
1

MUSTER: Adaptive Energy-Aware Multi-Sink
Routing in Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco

Abstract— Wireless sensor networks (WSNs) are increasingly
proposed for applications characterized by many-to-many com-
munication, where multiple sources report their data to multiple
sinks. Unfortunately, mainstream WSN collection protocols are
generally designed to account for a single sink and, dually, WSN
multicast protocols optimize communication from a single source.

In this paper we present MUSTER, a routing protocol expressly
designed for many-to-many communication. First, we devise
an analytical model to compute, in a centralized manner, the
optimal solution to the problem of simultaneously routing from
multiple sources to multiple sinks. Next, we illustrate heuristics
approximating the optimal solution in a distributed setting, and
their implementation in MUSTER. To increase network lifetime,
MUSTER minimizes the number of nodes involved in many-to-
many routing and balances their forwarding load. We evaluate
MUSTER in emulation and in a real WSN testbed. Results indicate
that our protocol builds near-optimal routing paths, doubles
the WSN lifetime, and overall delivers to the user 2.5 times
the amount of raw data w.r.t. mainstream protocols. Moreover,
MUSTER is intrinsically amenable to in-network aggregation,
pushing the improvements up to a 180% increase in lifetime
and a 4-time increase in data yield.

Index Terms— Wireless sensor networks, multi-sink routing,
analytical model, distributed protocol, performance evaluation.

I. INTRODUCTION

Early deployments of wireless sensor networks (WSNs) fo-
cused on applications such as habitat monitoring [36], where
data is collected at a single sink node for later analysis. Several
works in WSN routing address similar many-to-one scenarios [4].
As WSNs are employed in more sophisticated settings, however,
applications exhibit different communication patterns.
Application scenarios. WSNs can be used to control multiple
actuators dispersed in the environment [3]. In these scenarios,
the application requires that data sensed from multiple sources is
delivered to multiple sinks. Consider for instance a decentralized
building automation system [16] providing functionality such as
heating, ventilation, and air conditioning (HVAC), along with fire
alert. The actuator nodes distributed in the environment include air
conditioning units, water sprinklers, and fire alarms. Sensor nodes
(e.g., for temperature and humidity) are also deployed to feed the
control loop. Often, these lie at the intersection of the operating
range of different actuators, and are thus required to report to
multiple destinations. For instance, the same temperature sensor
may report to multiple air conditioners.

Another example is the management of road tunnels. We are
part of the TRITon project [24], funded by the local government
in Trento (Italy), with the goal to perform adaptive control
of the tunnel lighting system. In conventional tunnels, light is

L. Mottola is with the Swedish Institute of Computer Science (SICS),
Stockholm, Sweden. E-mail: luca@sics.se. G.P. Picco is with the Depart-
ment of Information Engineering and Computer Science (DISI), University of
Trento, Italy. E-mail: gianpietro.picco@unitn.it.

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

(a) Two trees rooted at the two sinks
are built independently.

A-rooted multicast tree

B-rooted multicast tree

sink C sink D

source A source B

(b) Multicast trees for the scenario in
Figure 1(a).

Fig. 1. A sample multi-source to multi-sink scenario.

often regulated based on few parameters (e.g., date and time of
the day) and regardless of the actual environmental conditions.
This potentially causes a waste of energy and a safety hazard.
In TRITon, a WSN deployed in the tunnel is integrated with
light sensors and actuators, adapting light intensity based on the
lighting conditions in each tunnel sector. However, light changes
in a sector may affect neighboring sectors as well. To enable
accurate control, some sensors must report to multiple actuators.

The need for many-to-many communication arises also in sup-
port to in-network data processing. For instance, data mining can
be efficiently implemented in a distributed fashion by collecting
at every node readings from different subsets of sources [45].
Similar communication patterns also emerge when the WSN,
instructed by the programmer with dedicated constructs, reports
data to multiple aggregation points where some application-
specific processing is performed [5], [12]. Finally, many-to-many
communication is also germane to scenarios where the same WSN
serves multiple applications [30]. These typically run on different
sinks gathering data from possibly overlapping subsets of sources.

Problem. Existing WSN routing protocols are ill-suited to the
scenarios above, as they focus on a single sink or source. This
leads to inefficient communication, reducing the network lifetime.

Data collection protocols typically report data to a single sink.
The few cases considering multiple sinks address the problem
by duplicating the routing infrastructure, and consequently the
required resources. For instance, most protocols rely on a sink-
rooted routing tree [25], [28], [54], built by the sink by flooding
a message that establishes a reverse path from every node to
the sink. However, consider the scenario in Figure 1(a). Node A
reports data to both sinks C and D, whereas B only reports to C.
The mechanism above would build two independent trees rooted
at C and D. This may lead sources (e.g., A) to duplicate data
too early along different trees and may involve in routing more
nodes than needed, ultimately reducing the WSN lifetime.

Multicast protocols for WSNs, instead, aim at optimizing the
path from a single source to multiple sinks. When separate

2

multicast trees are used for many-to-many communication, they
are affected by problems similar to collection protocols, as shown
in Figure 1(b). Multicast protocols minimize a given metric
computed on a per-source basis, e.g., the number of links to reach
the target sinks. As sources are not aware of each other, this
approach cannot optimize the routing among intermediate nodes.
Moreover, aggregation mechanisms lose their effectiveness, pre-
cisely because readings from different sources (e.g., A and B)
can be combined only very late along their path to the sinks [27].
Solution. We overcome the drawbacks of independently-built
trees by reusing routing paths across multiple trees. This leads to
significant improvements when traffic flows simultaneously from
different sources to different sinks, as illustrated in Figure 2(a).
Unlike Figure 1(a), here the two parallel paths originating at A
are merged, and reused to serve the other source B. The paths are
split again as late as possible, when the message must inevitably
follow distinct routes to reach the two sinks. This scheme reduces
the number of nodes involved in routing—in this example, from
13 and 11 in Figure 1(a) and 1(b), to 9 in Figure 2(a). In general,
minimizing the number of nodes involved in routing enables:
• a decrease in the amount of redundant information flowing

in the network, as data is duplicated only if and when strictly
necessary, therefore increasing the system lifetime;

• reduced contention on the wireless medium and packet col-
lisions, therefore increasing the reliability of transmissions;

• an increase in the beneficial impact of aggregation, as
readings can be combined much earlier, further reducing the
net amount of data being funneled.

MUSTER. Minimizing the number of nodes involved in routing
is at the heart of MUSTER (MUlti-Source MUlti-Sink Trees for
Energy-efficient Routing), the protocol we present in this paper.
MUSTER starts with independently-built trees. As nearby nodes
simultaneously funnel traffic, it progressively changes the shape of
different trees in a fully decentralized fashion, based on knowl-
edge on paths in the 1-hop neighborhood. This information is
compactly encoded and piggybacked on every outgoing message,
allowing a node to learn about the availability of better routes and
possibly switch parent. Local changes made by a node typically
trigger a ripple effect that causes the nodes ahead on the same
route to change their parent as well. Nevertheless, in absence of
simultaneous traffic in nearby regions of the network, MUSTER
still behaves as standard collection protocols.

An undesirable side-effect of this strategy is uneven energy
consumption: the nodes along merged paths experience an in-
creased routing load. For instance, in Figure 2(a) the nodes on
the vertical “backbone” deplete their energy faster than the other
nodes, potentially disrupting the WSN operation. Therefore, in
MUSTER we complement the minimization of nodes involved
in routing with a scheme to balance the routing load. MUSTER
“juggles” routes whenever it finds alternative paths extending the
system lifetime. For instance, the routing topology of Figure 2(a)
may eventually morph into the one in Figure 2(b). The latter
configuration involves a different set of nodes, yet their number
is the same as in Figure 2(a). As energy is progressively consumed
in the configuration of Figure 2(b), MUSTER may decide to return
to the topology in Figure 2(a), which meanwhile has saved energy.
Contribution and road-map. In Section II, we formalize our
problem using integer linear programming, inspired by the multi-
commodity network design problem [55]. This technique assumes

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

E

merged path

(a) Two paths of the trees in Fig-
ure 1(a) are merged.

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

merged path

(b) The merged path “moves” on dif-
ferent nodes, to balance the load.

Fig. 2. A more efficient solution to the routing problem in Figure 1.

global topology knowledge and is therefore impractical for real
WSN deployments. However, it yields an optimal topology, useful
to compare decentralized solutions against. In Section III we
present our protocol. We illustrate the distributed heuristics opti-
mizing routing over multiple sink-rooted trees, as well as our load
balancing scheme. MUSTER is simple enough to be implemented
on resource-scarce WSN nodes, and provides programmers with
hooks for aggregation, as shown in Section IV.

