at buffer granularity, by computing how
many items of the same buffer fit into the available space.
These observations yield an algorithm that—while deciding
on the allocation of individual data items—scales with the
number buffers, which are expected to be much fewer.

4.2 Implementation
Our current implementation runs atop the Contiki [34] op-

erating system and targets TMote-like [24] devices.
Operators are implemented as Contiki processes. This al-

lows using Contiki events to trigger their execution and to

realize the flow of data items. When an operator outputs an
item, this is processed by a router module that determines the
target operator based on the current connections. Delivery of
the item to the target operator occurs by posting an event to
the corresponding process.

The router module is also responsible for the storage strat-
egy, and thus determines where to store items. To manage
storage operations, we re-implemented Contiki’s LIST li-
brary to allow entries in the list to be stored indifferently on
main memory or external storage. To implement this func-
tionality, we add a flag to every item to indicate where to find
the next entry in the list. For efficiency reasons, we also keep
pointers to the first and last entry in the list. We use the Cof-
fee [12] filesystem to access the external storage, mapping
every buffer to a separate file.

Programmers can straightforwardly implement custom op-
erators if required. To do so, they leverage the API of the
LIST library to manage storage operations. Before every
such operation, the operator must ask the router module what
storage area to use to store the item. This decision is taken
based on the observed frequency of push/pop operations in
the last knapsack period, which is periodically reported to the
router module by every operator. Based on this information,
the router module applies our storage strategy identically to
the predefined operators.

To configure the run-time layer, programmers specify the
fraction W of main memory for SQUIRREL operations, and
the knapsack period.

5. INVESTIGATING SQUIRREL
PROGRAMMING

We aim at investigating the simplifications brought by
SQUIRREL to the development of storage-centric applica-
tions, while discussing its general applicability. It is noto-
riously difficult to obtain objective indications on the effec-
tiveness of a programming framework. We leverage the body
of work on software metrics [35] to tackle this challenge.
Moreover, in our case, embedding a new abstraction within
an existing language simplifies the problem. It helps isolate
the advantages brought by the newly introduced abstractions,
as the rest of the framework remains the same.

Throughout the discussion, we consider the original im-
plementations of BumpInto and Klimat, described in Sec-
tion 2, against their SQUIRREL counterparts, illustrated in
Section 3. To achieve a fair comparison, in the case of Torre
Aquila we port the existing implementation to Contiki. We
refer to these implementations as base implementations. Our
analysis considers only the portions of code that applica-
tion programmers are to implement, hence excluding OS-
provided functionality and general-purpose mechanisms.

Our analysis covers different facets, as described next.

5.1 Coupling

Methodology. Based on the seminal work by Stevens et
al. [36], seven types of coupling, summarized in Figure 9, are

Type Description
Content (tight) One module relies on the internal working of another. Chang-

ing one module requires changes in the other as well.
Common Two or more modules share some global state, e.g., a variable.
External Two or more modules share a common data format.
Control One module controls the flow of another, e.g., passing infor-

mation that determine how to execute.
Stamp Two or more modules share a common data format, but each

of them uses a different part with no overlapping.
Data Two or more modules share data through a typed interface,

e.g., a function call.
Message (loose) Two or more modules share data through an untyped inter-

face, e.g., via message passing.

Figure 9: Types of coupling between software modules.

C
on

te
nt

C
om

m
on

E
xt

er
na

l

C
on

tr
ol

St
am

p

D
at

a

M
es

sa
ge

Torre Aquila - base - Yes Yes - Yes Yes -
Torre Aquila - SQUIRREL - - Yes - - - Yes
BumpInto - base Yes Yes Yes Yes - Yes Yes
BumpInto - SQUIRREL - - Yes Yes - - Yes
Klimat - base Yes Yes Yes Yes Yes Yes -
Klimat - SQUIRREL - - Yes Yes - - Yes

Figure 10: Coupling in base and SQUIRREL implementa-
tions.
commonly recognized between software modules or func-
tions. It is generally acknowledged that the tightest is the
coupling, the more difficult is debugging, re-using, and main-
taining the implementations. We determine the types of cou-
pling we observe in base and SQUIRREL implementations.