We evaluate the performance of MUSTER using both time-
accurate emulation and a real-world testbed. The former, illus-
trated in Section V, shows that MUSTER enables up to twice
the lifetime w.r.t. independently-built trees and enables an overall
data yield 2.5 times greater. Moreover, MUSTER amplifies the
effectiveness of even a naı̈ve aggregation scheme, by enabling
a 180% lifetime increase and a data yield 4 times greater than
previous approaches. We also show that the routing topology
generated by MUSTER is very close to the one computed with
the model in Section II: the number of nodes involved is within
10% of the optimum. These results are confirmed, although on a
smaller scale, by experiments in a 40-node WSN deployment,
described in Section VI. These show that our load balancing
scheme is able to consider variations in the battery discharge
induced by temperature changes, an often-overlooked issue that
in practice may lead to significant performance degradation.

Finally, Section VII presents a brief survey of related efforts,
while Section VIII ends the paper with brief concluding remarks.

II. SYSTEM MODEL AND OPTIMAL SOLUTION

We formulate the many-to-many routing problem as an integer
linear program, later used to compute the optimal topology.
System model. We take inspiration from the multi-commodity
network design problem [55], a formulation already applied to
throughput and capacity problems in wireless networks [29], [33].
We consider a directed graph (e.g., representing a transportation
network) with node set N and arc set A, and a set of commodities
C (e.g., goods). The goal is to route each commodity k ∈ C from
a set of origins O(k) ⊆ N to a set of destinations D(k) ⊆ N by
minimizing a given metric.

We model a WSN as a directed graph where N is composed of
the WSN nodes, and A is obtained by setting an arc (i, j) between
nodes i and j when the latter is within communication range of
the former. Without loss of generality, we assume a commodity
to flow from a single origin to a single destination [55]. Since
commodities flowing from the same origin (source) to the same

3

C-rooted collection tree

D-rooted collection tree

sink C sink D

source A source B

merged path

Fig. 3. A routing topology where all transmissions are pair-wise.

destination (sink) follow the same route, we can state a one-to-
one mapping between the route connecting any source-sink pair
〈o(k), d(k)〉, and any commodity k.

We capture message routing with a set of decision variables:

rk
i,j =

1 if the route for the source-sink
pair k contains arc (i, j)

0 otherwise
(1)

A value assignment ∀(i, j) ∈ A to these variables represents the
route followed by messages from source o(k) to sink d(k).

Metric. The focus of the multi-commodity network design prob-
lem is usually on the number of arcs exploited, i.e., network
links in our case. This fails to capture the broadcast nature of
the wireless medium. For instance, compare Figure 2(a) and 3.
If the goal is to minimize the number of network links used by
routing, both solutions are optimal. However, the configuration in
Figure 2(a) is preferable in a WSN, since node E can forward
data to different receivers with a single broadcast transmission.

This observation leads to the intuition that efficient many-
to-many routing can be achieved by reducing the number of
nodes involved. Since each node along a route is responsible
for one transmission, minimizing the number of nodes involved
minimizes the total number of transmissions. Therefore, in our
model we take the number of nodes (instead of links) participating
in routing as the main metric. We capture the fact that node i is
involved in at least one source-sink route as

ui =

{
1 if ∃k ∈ C, j ∈ N | rk

i,j = 1
0 otherwise

(2)

and define our objective function as

NodesInvolved(C,A) =
∑

i∈N

ui (3)

MUSTER builds upon the relation between ui and rk
i,j defined in

Equation (2). To minimize NodesInvolved , we reuse nodes along
routes serving other source-sink pairs, that is, nodes for which
the cost ui is already paid. How to achieve this behavior in a
distributed setting is the subject of Section III.

Optimal Solution. Our objective is to identify the optimal set
of routes to deliver messages from sources to sinks. Formally,
we are to find the value assignment of rk

i,j , ∀k ∈ C, ∀(i, j) ∈ A
such that NodesInvolved(C,A) is minimum. The optimal solution
to this problem can be derived using mathematical programming
techniques by specifying proper constraints.

Variable Value

rCA
C,B 1

rCA
D,A 1

Remaining rCA
i,j 0

sink A

source C

B

D

(a) Node B and D do not obey constraint (4).

Variable Value

rCA
C,B 1

rCA
B,A 1

Remaining rCA
i,j 0

sink A

source C

B

D

(b) Constraint (4) holds for every node.

Fig. 4. Sample assignments for rk
i,j , and corresponding topologies. We label

CA the commodity k flowing from source C to sink A.

First, we require that rk
i,j and ui are integer, binary variables

and that the following relation holds among them:

∀(i, j) ∈ A, ∀k ∈ C, rk
i,j ≤ ui

The above forbids considering a node as used, unless it is
traversed by at least one source-sink path. This constraint is
satisfied by construction through Equation (1) and (2).

Second, we state that the assignment to rk
i,j must contain a

connected, end-to-end path for each source-sink pair k. This
constraint can be expressed by requiring every node different from
source o(k) and sink d(k) to “preserve” messages, i.e.:

∀i ∈ N , ∀k ∈ C,

∑
m:(i,m)∈A rk

i,m −
∑

n:(n,i)∈A rk
n,i =

1 if i = o(k)
−1 if i = d(k)
0 otherwise

(4)
The above imposes the existence of a multi-hop route from source
o(k) to its target sink d(k). Figure 4 illustrates the concept. The
solution in Figure 4(a) is not acceptable: the message originated
at C and directed to A is lost at B and somehow reappears
at D. Constraint (4) does not hold for B and D, its left-hand
side evaluates to −1 for i = B and to 1 for i = D, and neither
node is a source or sink. The constraint holds for the solution in
Figure 4(b), which represents a connected multi-hop route.

III. THE MUSTER PROTOCOL

The formulation we presented in Section II requires global
knowledge of the network topology, impractical in WSNs. In
contrast, MUSTER embodies distributed heuristics that minimize
the number of nodes involved in routing while balancing their
load, and rely only on information available within a node’s
1-hop neighborhood. The optimal solution serves as a baseline for
comparison against these heuristics, as illustrated in Section V.

A. Overview
MUSTER starts from independently-built trees connecting

sources to their sinks. Different subsets of sources may report to
different subsets of sinks. Trees are built using the flooding-and-
reverse-path scheme described in Section I, and are periodically
refreshed to account for node changes and link fluctuations.

The initial trees are mutated over time to optimize the routing
topology. A small control header is piggybacked on all messages,
received during the periodic tree refresh or overheard as data flows

4

R

T

Q

(a) Neighbor n1: high routing
quality and short lifetime.

R

T

Q

(b) Neighbor n2: medium rout-
ing quality and long lifetime.

Fig. 5. Interplay between routing quality and expected lifetime.

towards the sinks. Based on information in the header, each node
maintains, for every neighbor n and sink s, a value

Q(n, s) = R(n, s) · T (n) (5)

denoting the quality of n as a parent towards s. The routing quality
R(n, s), described in Section III-B, is concerned purely with the
optimization of source-sink paths. Instead, T (n), described in
Section III-C, is an estimate of the expected lifetime of n.

Therefore, Q(n, s) is a measure of how long a neighbor n can
provide a given routing quality towards a sink s. This metric
yields better configurations than routing quality R alone, as
illustrated in Figure 5. A decision based solely on R would
privilege neighbor n1 in Figure 5(a) over n2 in Figure 5(b).
However, the expected lifetime T of n1 is small. Routing through
n1 may deplete its battery in the near future, possibly disrupting
connectivity. Conversely, n2 has lower routing quality but longer
expected lifetime, and is therefore preferable.

The metric Q is used at each node to adapt the source-sink paths
by replacing the neighbor n serving as parent towards sink s with
the neighbor enjoying maximum quality Q. As the new parent
performs routing, its expected lifetime T (n) decreases, along with
Q(n, s), and the child node eventually finds another neighbor
n′ with higher Q for sink s. This scheme “juggles” routes of
comparable cost, distributing the routing load among available
nodes. Parent switching does not incur additional costs as it is
realized with a simple timeout and no extra control messages.

B. Routing Quality

In principle, the routing quality R(n, s) can be defined in terms
of various quantities. In this work, we consider the following ones:
• reliability(n, s), an indication of how reliable is the end-to-

end communication from neighbor n to sink s;
• paths(n), the number of source-sink paths passing through

a neighbor n, i.e., using the notation in Section II:

paths(n) =
∑

k∈C

rk
i,n (i, n) ∈ A

• sinks(n), the number of sinks n is currently sending data to.

source Z

A

B

C

4 overlapping paths
4 sinks served

2 overlapping paths
2 sinks served

4 overlapping paths
2 sinks served

current route

new route

sink S

Fig. 6. Source Z generates data for sink S. The current parent of Z towards
S is B. However, C is a better choice because it serves the highest number
of paths and sinks among Z’s neighbors.

no overlapping

2 overlapping paths

sink C sink D

source A source B

G

E F

(a) Initial configuration.

no overlapping

2 overlapping paths

sink C sink D

source A source B

G

E F

(b) E switches parent from G to F .
Fig. 7. A sample adaptation process.

Several techniques can be used to compute the reliability metric:
we discuss our implementation choices in Section IV. Figure 6
shows an intuition for the other two constituents of R(n, s), i.e.,
paths and sinks . Node Z has three neighbors A, B, and C. B
serves as parent in the tree rooted at sink S, but both A and C
are traversed by more source-sink paths than B. If either were
selected as Z’s new parent, path overlapping would increase.
However, C serves more sinks than A, and is thus more likely1

to be already reporting to S, possibly on behalf of some other
source. Therefore, choosing C may enable reuse of a path towards
S, further increasing path overlapping at no additional cost.