Results. Figure 10 illustrates the results of our analysis. In
the applications we consider, using SQUIRREL removes sev-
eral types of coupling found in base implementations. We
maintain that this is due to the separation between data pro-
cessing and storage we enable in SQUIRREL. The storage
policies in our operators can be (re)used orthogonally to the
data processing involved, generally loosening the coupling.

In SQUIRREL implementations, External coupling appears
between different operators, in that programmer-provided fun-
ctionality that operate on the same data items must agree on
their internal format. Items flowing through different ope-
rators represent a form of Message coupling, as they resem-
ble messages passed through an un-typed interface. In ad-
dition, SQUIRREL programs possibly show Control coupling
whenever a trigger passes parameters to drive the execution
of an operator, e.g., as in BumpInto between new_gos-
sip_neighbor() and Move, shown in Figure 4. Note
that, however, these types of coupling were already present
in the base implementations.

5.2 Complexity

Methodology. The number of lines of code (LOC), the num-
ber of variable declarations, and the number of functions are
generally considered as indications of a program’s complex-
ity. It is also observed that complexity is a function of the
number of states in which the program can find itself [35]. A
state here is any possible assignment of values to the program
variables. Thus, the number of states must be computed by
looking at the different combinations of values assumed by

Per-function states

Application L
O

C

Va
ri

ab
le

de
cl

ar
at

io
ns

Fu
nc

tio
ns

Average StdDev
Torre Aquila - base 4523 32 43 1312.31 1031.82
Torre Aquila - SQUIRREL -35% -66% -51% -61% -89%
BumpInto - base 3211 24 37 913.56 532.72
BumpInto - SQUIRREL -54% -66% -48% -41% -69%
Klimat - base 2341 43 54 1123.76 341.41
Klimat - SQUIRREL -42% -68% -37% -43% -42%

Figure 11: Code complexity in base and SQUIRREL im-
plementations.

variables during every possible execution.
To carry out this analysis, we use SATABS [37], a verifi-

cation tool for C programs. SATABS is designed for off-line
verification of C programs against user-provided assertions.
To do so, it searches through the relevant program executions
to check whether the assertion always holds. At the end of
the process, SATABS returns the number of different states
it explores in the program.

Using a specific configuration, it is possible to force SA-
TABS to explore all program executions. If the procedure
terminates, SATABS returns the total number of distinct states
of the program. We use SATABS on a per-function basis,
implementing empty stubs to replace code that we cannot
process with SATABS, e.g., hardware drivers.

Results. We illustrate the results of the analysis in Figure 11.
Using SQUIRREL enables significant reductions in all met-
rics. The reduction in LOC for BumpInto and Klimat is com-
parable to the fraction of code devoted to storage operations
illustrated in Figure 1. SQUIRREL spares most storage func-
tionality by transparently managing the corresponding oper-
ations. Because of the same reason, the number of variable
declarations and functions decreases as well. Essentially, in
SQUIRREL implementations these cater only to data process-
ing. Based on the number of per-function states, it also ap-
pears that the individual functions are simpler and more ho-
mogeneous. The latter aspect is observed as the standard
deviation in the number of per-function states decreases.

5.3 Generality
SQUIRREL’s applicability extends in storage-centric sce-

narios beyond the applications we consider. For instance,
SQUIRREL is generally amenable to disconnected applica-
tions that use replication and redistribution schemes [9, 7].
These are often composed of a trigger condition and some
storage functionality, which can be cleanly implemented us-
ing the Move operator, further highlighting its generality.

Another example deals with windowed operators. In our
applications, we use them for compression and summariza-
tion. Alternatively, they can be applied to reorder batches
of data based on application-specific priority policies [5]. To
do so, programmers implement the necessary policy enforce-
ment in the data processing functions, while the underlying
storage operations are still managed by SQUIRREL.