In this work, we define the routing quality R(n, s) as a linear
combination of the three aforementioned quantities:

R(n, s) = δ · reliability(n, s)+α1 · paths(n)+α2 · sinks(n) (6)

where δ, α1, α2 are tuning parameters. The shape of function R
and its constituents can in principle be different. Although the
results we obtained with this formulation are very positive, we
expect that peculiar characteristics of the deployment scenario
(e.g., highly fluctuating network topologies) may require adap-
tations to the expression in (6). Doing so is straightforward in
our implementation of MUSTER, described in Section IV, as the
definition of R is decoupled from the routing logic.

Figure 7 illustrates a sample adaptation process. We focus on
node E and sink C, and assume δ = α1 = α2 = 1 in (6).
Whenever E has data to send towards C, E evaluates R(n, C)
for its two neighbors F and G. The former is traversed by
2 paths and serves 2 sinks, while G is traversed by only 1 path
and serves 1 sink. Assuming both neighbors report the same
value r for the reliability metric towards sink C and the same
expected lifetime T , E would compute Q(G, C) = (r+2) ·T and
Q(F, C) = (r + 4) · T , thus identifying F as the best next-hop
towards C, as shown in Figure 7(b). This change has immediate
benefits: the topology in Figure 7(a) exploits 12 nodes, whereas
the one in Figure 7(b) only involves 10 nodes.

To break ties between the current parent and a new one, we
always select the latter as this will enjoy a higher value of
R: its value for paths will increase by one. We must however
avoid picking one of the current children, as this would create
a routing loop. This information can be easily derived from the
data messages received within a given time interval.

1As we know only the number of sinks served by n, we do not know if S
is among them. We could propagate the identifiers of sinks instead, but their
number yields good performance and generates much less overhead.

5

Iavg

Operating

Temperature

Battery

Voltage

BATTERY
DISCHARGE PROFILES

DISCHARGE PROFILE
GIVEN (T, R) ENERGY LEFT RESIDUAL LIFETIME

Fig. 8. Computing a node’s residual lifetime.

C. Estimating the Expected Lifetime

Estimating the expected lifetime of battery-operated WSN
nodes is a challenge per se, as it depends on diverse factors
such as network traffic and the non-linear behavior of commercial
batteries [40]. The latter is often overlooked and yet deeply affects
battery performance and therefore lifetime. The discharge profile
captures the relation between battery voltage and service hours
for varying operating temperatures and current draws. In alkaline
batteries, for instance, a drop in the operating temperature from
20oC to 0oC easily determines a 50% lifetime decrease [21].

To provide an accurate estimation of a node’s residual lifetime,
we rely on a lightweight energy model, described in Figure 8,
customized to the operation of MUSTER. Based on average cur-
rent draw Iavg and operating temperature, we select a discharge
profile among those available for the battery employed. Next, the
current battery voltage allows us to identify a point in the profile
indicating the energy left in the battery. Dividing this quantity by
Iavg yields an estimate of the node’s residual lifetime.

Discharge profiles are generally available from battery manu-
facturers. Synthetic models also exist based on the battery physi-
cal characteristics [44]. Voltage and temperature readings are usu-
ally available from on-board sensors. We can estimate the average
current draw Iavg by using external hardware devices [19], energy
accounting [34], or software-based power profilers [17]. Only a
few prototypes of the first exist, none commercially available.
Energy accounting requires platform-dependent instrumentation
of the entire code to monitor changes in the power level of
the MCU. Although this provides very precise measurements, its
applicability across different platforms is quite limited.

MUSTER does not require fine-grained lifetime estimation: the
relative information about whether a node can operate longer
than another is enough for the quality metric Q to distribute the
routing load evenly. Therefore, we opted for a software-based
power profiler based on the following assumptions:

1) radio communication occurs only through MUSTER;
2) MUSTER runs atop a CSMA-like MAC protocol providing

some form of low-power listening [41];
3) the current draw due to processing and sensing is roughly

the same on all the nodes.
Under these assumptions, Iavg can be computed by tracking send
and receive operations at the MAC layer, based on the quantities
in Figure 9. The energy drain of an operation is obtained by multi-
plying the corresponding current draw by the duration of the oper-

Symbol Description Source
Irx Current draw when receiving data (mA) Hardware
Itx Current draw when transmitting data (mA) Hardware
Iidle Current draw during low-power listening (mA) Hardware

b Radio bit-rate (bits/sec) Hardware
pucast , pbcast Size of unicast/broadcast messages (bits) MUSTER
tucast , tbcast Time for MAC-level handshake (e.g., strobing) in

unicast/broadcast transmission (ms)
MAC

Fig. 9. Information used to compute the average current draw.

TreeRefresh Router

Lifetime Estimator

Application/

Interceptor

Message Queue

Application/

Interceptor

Muster

Low-Power Listening Layer

Quality Metric

Fig. 10. MUSTER architecture.

ation. For instance, a sequence senducast , sendbcast , receiveucast
leads to an energy drain of:

E = Itx (tucast +
pucast

b
+ tbcast +

pbcast

b
) + Irx

pucast

b

In MUSTER, the average current draw is re-evaluated with a
period τ , Iavg (τ) = E

τ . Due to routing reconfigurations caused
by changes in physical connectivity, it may happen that the radio
activity in the i-th time interval τi changes from the preceding
interval τi−1. However, these behaviors are generally transient. To
smooth out short-term fluctuations, the N most recent Iavg (τi) are
fed as input to an exponential moving average (EMA), Iavg (τi):

Iavg (τi) = αIavg (τi−1) + (1− α)Iavg (τi−1) (7)

EMA is a reasonable trade-off between smoothing effectiveness
and reactivity to permanent changes. To account for the limited
memory on WSN nodes, we define α in terms of the N stored
measurements [11] as α = 2

N+1 . Equation (7) is used both to
select a specific battery discharge profile and to estimate the
residual node lifetime given the energy available.

We validated our technique by comparing current consumption
and lifetime against our estimates at a few sample nodes in the
real-world testbed described in Section VI. To measure the former,
we used an Agilent 34411A digital multimeter attached to the
nodes. Our estimate of current consumption was always within
5% of the value reported by the multimeter, and our lifetime
estimate showed a worst-case error of ±9% [43].

IV. IMPLEMENTATION

Figure 10 depicts the architecture of MUSTER, built atop
TinyOS 2.0 [48]. Source and sink functionality, as well as in-
network processing at intermediate nodes, interact with MUSTER
through the Collection interfaces [51], while network com-
munication relies on the Low-Power-Listening (LPL) layer [50].
Our implementation is compact. The state information we store
on a node amounts to 8 B for every neighbor, 4 B for every sink,
and 5 B for every source-sink path traversing the node. In the
configuration we use for the evaluation described later, MUSTER
occupies a total of about 2 KB of data memory and 8 KB of
program space. MUSTER is publicly available as open source [1].
Interfaces and Interceptors. The Collection interfaces are
designed for many-to-one communication. We modified them to
add the identifiers of target sinks as parameters of the send
command [51]. Intermediate nodes process in-transit packets with
the Intercept interface, which contains a single event:
event bool forward(message_t* msg,void* payload,uint8_t len);

MUSTER signals this event upon receiving a packet to be for-
warded. The higher layers may decide to forward immediately

6

by returning TRUE, or to perform some processing and send a
possibly different packet later. In-network processing schemes are
therefore easily integrated. We implemented two examples:
• A packing scheme to include multiple payloads in the same

packet. A packet received is not forwarded immediately: its
payload is inserted in a buffer associated to the neighbor
the packet is addressed to. When the buffer is full, or upon
expiration of a timeout, a new packet containing the entire
buffer content is created and sent.

• An aggregation operator to average sensor readings. Each
node keeps track of the sources funneling data through it, and
computes their time drift based on a timestamp embedded in
the payload. This allows each node to compute the average
of readings at different sources within the same epoch, which
is returned to MUSTER instead of the original reading.

TreeRefresh and Router. The TreeRefresh module coordi-
nates the periodic refresh of topology information. Each sink
periodically floods a “tree construction” message. Upon reception,
every node computes the end-to-end reliability metric. On IEEE
802.15.4 radios we rely on a metric similar to that in Multiho-
pLQI [49]. This is based on the Link Quality Indicator (LQI)
provided by radio chips such as the ChipCon CC2420, which
equips the widely-used TMote Sky [42] nodes. In absence of
LQI, we use the inverse of the hop-count to a sink, a metric po-
tentially inaccurate, yet used successfully in real deployments [6].
Since this functionality is decoupled from the rest of MUSTER,
alternative metrics (e.g., ETX [13]) can be easily integrated.