On the other hand, we believe that one of SQUIRREL’s

Functionality Data memory Program memory
Run-time core 452 bytes 6.9 Kbytes
Create operator 12 bytes 196 bytes
DataSlide operator 22 bytes 328 bytes
TimeSlide operator 28 bytes 532 bytes
Join operator 32 bytes 466 bytes
Move operator 48 bytes 1.1 Kbytes
Execute operator 20 bytes 598 bytes
Data item 4 bytes -
Operator connection 4 bytes -

Figure 12: SQUIRREL memory overhead.
limitations lies in the unidirectional flow of data. It is thus
difficult to implement functionality to process the same data
in multiple iterations [38]. One might connect an operator
to itself, creating a loop in the chain. It is unclear, however,
how the trigger should drive the execution of such operator.

SQUIRREL’s data stream model may also be ill-suited to
applications that require to perform complex searches into
structured data. A database model may be a better fit for this
task. There exist efficient database implementations running
on the external storage facilities of WSN nodes [32]. If re-
quired, these may be integrated into a SQUIRREL program
using an Execute operator.

6. RUN-TIME PERFORMANCE
We first investigate SQUIRREL memory and processing

overhead through micro benchmarks. Next, we study the
performance of our storage management scheme based on
real-world data. Finally, we discuss deployment experiments.

6.1 Micro Benchmarks

Memory overhead. Figure 12 summarizes the memory over-
head of different SQUIRREL functionality. All values are rea-
sonably limited. The only fixed cost is the run-time core.
This includes the Coffee filesystem we use to access the ex-
ternal storage, which accounts for about 5 Kbytes in pro-
gram memory alone. The Move operator requires linking
some network-level functionality that would not be used oth-
erwise. The 4 bytes required for every data item are used to
implement the LIST library described in Section 4.2.

In our implementation, non-used operators bear no effect
on memory consumption. Therefore, the total memory over-
head depends on the specific application. For instance, this
figure amounts to 8.1 Kbytes (program) and 514 bytes (data)
in Torre Aquila, 9.8 Kbytes (program) and 604 bytes (data)
in BumpInto, and 9.9 Kbytes (program) and 606 bytes (data)
in Klimat. Compared to the base implementations, in the
worst case the size of the program binary image is only about
1.5 Kbytes larger when using SQUIRREL, while the occupa-
tion in data memory is always comparable.

Processing overhead. The execution of the knapsack algo-
rithm is the main source of processing overhead. To quantify
this aspect, we use the MSPSim emulator [39]. For easier in-
terpretation, we use a synthetic setting where all data items
are of the same size. We assign weights to items in a way to
create a worst-case situation for sorting.

 0

 5

 10

 15

 20

 5 10 15 20

P
ro

c
e
s
s
in

g
 t
im

e
 (

m
s
)

Number of buffers

W = 2 Kbytes
W = 3 Kbytes
W = 4 Kbytes

Figure 13: Processing time of the knapsack algorithm.

Figure 13 depicts the trends at stake. As expected, the pro-
cessing time grows quadratically with the number of buffers.
The slight increase with the size W of main memory de-
voted to storage operations is because larger W s accommo-
date more items, and the processing for preferred items is
slightly more complex than for non-preferred ones. Nev-
ertheless, the absolute values in Figure 13 are limited, also
considered the size of the input data. We believe that the
number of buffers involved overestimates the needs of typ-
ical storage-centric applications. The applications in Sec-
tion 3, for instance, require at most 5 buffers.

6.2 Storage Management
We consider data collected in previous deployments of Tor-

re Aquila, BumpInto, and Klimat. Based on these, we re-
play the application execution while counting the operations
performed on external storage. This way, factors outside
the operator chain, e.g., the detection of nearby devices in
BumpInto, are the same in all cases.

We compare the performance of SQUIRREL against: i) the
base implementations, described in Section 2; ii) the greedy
allocation strategy described in Section 4.1, which we call
SQUIRREL-greedy; and iii) the theoretical lower bound in
the number of external storage operations. We use the Cooja
simulator and MSPSim [39] to run i), ii), and SQUIRREL. To
compute iii), we implement a Java program that explores all
possible executions in a “brute-force” manner.

We allocate W = 3 Kbytes for storage operations in main
memory, a value that avoids memory overflows in the im-
plementations we consider. In general, W should be set to
exploit all memory left by other functionality running on the
node. To understand the impact of this value, we also dis-
cuss results with W = 2 Kbytes. Similarly, we also study
the effect of the knapsack period by varying its setting when
precise apriori information would be unavailable to decide
on a specific value.

6.2.1 Torre Aquila

Setting. We consider five weeks of acceleration data sensed
at different nodes. During this time, the end users were
submitting week-long tasks with the sampling phase set to
30 secs and varying sampling frequency.

A single acceleration sample is 12 bits in size. The Cre-
ate operator in Figure 3 batches one second of acceleration
data in every data item, identically to the base implementa-
tion. We set windowSize in DataSlide to accommodate a
500 Hz sampling frequency for 1 min (the limit of the de-

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40

O
p
e
ra

ti
o
n
s
 o

n
 e

x
te

rn
a
l
s
to

ra
g
e

Day

Base
Squirrel-greedy

Squirrel
Lower bound

Figure 14: Torre Aquila: number of external storage op-
erations over time. (W = 3 Kbytes).
ployed system [4]). The knapsack period is set to the data
collection period, which is known. Thus, every iteration of
the sense-compress-report loop is considered separately.

Results. Figure 14 reports the number of operations on ex-
ternal storage throughout the data set, aggregated on a daily
basis. The trend is mainly driven by the sampling frequency
of the sensing task, which changes weekly and ultimately
determines the amount of data to store.

The chart shows that SQUIRREL improves on both base
and SQUIRREL-greedy. Throughout the data set, SQUIRREL
reduces the external storage operations by factor of 54.6%
(42.32%) w.r.t. the base (SQUIRREL-greedy) implementa-
tion. The gains over the former stem from using main mem-
ory as additional storage area. On the contrary, the use of
external storage is hard-wired in the base implementation.
Instead, the improvements w.r.t. the greedy scheme are due
to recognizing that the buffer in DataSlide is used most often.
Using main memory for it is thus more efficient.

The behavior of our storage allocation scheme approaches
the lower-bound but at the beginning of a new task, as the
small, weekly spikes in Figure 14 testify. Our solution needs
to observe at least one iteration of the new task to obtain in-
formation on the data volumes. During this iteration, SQUIR-
REL runs with the earlier configuration. This may be no
longer efficient, e.g., because of frequency-dependent changes
in the compression ratios. The off-line scheme anticipates
these changes. Nevertheless, after recognizing the new set-
ting, SQUIRREL approaches the lower-bound.

Using W = 2 Kbytes causes an average 52.32% (58.12%)
reduction in the improvements over the base (SQUIRREL-
greedy) implementation. Smaller W s limit the the use of
main memory as additional storage area. However, given the
advantages brought to application development and the lim-
ited memory/processing overhead imposed by SQUIRREL,
these improvements are still valuable.

6.2.2 BumpInto

Setting. We consider a ten day deployment of BumpInto at
our institution [20]. An average of 18 persons participated
to the experiment by carrying one TMote-like node in their
pockets between 9 AM and 6 PM, yielding a total of 178

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f
ru

n
s

% improvement in number of external storage operations

Squirrel-greedy
Squirrel

Lower bound

Figure 15: BumpInto: complementary CDF of % im-
provement in external storage operations over base im-
plementation, vs. percentage of runs. (W = 3 Kbytes).
runs. These persons belong to our research group, so they
have frequent encounters. We deployed a collection station
at the office of one of the participants.

An encounter record is 42 bytes in size. Initially, we set
the knapsack period to 30 min. Based on previous experi-
ments with BumpInto, we recognize that this is the average
duration of pair-wise interactions in our group.

Results. Compared to Torre Aquila, the application dynam-
ics in BumpInto are more irregular. They depend on random
factors such as the frequency and duration of contacts. There
is thus high variability in the data volumes across nodes.

Figure 15 depicts the complementary cumulative distribu-
tion function (CDF) representing the percentage improve-
ment in the number of external storage operations over the
base implementation, against the percentage of runs show-
ing such improvement. For instance, it shows that in 40% of
the runs SQUIRREL-greedy saves at least 60% of the external
storage operations performed by the base implementation.