The Router module determines the parent (i.e., neighbor with
maximum Q) based on the data structure shown in Figure 11 for
a given neighbor. The value of neighborId serves as index. The
value of reliability is retrieved from the TreeRefresh module.
The values of paths , sinks , and lifetime are piggybacked on
incoming messages. The Router module also performs packet
transmissions. These occur in unicast if the packet is addressed
to a single parent, or in broadcast if it is addressed to multiple
next hops, e.g., when previously merged paths split. In the
latter case, the packet includes the list of neighbors that are to
process the message. A packet is retransmitted if the LPL layer
notifies that the receiver did not acknowledge the message. If the
maximum number of retransmissions is reached (e.g., because the
destination died) the Router module defaults to the neighbor
n′ with second maximum Q. This procedure repeats until all
candidate next hops are examined, and the message is dropped.
Lifetime Estimator. This module implements the model in
Section III-C by intercepting incoming/outgoing messages. It
also stores the required discharge profiles, based on the scenario
and batteries employed. We implemented a simple pre-processor
that converts Comma Separated Values (CSV) files—the data
format normally used by battery manufacturers—into static look-
up tables of constant values. This allows most C compilers to store

Field Name Description
neighborId The identifier of the neighbor relative to this entry.
reliability An associative array containing, for each sink in the system, the

corresponding reliability metric when using neighborId as parent.
paths The number of different source-sink paths currently passing through

neighborId.
sinks The number of sinks served through neighborId, possibly along a

multi-hop path.
lifetime The expected lifetime of neighborId.

Fig. 11. Information to compute the quality metric Q(n, s) for a neighbor.

these data structures in the code memory instead of data memory,
the latter being generally more precious on WSN nodes.

V. SIMULATION EXPERIMENTS

We evaluate the performance of the MUSTER implementation
described in Section IV using Avrora [52]. The latter allows for
fine-grained emulation of the popular MICA2 platform [14], and
includes a detailed model to evaluate its energy consumption.

Our evaluation is divided in three parts. In Section V-A, we
assess whether the behavior of MUSTER matches our design
criteria, using a synthetic scenario. In Section V-B we evaluate
the performance of MUSTER against a base protocol that only
optimizes the reliability metric on a per-sink basis, and is there-
fore representative of protocols that build independent trees [25],
[28], [54]. We also examine MUSTER’s performance compared
to the optimal routing topology we identified in Section II. In
these scenarios, all protocols we test employ the multiple-payload
packing scheme described in Section IV. We investigate the
impact of aggregation in Section V-C by running all protocols
with the average operator, also described in Section IV.
General settings. Nodes are initially provided with an energy
budget equivalent to a pair of commercial AA batteries. As it is
not possible to emulate LQI readings in Avrora, in both MUSTER
and the base protocol we consider the inverse of the hop-count to
a sink as reliability metric. We configure Avrora to use two-ray
ground propagation to model wireless transmissions.

We configure LPL with a wake-up period of 1 s. We use a
32-bit integer value to represent a single sensor reading, and use
the maximum message size: considering protocol and application
control overhead, at most 10 readings fit in a message. The
time interval separating two messages from the same source (the
epoch) is set to 60 s. In both protocols, tree refresh is triggered
every 5 min, and the transmission of data packets is retried at most
5 times. As for the packing scheme, we set to 5 s the timeout
after which a (possibly partially-filled) message is sent out.

We set α1 = α2 = 1 and δ = 2 in Equation (5). The combined
contribution of paths and sinks is the most effective in reducing
the number of nodes involved in routing. Moreover, the reliability
metric is key to ensuring message delivery, and is thus given
higher relative importance. Nevertheless, we also analyze the
influence of different combinations of parameter values.

All experiments are repeated 50 times, and the results averaged.

A. Analyzing the Protocol Behavior
To carry out a fine-grained analysis of MUSTER’s behavior,

we run experiments by tracing over time the remaining energy at
every node, and use a custom-built visualization tool to generate
“energy maps” representing the system evolution over time. We
define five classes of nodes based on their remaining energy, as
shown in Figure 12. To better interpret the results, we use a
synthetic scenario with only two sources and two sinks, placed at
the opposite corners of a grid topology where non-border nodes
can communicate with four neighbors. Because of this peculiar
setting, the results obtained are not representative of MUSTER’s
performance, which is analyzed further in Section V-B and V-C.
Results. Figure 13 depicts different snapshots of the WSN run-
ning the base protocol. Two source-sink paths cross in the center
of the grid. Nodes in that area are exploited for routing towards
two sinks, and deplete their energy faster than others. The nodes

7

closest to the two sinks are similarly exploited, as they lie where
two paths leading to the same sink converge. Consequently, nodes
eventually start failing in the middle of the grid and around the
two sinks, until one sink is completely disconnected, as shown in
Figure 13(c). Although the pictures show the case with 225 nodes,
we observed the same behavior with different system scales.

Figure 14 illustrates the behavior of MUSTER’s path merging.
Load balancing is disabled by setting T (n) = 1 in Equation (5).
It is evident how the overlapping of source-sink paths leads to
the formation of a “backbone” in the middle of the network.
Nodes along these merged paths consume energy faster by serving
multiple source-sink pairs. The generation of the backbone, how-
ever, improves the overall performance by delaying the moment
when a sink is disconnected from the network, from 13109
epochs in Figure 13(c) to 15994 in Figure 14(c). The cause for
disconnection is the same as with the base protocol: the nodes
around the sink are the most stressed when a routing tree is

100%-75% energy left

75%-50% energy left

50%-25% energy left

25%-0% energy left

X dead node

Fig. 12. Color codes for nodes in Figure 13-15, denoting remaining energy.

s
o
u
r
c
e

s
o
u
r
c
e

s
in
k

s
in
k

(a) After 5000 epochs.

X

X

X

X

X

(b) After 12500 epochs.

X

X X

X X X X

X

X

X

X X

X X

X

(c) Epoch 13109: one
sink is disconnected.

Fig. 13. Energy consumption with the base protocol (225 nodes).

(a) After 5000 epochs.

X

X

(b) Epoch 13109: sys-
tem still running.

X

X

X X

X

X X X X X

X X X

X

X

X X

X

X

(c) Epoch 15994: one
sink is disconnected.

Fig. 14. Energy consumption using MUSTER without load balancing.

(a) After 5000 epochs. (b) Epoch 13109: no dead node.

(c) Epoch 15994: no dead node.

X X X

X X

(d) Epoch 17002: both sinks are
disconnected.

Fig. 15. Energy consumption using MUSTER with load balancing.

used [54]. However, we verify that MUSTER causes some amount
of path merging to occur also among nodes near the sinks, when
paths come close enough. This reduces the number of packets
these nodes must send, increasing their lifetime.

Figure 15 depicts the dynamics of our complete protocol,
taking into account both routing quality and expected lifetime. A
comparison of these snapshots against Figure 13 and 14 provides
an immediate, visual indication of the effectiveness of our load
balancing scheme. Indeed, the “backbone” effect is much less
evident. Moreover, the number of nodes consuming at least 25%
or 50% of their available energy increases over time, while
in the previous cases there are nodes left with 100% of their
energy. These phenomena are due to the ability of MUSTER
to distribute the routing effort evenly. Specifically, Figure 15(a)
shows that after 5000 epochs no node is yet under 25% of
remaining energy. After 13109 epochs all nodes are still alive, as
shown in Figure 15(b), whereas at the same epoch in Figure 13(c)
the base protocol already caused a sink to disconnect. Similar
considerations holds for Figure 15(c) and Figure 14(c). In the
latter, MUSTER without load balancing experiences a network
partition. Instead, at the same epoch all sinks are still connected
when using the full protocol. The latter eventually experiences
a partition due to some nodes dying around one of the sink,
as shown in Figure 15(d). However, this happens far later in
time, as our solution is able to merge the paths around the sinks
and alternate among these critical nodes. At the time of the first
partition almost all nodes spent at least 50% of their energy.

B. Performance Characterization

We compare the performance of MUSTER against the base
protocol and against multiple optimal sink- and source-rooted
trees. These are computed, using traditional graph algorithms,
by minimizing the number of links exploited to connect a sink
(source) to its sources (sinks). Moreover, we compare MUSTER
against the optimal solution, computed by using GLPK [2] to
solve the integer linear program we specified in Section II.

The performance of routing protocols is generally affected by
topology, especially when peculiar configurations (e.g., “lines” of
nodes connecting two partitions or “holes” without nodes) are
present. However, it is impractical to cover all possible cases.
Therefore, we use randomly-generated topologies with a pre-
specified average number of neighbors per node, as a compro-
mise between generality and control over the topology. In each
scenario, 10% of the nodes are sources. We vary the number of
sinks and nodes to study how MUSTER handles different numbers
of source-sink paths. The location of sources and sinks is decided
randomly, but a node cannot simultaneously operate as source and
sink. These settings are inspired by real deployments [6], [7], [36],
[38]. As performance metrics, we measure:
• the system lifetime, defined as the moment when the last

source-sink path becomes interrupted and the experiment
ends, which coincides with the point in time when the WSN
becomes unusable [31];

• the ratio of readings delivered to the sinks over those sent, to
investigate the amount of data that users successfully receive;

• the end-to-end latency, i.e., the time taken by a sensor
reading to reach the target sink.

The first two metrics are commonly used to evaluate WSN routing
protocols [4]. Both directly affect the data yield, that is, the

8

 50

 60

 70

 80

 90

 100

 110

 120

 130

 100 150 200 250 300 350 400

L
ife

tim
e
 in

cr
e
a

se
 (

%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 50

 60

 70

 80

 90

 100

 110

 120

 130

 2 4 6 8 10

L
ife

tim
e

 in
cr

e
a

se
 (

%
)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Lifetime increase vs. number of sinks (300 nodes, 4 neighbors).

 60

 70

 80

 90

 100

 110

 2 3 4 5 6 7 8

L
ife

tim
e
 in

cr
e
a
se

 (
%

)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Lifetime increase vs. average number of neighbors (300 nodes, 8 sinks).
Fig. 16. Lifetime increase enabled by MUSTER.

amount of data gathered by the WSN during its operation—the
metric domain experts are ultimately interested in. To obtain a
better understanding of MUSTER’s operation, we also measure:
• the number of active source-sink paths over time, to un-

derstand how the system performance degrades when nodes
start failing because of energy depletion;

• the number of nodes exploited, i.e., the metric we aim to
minimize to obtain more efficient source-sink routes;

• a node’s remaining energy at the end of the experiment, to
study the effectiveness of the load balancing scheme;

• the average length of source-sink paths, in number of hops,
to separate out the latency caused by longer routes from the
one due to the packing scheme;

• the ratio of packets delivered to the sinks, to evaluate directly
the impact of our techniques at the network level.

Results. MUSTER improves drastically the system lifetime com-
pared to the base protocol, as illustrated in Figure 16. Specif-
ically, Figure 16(a) depicts the additional lifetime allowed by
MUSTER against the system scale. The path merging mechanism
alone increases lifetime from about 50% to 80%, with larger
improvements as the system scale increases. In combination

with load balancing, MUSTER allows for more than twice the
lifetime provided by the base protocol. Load balancing bears
a greater impact as the system scale increases. Indeed, more
nodes correspond to more resources available, providing our load
balancing scheme with a higher total energy budget to exploit.

Similar trends can be observed in Figure 16(b), where we
analyze the lifetime increase enabled by MUSTER by varying the
number of sinks. Comparing this chart with Figure 16(a) shows
how performance is ultimately dictated by the number of source-
sink paths, rather than by the number of sources or sinks alone.
For instance, the additional lifetime in Figure 16(b) with 2 sinks
and 300 nodes (i.e., 60 source-sink paths) is close to the one in
Figure 16(a) for 100 nodes and 8 sinks (i.e., 80 source-sink paths).
The similar performance obtained in different settings indirectly
confirms that the improvements are due to MUSTER’s ability to
overlap different source-sink paths, regardless of the combination
of sources and sinks that form them.

Figure 16(c) analyzes the impact of network density on system
lifetime. In this case, the contribution of path merging increases

 30

 35

 40

 45

 50

 55

 60

 65

 70

 100 150 200 250 300 350 400

P
e

r-
e
p

o
ch

 p
a
ck

e
t
o

ve
rh

e
a
d

 r
e
d
u
ct

io
n
 (

%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Per-epoch packet overhead reduction vs. number of
nodes (8 sinks, 4 neighbors).

 30

 40

 50

 60

 70

 80

 2 4 6 8 10

P
e
r-

e
p

o
ch

 p
a
ck

e
t
o

ve
rh

e
a
d

 r
e
d
u
ct

io
n
 (

%
)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Per-epoch packet overhead reduction vs. number of
sinks (300 nodes, 4 neighbors).

 35

 40

 45

 50

 55

 60

 65

 70

 2 3 4 5 6 7 8

P
e

r-
e
p
o
ch

 p
a
ck

e
t
o

ve
rh

e
a
d

 r
e

d
u
ct

io
n

 (
%

)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Per-epoch packet overhead reduction vs. average num-
ber of neighbors (300 nodes, 8 sinks).

Fig. 17. Per-epoch packet overhead reduction.

9

 0

 20

 40

 60

 80

 100

 17475 17500 17525 17550 17575 17600N
u
m

b
e
r

o
f
so

u
rc

e
-s

in
k

p
a
th

s

Epochs

(a) Base.

 0

 20

 40

 60

 80

 100

 28400 28425 28450 28475 28500 28525N
u
m

b
e
r

o
f
so

u
rc

e
-s

in
k

p
a
th

s

Epochs

(b) Path merging only.

 0

 20

 40

 60

 80

 100

 31800 31825 31850 31875 31900 31925N
u
m

b
e
r

o
f
so

u
rc

e
-s

in
k

p
a
th

s

Epochs

(c) Path merging and load balancing.
Fig. 18. Number of active source-sink paths over time (100 nodes, 8 sinks).

with network density, while the dispersion of the measures we
obtained around the average value decreases. More neighbors
indeed correspond to more choices when selecting a parent. By
inspecting our simulation logs, we verify that as network density
increases, the path merging mechanism alone is sufficient to have
near optimal routes during the early part of the system lifetime.
The load balancing scheme, instead, begins influencing route
selection when the energy left on the nodes is below 50%.

The increased lifetime is enabled mainly by improvements in
transmission efficiency. Throughout all experiments, MUSTER’s
reduced contention on the wireless medium yields, on average,
about 50% less packet retransmissions w.r.t. the base protocol.
Figure 17 shows the reduction in the packet overhead (i.e.,
overall decrease in number of transmissions at the physical layer),
computed on a per-epoch basis. The trends mirror those in
Figure 16, demonstrating that the performance gains enabled by
MUSTER come from reduced transmission costs. As observed
earlier, these are more marked as the number of source-sink paths
increases or more neighbors are available when selecting a parent.
In these charts, the effect of load balancing is instead negligible,
given that they show the performance within a single epoch.

To investigate how the system behaves during the additional
running time allowed by MUSTER, Figure 18 shows the number
of active source-sink paths over time close to the end of the
experiment. Regardless of the solution employed and the system
scale, this metric always decreases abruptly, as soon as the death
of some node around a sink prevents communication towards the
rest of the system. However, our scheme pushes much farther the
moment in time when this occurs, as can be noted by comparing
the values on the x-axis across the three charts in Figure 18.
Therefore, during the extra time allowed by MUSTER w.r.t. the
base protocol, the WSN effectively operates to its full capabilities.

In all experiments, MUSTER delivers to the sinks roughly the
same number of packets as the base protocol. However, these
packets carry more application data, as multiple readings from
merged paths are packed in the same physical packet. In each
epoch, the ratio of readings delivered to the sinks increases of
about 20% w.r.t. the base solution, mostly irrespective of load
balancing. This, combined with the increased lifetime, determines
a significant increase in the overall data yield, which in MUSTER
becomes about 2.5 times the one of the base protocol.

The results above are enabled by the combination of path
merging and load balancing. To study the effectiveness of the
former, we measure the average number of nodes involved in
routing using MUSTER without load balancing, compared to
multiple sink- and source-rooted minimum trees, as well as the
optimal solution based on the model in Section II. Except for
those concerning MUSTER, all results are obtained in a centralized
manner and with global knowledge of the system topology.

As Figure 19 illustrates, in the network configurations we ex-
perimented with, MUSTER is always within 10% of the theoretical

minimum number of nodes to connect sources to sinks, yet our
protocol does not require any a priori knowledge of the system
topology. These results hold both against a variable number of
nodes in the system (Figure 19(a)), and w.r.t. varying network
density (Figure 19(b)). In the latter, the gap from the theoretical
minimum reduces as the network becomes more connected be-
cause, as already observed, MUSTER enjoys more options when
selecting parents, and thus has more chances to approximate
the theoretical optimum. The same charts also demonstrate that
MUSTER reduces the nodes involved in routing compared to
multiple sink- and source-rooted minimum trees. In the latter
cases, the routing topology is naturally biased towards the sinks

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 150 200 250 300 350 400

N
o
d
e
s

in
vo

lv
e
d

Nodes

Multiple sink-rooted minimum trees
Multiple source-rooted minimum trees

Path merging
Theoretical optimum

(a) Nodes involved vs. system size (4 sinks, 4 neighbors).

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8

N
o

d
e
s

in
vo

lv
e

d

Average number of neighbors

Multiple sink-rooted minimum trees
Multiple source-rooted minimum trees

Path merging
Theoretical optimum

(b) Nodes involved vs. average number of neighbors (300 nodes, 4 sinks).
Fig. 19. Nodes involved in routing.

 0

 10

 20

 30

 40

 50

 100 150 200 250 300 350 400

P
e
r

n
o
d
e
 r

e
m

a
in

in
g
 e

n
e
rg

y
(J

o
u
le

s)

Nodes

Base (avg)
Base (stdDev)

Path merging only (avg)
Path merging only (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

Fig. 20. Per-node remaining energy at the end of the experiment.