The chart shows that SQUIRREL provides greater improve-
ments than SQUIRREL-greedy. SQUIRREL recognizes that
operations in TimeSlide and in the intermediate Move opera-
tor of Figure 4 are the most frequent. On the other hand, both
solutions save all external storage operations in about 25%
of the runs. This happens at nodes that are often nearby the
collection station. They have frequent upload opportunities,
even before the use of external storage becomes necessary.

Figure 15 also illustrates how SQUIRREL improvements
are always within 9% from the lower-bound. This gap is
caused by the unpredictability of the data volumes. Again,
the off-line scheme predicts changes in data volumes, and
adapt the allocation strategy before they happen. In contrast,
SQUIRREL needs to observe these changes to acquire the in-
formation necessary to determine a better allocation strategy.

Setting W = 2 Kbytes reduces the improvements over
the base (SQUIRREL-greedy) implementation by a factor of
54.11% (59.87%). Moreover, setting the knapsack period
to±25% of the initial value yields a worst-case performance
degradation of only 7.22% w.r.t. to both base and SQUIRREL-
greedy implementations. A reasoning as in the case of Torre
Aquila applies. Despite the reduced performance, the simpli-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25

O
p
e
ra

ti
o
n
s
 o

n
 e

x
te

rn
a
l
s
to

ra
g
e

Upload period (hours)

Base
Squirrel-greedy

Squirrel
Lower-bound

Figure 16: Klimat: number of external storage opera-
tions against upload period. (W = 3 Kbytes).

fication to the development activity and the limited process-
ing/memory overhead still make SQUIRREL a viable choice.

6.2.3 Klimat

Setting. We consider acceleration and light data taken dur-
ing a one-day pre-deployment experiment. Storage balanc-
ing and energy harvesting were not used in this installation.
Thus, we miss traces of data transfers between nodes, and we
cannot determine the period of uploads onshore. To remedy
this, we simulate the presence of 4 nodes on a buoy that pro-
cess different subsets of our data set, mimicking the target
deployment setting. These nodes are in the same communi-
cation range. We artificially vary the upload period to study
its impact on the performance.

The knapsack period is initially set to the average upload
period, for which some indications are expected to be avail-
able before deployment. As Klimat also uses a Huffman-
based compression scheme, we set the other parameters as
in Torre Aquila.

Results. Figure 16 illustrates that our storage management
scheme almost halves the number of operations on external
storage compared to the base implementation. The behavior
of the latter is constant because the use of external storage
is hardwired in the application code. Small variations are
observed in SQUIRREL because of data-dependent variations
in the compression ratios, which affect the data volumes.

SQUIRREL improves by an average factor of 35.67% over
SQUIRREL-greedy, whose behavior is roughly linear with in-
creasing upload periods. As uploads are less frequent, more
data accumulates at the end of the chain, where storage oper-
ations are less frequent. Being oblivious to such information,
SQUIRREL-greedy may use main memory for items that are
removed only when an upload occurs. This causes more fre-
quently used items to be allocated to external storage. This
situation becomes more frequent as uploads are more rare.

In this setting, SQUIRREL is within 18% from the lower
bound, on average. The gap is still due to the ability of the
off-line scheme to predict changes in the data volumes. In
Klimat, the effect of this is evident at system start-up, where
SQUIRREL uses the greedy strategy because of lack of infor-

-2

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

%
 e

n
c
o
u
n
te

rs
 v

s
.
b
a
s
e

% improvement in number of external storage operations

Figure 17: BumpInto: tracked encounters vs. improve-
ments in external storage operations. (W = 3 Kbytes).

mation. About 64% of the gap from the lower-bound is due
to decisions taken during the first upload iteration.

Using W = 2 Kbytes brings an average 47.65% (53.42%)
reduction of the gains over the base (SQUIRREL-greedy) im-
plementation. Moreover, setting the knapsack period to±25%
of the initial value corresponds to a worst case 5.46% per-
formance penalty w.r.t. to both base and SQUIRREL-greedy
implementations. This performance is still worthwhile, for
reasons already discussed for Torre Aquila and BumpInto.