10

(sources) and parallel paths are not necessarily factored out.
To assess the contribution of our load balancing scheme,

Figure 20 illustrates the energy remaining at each node at the end
of an experiment, against the system scale. Using path merging
alone, this quantity is almost the same as in the base protocol.
In contrast, with load balancing this figure becomes much lower,
and the variance of the results also decreases. This confirms that
the contribution to system lifetime brought by this mechanism
comes from spreading the routing load evenly, so that more nodes
eventually participate in routing.

Figure 21 shows that MUSTER has higher delivery latency w.r.t.
the base protocol, as expected. The absolute values at stake are,
however, within the tolerance of popular WSN applications. For
instance, in environmental monitoring [6] the time constants of the
monitored phenomena are usually in the order of tens of minutes.
As an example of stricter requirements in closed-loop control,
in the adaptive tunnel lighting we are developing, mentioned in
Section I, the reporting period for light samples is between 30 s
and 5 min. Therefore, reporting sensed data within tens of seconds
is still acceptable. Nevertheless, applications requiring real-time
delivery should leverage different techniques [57].

To further investigate latency, we run experiments by disabling
the packet merging scheme in MUSTER only. The results, also
shown in Figure 21, reveal that MUSTER without packet merging
performs almost like the base protocol, which is instead running
with packet merging. In the latter protocol, packet merging has
limited impact because paths rarely overlap, and thus almost never
split towards different sinks. Therefore, a packet is frequently
filled up close to the source: packet merging rarely intervenes—
there is no room to pack more data—and the packet is always
immediately forwarded, travelling unaltered up to the sink.

On the other hand, MUSTER boosts the effect of the packet
merging scheme. The overlapping paths eventually split towards
different sinks. In this case, the packet is also split, with parts of

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400

L
a

te
n

cy
 (

se
cs

)

Nodes

Base (avg)
Base (stdDev)

Muster (avg)
Muster (stdDev)

Muster - no packet merging (avg)
Muster - no packet merging (stdDev)

(a) Latency against system size (4 sinks, 4 neighbors).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

L
a
te

n
cy

 (
se

cs
)

Average number of neighbors

Base (avg)
Base (stdDev)

Muster (avg)
Muster (stdDev)

Muster - no packet merging (avg)
Muster - no packet merging (stdDev)

(b) Latency against average number of neighbors (300 nodes, 4 sinks).
Fig. 21. Average end-to-end latency.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
p
a
re

n
t
ch

a
n
g
e
s

Epochs

100 Nodes
200 Nodes
300 Nodes
400 Nodes

Fig. 22. Convergence time at system start-up (8 sinks, 4 neighbors).

the payload forwarded in different directions. There is now room
to pack more data in the resulting packets, and so the nodes wait
for more data before forwarding further. This causes the increase
in latency for MUSTER: the price we pay for increased lifetime
and reliability. Nevertheless, programmers can trade latency for
lifetime or reliability by modifying the packing scheme or setting
a smaller timeout.

To gain a deeper insight into MUSTER’s operation, we analyze
the time required to converge to a stable configuration at system
start-up. Based on a sample execution, Figure 22 depicts the
average number of parent changes at all nodes against the epoch
number. In the largest configuration we tested, it takes at most
12 epochs to stabilize the routes. This is essentially because
our EMA-based lifetime estimator needs to accumulate enough
samples before stabilizing, causing changes that ultimately affect
the entire network. After this initial phase, however, routes tend
to remain stable until energy begins to drop significantly at some
nodes and the load balancing scheme intervenes.

As the operation of MUSTER can be controlled by the param-
eters δ, α1, α2 defined in Section III-B, we analyze their impact
on performance. The trends in Figure 23(a) demonstrate that α1

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 100 150 200 250 300 350 400

L
ife

tim
e
 in

cr
e
a

se
 (

%
)

Nodes

α1=1, α2=1, δ=2
α1=0.5, α2=0.5, δ=2

α1=2, α2=2, δ=2
α1=2, α2=1, δ=2
α1=1, α2=2, δ=2

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 0

 20

 40

 60

 80

 100

 120

 140

 160

(1,1,2) (0.5,0.5,2) (2,2,2) (2,1,2) (1,2,2)

D
a
ta

 y
ie

ld
 in

cr
e

a
se

 (
%

)

Parameter setting (α1, α2, δ)

(b) Data yield increase vs. parameter setting (300 nodes, 8 sinks, 4
neighbors).

Fig. 23. MUSTER performance with varying parameters.

11

and α2 are key to increase lifetime. The less weight they have,
the more routes degenerate in multiple non-overlapping trees,
approaching the base protocol. On the other hand, increasing their
importance w.r.t. δ beyond a certain threshold does not enable fur-
ther improvements. Reliability also suffers in these configurations,
as shown in Figure 23(b). By inspecting the simulations logs we
verified that when δ has less influence routes tend to stretch too
much w.r.t. the shortest path, and the probability to lose a packet
increases. These results confirm that the configuration we used
throughout the paper is the best trade-off among those tested.

In the experiments hitherto discussed, lifetime is determined by
the nodes around the sinks. An alternative is to make the network
denser around sinks, to compensate for the higher load [54]. To
investigate how MUSTER behaves in this scenario, we run a set
of experiments where node location is decided semi-randomly,
by partially controlling the density of nodes around a sink. We
divide the physical space in square sub-areas with a 200 m side.
In each sub-area A, we deploy a set of nodes N (A) such that:

|N (A)| =
∑

s∈S

K

distance(center(A), s)2
(8)

where S is the set of sinks used in the experiment,
distance(center(A), s) returns the physical distance between the
center of A and sink s, and K is a constant large enough to yield
a connected topology. Intuitively, (8) deploys more nodes around
the sinks, and decreases their density away from them.

This scenario amplifies the improvements of MUSTER w.r.t.
the base protocol, as shown by comparing Figure 24 against
Figure 16(a). The more regular topology yields a smaller variance
but the gains due to load balancing are larger, because MUSTER
can juggle among the many nodes around sinks and further delay
their disconnection. This occurs without protocol modifications,
as MUSTER automatically adapts to the given topology.

C. Impact of Aggregation
The path merging in MUSTER causes data from different

sources travel together as early as possible. This amplifies the
beneficial effect of aggregation, further reducing the amount of
data flowing in the network. To quantify this aspect, we re-run the
experiments discussed so far by employing the average operator
described in Section IV in both MUSTER and the base solution.
Results. The trends obtained using aggregation are essentially the
same as in Section V-B, as shown by comparing Figure 16 and 25.
The absolute values, however, change in favor of MUSTER. The
use of even a naı̈ve aggregation operator like ours boosts the
improvements of MUSTER over the base protocol up to 180%.

 60

 80

 100

 120

 140

 160

 100 150 200 250 300 350 400

L
ife

tim
e

 in
cr

e
a

se
 (

%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging (stdDev)

Fig. 24. Semi-random topology: lifetime increase vs. number of nodes
(8 sinks).

 80

 100

 120

 140

 160

 180

 200

 100 150 200 250 300 350 400

Li
fe

tim
e

in
cr

ea
se

 (%
)

Nodes

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(a) Lifetime increase vs. number of nodes (8 sinks, 4 neighbors).

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10

Li
fe

tim
e

in
cr

ea
se

 (%
)

Sinks

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(b) Lifetime increase vs. number of sinks (300 nodes, 4 neighbors).

 120

 130

 140

 150

 160

 170

 180

 190

 200

 2 3 4 5 6 7 8

L
ife

tim
e
 in

cr
e
a
se

 (
%

)

Average number of neighbors

Path merging (avg)
Path merging (stdDev)

Path merging and load balancing (avg)
Path merging and load balancing (stdDev)

(c) Lifetime increase vs. average number of neighbors (300 nodes, 8 sinks)

Fig. 25. Lifetime increase enabled by MUSTER when data aggregation is
used both in MUSTER and the base protocol.

Path merging is mostly responsible for this improvement, as the
relative contribution of load balancing in Figure 16 and 25 is
comparable. Moreover, packet delivery increases by 15% using
MUSTER, and the ratio of (aggregated) readings delivered to sinks
now improves of about 45% over the base solution. Again, this
is mainly due to path merging, which lets nodes aggregate data
closer to the sources w.r.t. the base solution. This corresponds to
less data being funneled through intermediate nodes, and hence
fewer contention on the wireless medium and reduced packet
collisions. As for data yield, MUSTER provides the final users
with 4 times the amount of raw data gathered by the base protocol.

As expected, the other metrics we examined in Section V-B are
not affected by aggregation. In particular, the average end-to-end
latency is comparable since—at least in the case of the average
operator—data generated by the same source in different epochs
contribute to different averages, and the latency we previously
observed was relative to a single data epoch.

12

12

1
2

3

4
5

6

9

11
10

17

19

18

20

13

14

8

7

15

16

Sink

Outdoor

32

21

22

23

24 25

26

29

31

3037

39

38

40

33

34

28

27

35

36

Fig. 26. Testbed deployment. (Dashed lines represent communication links
active for at least 80% of the duration of all experiments).

VI. REAL-WORLD EXPERIMENTS

The goal of this section is to confirm in a real setting the
results described in Section V, and to assess the effectiveness of
load balancing when using real battery discharge profiles in the
presence of temperature changes.