6.3 Deployment Experiments
We complete the evaluation by assessing the effectiveness

of SQUIRREL in a prototype BumpInto deployment.

Setting. We consider a setting similar to that of BumpInto
in Section 6.2. This time, however, 9 persons participate to
the experiment, each carrying two WSN nodes. This allows
us to run the SQUIRREL implementation alongside the base
one. We use two non-overlapping radio channels, where we
experimentally verify the absence of external interference.

We collect a total of 54 runs and look at the number of
encounters tracked. In our setting, this figure is expected to
be about the same in the two implementations.

Results. Figure 17 shows a relation we found between the
improvements in number of external storage operations com-
pared to the base implementation, and the number of encoun-
ters tracked. After a 60% improvement, SQUIRREL increas-
ingly tracks more encounters than the base implementation.
This reaches a 10% improvement on nodes that do not use
external storage, for reasons explained in Section 6.2.

We conjecture that a possible cause for this behavior may
be a reduction in the contention on the SPI bus due to fewer
external storage operations. On TMote-like nodes, the bus is
shared between radio and external storage. To arbitrate the
bus, Coffee disables the radio interrupts when operating on
external storage. This may cause some packet losses if, for
instance, two packets are received in a short time while in-
terrupts are disabled. The later packet over-writes the earlier
one without the application knowing about it.

We can conclude that in this setting SQUIRREL not only
simplifies the programming activity, but may also provide
some improvements in the application performance.

7. RELATED WORK
The abstractions in SQUIRREL are influenced by data

stream systems [26]. Data streams have also been applied
to process sensor data [40] and to integrate WSNs in larger
infrastructures [41]. In SQUIRREL, we leverage this model
to decouple data processing from storage and to identify re-
usable storage policies.

Dataflow models for WSN programming have been pro-
posed previously [27, 28, 29, 30, 31]. In most cases, the ab-
stractions allow to process one data item at the time. This
may be ill-suited to storage-centric applications, which often
need to process data in batches. Eon [28] focuses on adapting
the application processing to energy availability. More gen-
erally, Pixie [27] provides a framework to adapt to changes
in the availability of resources, e.g., bandwidth and energy.
In WaveScope [29], Flask [30], and ATaG [31], the dataflow
model is essentially used to mask distribution. In contrast,
our focus is to decouple data processing from storage opera-
tions, and to abstract the latter.

Halfway between SQUIRREL and file system abstractions
we find solutions providing general-purpose abstractions to
access external storage, along with technology-specific im-
plementations [10, 32, 42]. Storage operations are explicit.
SQUIRREL abstractions, instead, are conceived to hide stor-
age operations. At system level, our focus is to avoid the use
of external storage, rather than designing an efficient way
to do it. Nevertheless, we may leverage these solutions as
back-end for our run-time layer, e.g., by implementing stor-
age operations on buffers using Capsule’s queue object [10].

As already mentioned, file system abstractions [12,13] are
currently the predominant choice to handle operations on ex-
ternal storage. This imposes a significant burden on the pro-
grammer’s shoulders. In SQUIRREL, we raise the level of
abstraction to a point where storage operations are no longer
visible, and use a file system as interface to external storage.

8. CONCLUSION
We presented SQUIRREL, a stream-oriented programming

framework for storage-centric WSNs. SQUIRREL alleviates
the programming burden by decoupling data processing from
storage, and by transparently handling the latter. At sys-
tem level, SQUIRREL exploits the size vs. energy trade-offs
of multiple storage areas, providing technology-independent
energy savings. We showed that SQUIRREL implementa-
tions are easier to understand, debug, and maintain. We also
demonstrated significant savings in the number of operations
on the more energy-consuming storage areas, at the price of
limited memory/processing overhead.

Acknowledgements. The author thanks Fredrick Österlind,
Kay Römer, and Thiemo Voigt for the feedback received on
early versions of the paper, as well as the shepherd, Matt
Welsh, for his advice in preparing the final version. This
work was financed by SSF, Swedish Foundation for Strate-
gic Research, and by VINNOVA, the Swedish Agency for
Innovation Systems. This work has been partially supported
by CONET, the Cooperating Objects Network of Excellence,
under EU-FP7 contract number FP7-2007-2-224053.

9. REFERENCES
[1] K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor

networks,” Computer, vol. 37, no. 8, 2004.
[2] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:

Experiences from a pilot sensor network deployment in precision
agriculture,” in Proc. of the 14th Int. Wrkshp. on Parallel and
Distributed Real-Time Systems (WPDRTS), 2006.

[3] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and yield in a volcano monitoring sensor network,” in Symp.
on Operating Systems Design and Implementation (OSDI), 2006.

[4] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna,
M. Corrà, M. Pozzi, D. Zonta, and P. Zanon, “Monitoring heritage
buildings with wireless sensor networks: The Torre Aquila
deployment,” in Proc. of the 8th Int. Conf. on Information Processing
in Sensor Networks (IPSN), 2009.

[5] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein, “Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with ZebraNet,” SIGPLAN
Not., vol. 37, no. 10, 2002.

[6] R. K. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic,
“SATIRE: a software architecture for smart AtTIRE,” in Proc. of the
4th Int. Conf. on Mobile Systems, Applications and Services
(MOBISYS), 2006.

[7] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, J. Stankovic, and
M. Ward, “Design, implementation, and evaluation of enviromic: A
storage-centric audio sensor network,” ACM Trans. Sen. Netw., vol. 5,
no. 3, 2009.

[8] L. Luo, C. Huand, T. Abdelzaher, and J. Stankovic, “EnviroStore: A
cooperative storage system for disconnected operation in sensor
networks,” in Proc. of the 26th Int. Conf. on Computer
Communications (INFOCOM), 2007.

[9] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. Abdelzaher,
“Solarstore: enhancing data reliability in solar-powered
storage-centric sensor networks,” in Proc. of the 7th Int. Conf. on
Mobile Systems, Applications, and Services (MOBISYS), 2009.

[10] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Capsule: An
energy-optimized object storage system for memory-constrained
sensor devices,” in Proc. of 4th Int. Conf. on Embedded Networked
Sensor Systems (SenSys), 2006.

[11] P. Dutta, D. Culler, and S. Shenker, “Procrastination might lead to a
longer and more useful life,” in Proc. of 6th Wrkshp. on Hot Topics
in Networks (HotNets-VI), 2007.

[12] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale
storage in sensor networks with the Coffee file system,” in Int. Conf.
on Information Processing in Sensor Networks (IPSN), 2009.

[13] H. Dai, M. Neufeld, and R. Han, “Elf: an efficient log-structured
flash file system for micro sensor nodes,” in Proc. of 2nd Int. Conf.
on Embedded networked sensor systems (SenSys), 2004.

[14] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Computing Surveys,
2010. To appear. Available at: www.sics.se/~luca/papers/
mottola10programming.pdf.

[15] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low
power data storage for sensor networks,” in Proc. of the 5th Int. Conf.
on Information Processing in Sensor Networks (IPSN), 2006.

[16] L. Gu and J. Stankovic, “T-Kernel: Providing reliable OS support to
wireless sensor networks,” in Proc. of the 4th Int. Conf. on
Embedded Networked Sensor Systems (SenSys), 2006.

[17] A. Lachenmann, P. J. Marrón, M. Gauger, D. Minder, O. Saukh, and
K. Rothermel, “Removing the memory limitations of sensor networks
with flash-based virtual memory,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 3, 2007.

[18] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[19] C. Sadler and M. Martonosi, “Data compression algorithms for
energy-constrained devices in delay tolerant networks,” in Proc. of the
Int. Conf. on Embedded Networked Sensor Systems (SenSys), 2006.

[20] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, and
N. Finne, “Implicit announcements: Re-thinking the use of broadcast
in mobile sensor networks,” tech. rep., SICS, 2009.

[21] A. M. Kermarrec and M. van Steen, “Gossiping in distributed
systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 5, 2007.