We use 40 TMote Sky nodes deployed in two adjacent office
floors, as shown in Figure 26, running the IEEE 802.15.4-specific
implementation described in Section IV. Some nodes are placed
outdoor, therefore directly subject to temperature changes. The
sinks, whose location is fixed, are hooked via USB to 4 GumStix
embedded PCs (www.gumstix.com) to enable remote control
and collection of the experiments’ results. The USB connection
also powers the sink nodes. All other nodes are powered using
a single Duracell CR2016 battery, for which we use discharge
profiles at 20oC, 25oC, 30oC, and 35oC [18]. These batteries have
about 4% of the capacity of two AA batteries, which allows us to
run multiple repetitions of the experiments in reasonable time2.
Ten nodes are randomly chosen as sources at the beginning of
every experiment. All other settings are as in Section V.

We compute a subset of the metrics in Section V-B. We verified
that a temperature drop may cause a node transient failure even
with leftover energy. The node may become available again if
the temperature raises. Therefore, we declare an experiment over
when the last source-sink path is interrupted for at least 30
consecutive epochs. To factor out fluctuations of wireless links
and compute the optimal routing topologies with the model in
Section II, we consider a link between two nodes when they are
listed in each other’s neighbor set for at least 80% of the exper-
iment duration. We cannot measure the exact end-to-end latency,
as this would require time-synchronizing the nodes, creating
further network traffic that may affect the experiments. Moreover,
considered the small capacity of the batteries employed, it is very
difficult to measure directly the energy left at the end of the
experiment—as we did in Figure 20—without sophisticated tools.
Therefore, we report instead the number of nodes still running at
the end of experiment, as an indirect measure of the energy left.

The results below are averages over 15 repetitions carried out

2A TMote Sky with LPL runs for up to 1 month on 2 standard AA batteries.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14
 0

 5

 10

 15

 20

 25

 30

 35

 40

L
ife

tim
e
 in

cr
e
a

se
 (

%
)

T
e
m

p
e
ra

tu
re

 (
C

)

Experiment id

Average outside temperature
MUSTER lifetime increase

Fig. 27. Lifetime and average outdoor temperature.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14N
o

d
e
s

a
liv

e
 a

t
th

e
 e

n
d
 o

f
th

e
 e

xp
e

ri
m

e
n

t

Experiment id

Base
MUSTER

Fig. 28. Nodes still running at the end of the experiments.

by running MUSTER first, and then the base protocol with the
same source nodes, for a total of about 35 days of experiments.
Results. Figure 27 illustrates the lifetime improvement enabled by
MUSTER in our testbed. The simulation results in Section V are
confirmed, although absolute values are smaller here because of
the fewer source-sink paths. The improvement is consistent across
all experiments, despite the different placement of the sources.
These results are again mainly due to the improved transmission
efficiency enabled by MUSTER that, throughout the experiments,
reduces the packet overhead of about 40% w.r.t. the base protocol.

Figure 27 also shows the average temperature sensed by out-
door nodes during each experiment. Interestingly, higher outdoor
temperatures correspond to higher improvements in MUSTER,
whereas we observe no clear correspondence between the base
protocol performance and outdoor temperature. Although the
batteries we used provide more service hours at higher tempera-
tures, the base protocol is oblivious to such behavior: outdoor
nodes may even be left unused. Instead, MUSTER’s leverages
this information through battery discharge profiles, balancing the
routing load and thus pushing farther in time the moment where
the network becomes permanently partitioned.

The reasoning above is confirmed in Figure 28, where we plot
the number of nodes still running when an experiment ends. With
the base protocol about 23% of the nodes, on average, are still
running when the WSN becomes partitioned. This ratio drops to
about 7% with MUSTER, confirming the effectiveness of its load
balancing. Furthermore, although we cannot precisely measure
the energy left, our logs show that the base protocol almost never
uses some of these nodes because, unlike MUSTER, it is unable to
recognize that exploiting them may extend the network lifetime.

Figure 29 evaluates MUSTER’s path merging in our testbed
experiments, showing the number of nodes it involves in routing
w.r.t. the theoretical minimum and multiple sink- and source-
rooted minimum trees, similarly to the analysis in Section V-B.
Because of the smaller scale of our testbed, the figures are fairly

13

close to each other. Nevertheless, MUSTER constantly exploits
fewer nodes than sink-(source-) rooted trees, confirming that, even
in a relatively small network, our path merging technique provides
significant benefits over a blind replication of routing trees.

VII. RELATED WORK

Routing in WSNs has been studied extensively [4]. In the
following, we survey the state of the art focusing on solutions
closest to our scenarios, goals, and approach.
Many-to-many communication. Yuen et al. [56] present a multi-
sink collection protocol where sources gather correlated data, and
adjust the sensing rate at different nodes to eliminate redundant
information. On the contrary, we do not make assumptions on the
nature of data at different sources. Yuen et al. also leverage integer
linear programming to design a distributed algorithm. They do not
report, however, the performance in terms of processing overhead
and memory consumption. Instead, we use the model described
in Section II for comparison against a distributed heuristics easily
implementable on WSN nodes, as described in Section IV.

Some solutions exist to route from multiple sources to mobile
sinks. In the TTDD protocol [35], nodes are organized in a two-
level hierarchy that determines a subset of nodes responsible to
track the sinks’ position. Kim et al. [32] use stationary nodes
as anchors to build routing trees on behalf of mobile sinks.
In-network aggregation may also be employed, e.g., using one
mobile sink to build a primary tree opportunistically shared with
other mobile sinks [26]. Although MUSTER was designed with
static sinks in mind, there are synergies worth exploring. For in-
stance, in principle, a variation of our path merging strategy could
be used to build energy-efficient trees at the anchor nodes [32].
Whether this is practical, however, depends on the sink mobility.
A treatment of this topic is outside of the scope of this paper.
Single-sink and single-source communication. A few works
rely on multiple sinks as cluster-heads, where however each
source reports to only one sink. Some models study the optimal
placement of sinks w.r.t. given metrics. Oyman and Ersoy [39]
target a pre-specified minimum lifetime. Vincze et al. [53] study
how to minimize the average source-sink distance. Das and
Dutta [15] define optimal policies to select, at each source, the
sink minimizing energy consumption. These scenarios differ from
ours in that we require sinks to simultaneously collect data from
possibly overlapping subsets of sources.

A wealth of work exists on single-sink scenarios. Existing
approaches mainly focus on metrics to build efficient routing
trees [25], [28], [54] and reliability mechanisms [47]. The former
require accurate link quality estimators, an issue orthogonal to
our approach. Although in Section IV we describe simple and

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14

N
o
d

e
s

in
vo

lv
e

d

Experiment id

Theoretical optimum
MUSTER

Multiple sink−rooted minimum trees
Multiple source−rooted minimum trees

Fig. 29. Nodes involved in routing.

efficient solutions, more sophisticated metrics may be embedded
in MUSTER. Similarly, further reliability mechanisms may be
integrated, increasing delivery but also overhead.

Intanagonwiwat et al. [27] present a protocol to build routing
trees exploiting in-network aggregation. They build a single
source-sink path first, then shared by other sources. The resulting
tree likely shows a “backbone” effect, which makes nodes ag-
gregate data earlier. Although this resembles our path merging
scheme, their solution is not directly applicable in multi-sink
scenarios and, unlike MUSTER, it does not provide load balancing.
Moreover, they study the performance of their protocol only
through simulations based on a IEEE 802.11 MAC layer, which
makes their results difficult to compare with ours.

As for one-to-many communication, Cao et al. [9] observe that
most existing WSN multicast protocols address specific settings.
Their uCast protocol targets scenarios where destinations are
physically co-located. Egorova and Murphy [20] rely on a rein-
forcement learning approach that requires the network topology to
be sufficiently stable for the protocol to converge. VLM2 [46] and
TinyADMR [10] focus on multicasting to a small set of mobile
targets. A number of solutions are also based on the geographical
position of nodes [22]. Common to all these approaches is the
optimization of routes at each source independently of the others,
whereas in MUSTER these collaborate by merging parallel paths
towards multiple sinks.

Solutions providing one-to-one communication in WSNs also
exist [8], [23], [37]. In these cases, the protocols optimize the
source-sink paths individually, typically by reducing the stretch
over the shortest path. In a sense, this represents the extreme
opposite to MUSTER. Indeed, our goal is to exploit the spatial
and temporal co-location of multiple source-sink paths to prolong
the system lifetime. Our load balancing scheme takes advantage
of the available resources in exchange for slightly longer paths.

VIII. CONCLUSION

We presented MUSTER, a protocol expressly conceived for
many-to-many communication in WSNs. We studied the problem
from an analytical standpoint, by devising a model inspired to the
multi-commodity network design problem, used to compute the
optimal routing topology in a centralized fashion. The distributed
path merging and load balancing techniques implemented in
MUSTER allow us to obtain routing paths whose cost is within
10% of the optimum, and evenly distribute the routing effort. By
combining these techniques, MUSTER enjoys 2.5 times the data
yield of mainstream protocols under the same settings. Moreover,
it amplifies the beneficial effects of in-network data aggregation,
yielding the user 4 times the amount of data delivered by other
protocols. MUSTER is publicly available as open source [1].