[22] R. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling a
three-tier architecture for sparse sensor networks,” in Proc. of the 1st

Int. Wrkshp. on Sensor Network Protocols and Applications, 2003.
[23] T. Voigt, F. Österlind, N. Finne, N. Tsiftes, Z. He, J. Eriksson,

A. Dunkels, U. Bamstedt, J. Schiller, and K. Hjort, “Sensor
networking in aquatic environments - experiences and new
challenges,” in Proc. of the 1st Int. Wrkshp. on Practical Issues in
Building Sensor Network Applications, 2007.

[24] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. of the 5th Int. Conf. on
Information Processing in Sensor Networks (IPSN), 2005.

[25] TinyOS Community Forum, “TinyOS TEP 128 - Platform
Independent Non-Volatile Storage Abstractions.” www.tinyos.
net/tinyos-2.x/doc/html/tep128.html.

[26] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proc. of the 21st Symp. on
Principles of Database Systems, 2002.

[27] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen, and M. Welsh,
“Resource aware programming in the Pixie OS,” in Proc. of the 6th

Int. Conf. on Embedded Network Sensor Systems (SenSys), 2008.
[28] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Corner, and

E. Berger, “Eon: A language and runtime system for perpetual
systems,” in Proc. of the 5th Int. Conf. on Embedded Networked
Sensor Systems (SenSys), 2007.

[29] R. Newton, G. Morrisett, and M. Welsh, “The Regiment
macroprogramming system,” in Proc. of the 6th Int. Conf. on
Information Processing in Sensor Networks (IPSN), 2007.

[30] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged functional
programming for sensor networks,” in Proc. of the 13th Int. Conf. on
Functional Programming, 2008.

[31] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The Abstract
Task Graph: A methodology for architecture-independent
programming of networked sensor systems,” in Workshop on
End-to-end Sense-and-respond Systems (EESR), 2005.

[32] S. Nath and A. Kansal, “FlashDB: Dynamic self-tuning database for
NAND flash,” in Proc. of the 7th Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2007.

[33] Libelium Inc., “WaspMote.” www.libelium.com.
[34] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and

flexible operating system for tiny networked sensors,” in Proc. of 1st

Wkshp. on Embedded Networked Sensors, 2004.
[35] R. Pressman, Software Engineering: A Practitioner’s Approach.

McGraw-Hill, 2001.
[36] W. Stevens, G. Myers, and L. Constantine, “Structured design,”

Classics in software engineering, 1979.
[37] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:

SAT-based predicate abstraction for ANSI-C,” in Algorithms for the
Construction and Analysis of Systems (TACAS), 2005.

[38] S. Nath, “Energy efficient sensor data logging with amnesic flash
storage,” in Proc. of the 8th Int. Conf. on Information Processing in
Sensor Networks (IPSN), 2009.

[39] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón, “COOJA/MSPSim: Interoperability
testing for wireless sensor networks,” in SIMUTools, 2009.

[40] J. Gama and M. Gaber, Data Stream Processing in Sensor Networks.
Springer, 2007.

[41] D. Abadi, W. Lindner, S. Madden, and J. Schuler, “An integration
framework for sensor networks and data stream management
systems,” in Proc. of the 30th VLDB Int. Conf., 2004.

[42] C. Sadler and M. Martonosi, “DALi: A communication-centric data
abstraction layer for energy-constrained devices in mobile sensor
networks,” in Proc. of the 5th Int. Conf. on Mobile Systems,
Applications, and Services (MOBISYS), 2007.

www.sics.se/~luca/papers/mottola10programming.pdf
www.sics.se/~luca/papers/mottola10programming.pdf
www.tinyos.net/tinyos-2.x/doc/html/tep128.html
www.tinyos.net/tinyos-2.x/doc/html/tep128.html
www.libelium.com

	Introduction
	Motivation
	Batch Data Collection
	Delay-tolerant Mobile Applications
	Disconnected Operations in Static Networks
	Analysis

	Programming with Squirrel
	Abstraction
	Language Constructs

	Run-Time Support
	Storage Management
	Implementation

	Investigating Squirrel Programming
	Coupling
	Complexity
	Generality

	Run-time Performance
	Micro Benchmarks
	Storage Management
	Torre Aquila
	BumpInto
	Klimat

	Deployment Experiments

	Related Work
	Conclusion
	References