Acknowledgements. The authors wish to thank Roberto Cordone
and Marco Trubian for their suggestions on modeling the multiple
sources to multiple sinks routing problem, Pietro Ciciriello and
Flavio Pompermaier for their work on the implementation of
MUSTER, and Renato Lo Cigno for his comments on an early
draft of this paper. This work is partially supported by the Au-
tonomous Province of Trentino, Italy, under the TRITon project,
by the EU Cooperating Objects Network of Excellence (CONET),
by the Swedish Foundation for Strategic Research (SSF), and by
the Swedish Agency for Innovation Systems (VINNOVA).

14

REFERENCES

[1] http://d3s.disi.unitn.it/software/muster.
[2] www.gnu.org/software/glpk.
[3] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks:

Research challenges. Ad Hoc Networks Journal, 2(4), 2004.
[4] J.N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor

networks: A survey. IEEE Wireless Communications, 11(6), 2004.
[5] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The Abstract

Task Graph: A methodology for architecture-independent programming
of networked sensor systems. In Workshop on End-to-end Sense-and-
respond Systems (EESR), 2005.

[6] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange. Sensorscope: Out-of-the-box environmental monitoring. In
Proc. of the 7th Int. Conf. on Information Processing in Sensor Networks
(IPSN), 2008.

[7] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: sensor
networks in agricultural production. IEEE Pervasive Comp., 3(1), 2004.

[8] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. SIGCOMM
Comput. Commun. Rev., 36(4), 2006.

[9] Q. Cao, T. He, and T. Abdelzaher. uCast: Unified connectionless
multicast for energy efficient content distribution in sensor networks.
IEEE Trans. Parallel Distrib. Syst., 18(2), 2007.

[10] B. Chen, K. K. Muniswamy-Reddy, and M. Welsh. Ad-hoc multicast
routing on resource-limited sensor nodes. In Proc. of the 2nd Int. Wkshp.
on Multi-hop Ad-hoc Networks: From Theory to Reality, 2006.

[11] Y. Chou. Statistical Analysis. Holt International, 1975.
[12] P. Ciciriello, L. Mottola, and G.P. Picco. Building virtual sensors and

actuator over Logical Neighborhoods. In Proc. of the 1st ACM Int.
Wkshp. on Middleware for Sensor Networks (MidSens), 2006.

[13] D.S.J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. Wirel. Netw.,
11(4), 2005.

[14] Crossbow Tech. www.xbow.com.
[15] A. Das and D. Dutta. Data acquisition in multiple-sink sensor networks.

Mobile Computing and Communications Review, 9(3), 2005.
[16] A. Deshpande, C. Guestrin, and S. Madden. Resource-aware wireless

sensor-actuator networks. IEEE Data Engineering, 28(1), 2005.
[17] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based on-line

energy estimation for sensor nodes. In Proc. of the 4th Wrkshp. on
Embedded Networked Sensors (Emnets IV), June 2007.

[18] Duracell Technical OEM. www.duracell.com/oem/
productdata/default.asp.

[19] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy metering
for free: Augmenting switching regulators for real-time monitoring. In
Proc. of the 7th Int. Conf. on Information Processing in Sensor Networks
(IPSN), 2008.

[20] A. Egorova-Förster and A. L. Murphy. A feedback enhanced learning
approach for routing in wireless sensor networks. In Proc. of the 4th

Workshop on Mobile Ad-Hoc Networks (WMAN), 2007.
[21] Energizer Technical Information. http://data.energizer.com/

DataSheets.aspx.
[22] C.-H. Feng and W. Heinzelman. RBMulticast: Receiver based multicast

for wireless sensor networks. In Proc. of the Int. Conf. on Wireless
Communications and Networking (WCNC), 2009.

[23] R. Fonseca, S. Ratnasamy, J. Zhao, C. Tien Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon-Vector Routing: Scalable point-to-point routing in
wireless sensor networks. In Proc. of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI), 2005.

[24] Trentino Research & Innovation for Tunnel Monitoring. http://
triton.disi.unitn.it.

[25] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proc. of the 7th Int. Conf. on Embedded Networked
Sensor Systems (SENSYS), 2009.

[26] K. Hwang, J. In, and D. Eom. Distributed dynamic shared tree for
minimum energy data aggregation of multiple mobile sinks in wireless
sensor networks. In Proc. of 3rd European Wkshp. on Wireless Sensor
Networks (EWSN), 2006.

[27] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact
of network density on data aggregation in wireless sensor networks. In
Proc. of the 22th Int. Conf. on Distributed Computing Systems, 2002.

[28] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed Diffusion for wireless sensor networking. IEEE/ACM Trans.
Networking, 11(1), 2003.

[29] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of interference
on multi-hop wireless network performance. Wirel. Netw., 11(4), 2005.

[30] A. P. Jayasumana, Q. Han, and T. H. Illangasekare. Virtual sensor
networks - a resource efficient approach for concurrent applications. In
Proc. of the 1st Int. Conf. on Information Technology, 2007.

[31] D. Jung, T. Teixeira, and A. Savvides. Sensor node lifetime analysis:
Models and tools. ACM Trans. Sensor Networks (TOSN), 5(1), 2009.

[32] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor networks.
In Proc. of the 1st Int. Conf. on Embedded Networked Sensor Systems
(SENSYS), 2003.

[33] M. Kodialam and T. Nandagopal. Characterizing achievable rates in
multi-hop wireless networks: the joint routing and scheduling problem.
In Proc. of the 9th Int. Conf. on Mobile computing and networking
(MOBICOM), 2003.

[34] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power
consumption in sensor networks. In Proc. of the 2nd IEEE Wkshp. on
Embedded Networked Sensors (EmNets), 2005.

[35] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang. TTDD: Two-tier
data dissemination in large-scale wireless sensor networks. Wireless
Networks, 5(11), 2005.

[36] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proc. of the 1st Int.
Wkshp. on Wireless Sensor Networks and Applications (WSNA), 2002.

[37] Y. Mao, F. Wang, L. Qiu, S. Lam, and J.M. Smith. S4: Small state
and small stretch routing protocol for large wireless sensor networks.
In Proc. of the 4nd Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[38] K. Martinez, J. K. Hart, and R. Ong. Environmental sensor networks.
Computer, 37(8), 2004.

[39] E. I. Oyman and C. Ersoy. Multiple sink network design problem in
large scale wireless sensor networks. In Proc. of 1st Int. Conf. on
Communications (ICC), 2004.

[40] C. Park, K. Lahiri, and A. Raghunathan. Battery discharge characteristics
of wireless sensor nodes: An experimental analysis. In Proc. of the Int.
Conf. on Sensor and Ad-hoc Comm. and Networks (SECON), 2005.

[41] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. In Proc. of the 2nd Int. Conf. on Embedded
Networked Sensor Systems (SENSYS), 2004.

[42] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low
power wireless research. In Proc. of the 5th Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2005.

[43] F. Pompermaier. Accurate estimation of residual lifetime in wireless
sensor networks. Master’s thesis, University of Trento, Italy, 2008.

[44] R. Rao, S. Vrudhula, and D.-N. Rakhmatov. Battery modeling for
energy-aware system design. Computer, 36(12), 2003.

[45] K. Römer. Distributed mining of spatio-temporal event patterns in sensor
networks. In Proc. of the 1st Euro-American Wkshp. on Middleware
for Sensor Networks (EAWMS), 2006.

[46] A. Sheth, B. Shucker, and R. Han. VLM2: A very lightweight mobile
multicast system for wireless sensor networks. In Proc. of the 4th Int.
Conf. on Wireless Communications and Networking, 2003.

[47] F. Stann and J. Hiedemann. RMST: Reliable data transport in sensor
networks. In Proc. of the 1st Int. Wkshp. on Sensor Network Protocols
and Applications (WSNA), 2003.

[48] TinyOS Web Site. www.tinyos.net.
[49] TinyOS. Multi-hop Routing. www.tinyos.net/tinyos-1.x/

doc/multihop/multihop_routing.html.
[50] TinyOS. TEP 105 - Low Power Listening. www.tinyos.net/

tinyos-2.x/doc/html/tep105.html.
[51] TinyOS. TEP 119 - Collection. www.tinyos.net/tinyos-2.x/

doc/html/tep119.html.
[52] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor network

simulation with precise timing. In Proc. of the 4th Int. Symp. on
Information Processing in Sensor Networks (IPSN), 2005.

[53] Z. Vincze, V. Rolland, and A. Vidacs. Deploying multiple sinks in
multi-hop wireless sensor networks. In Proc. of Int. Conf. on Pervasive
Services, 2007.

[54] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In Proc. of the 1st Int.
Conf. on Embedded Networked Sensor Systems (SENSYS), 2003.

[55] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems.
Chapman & Hall, 2004.

[56] K. Yuen, B. Li, and B. Liang. Distributed data gathering in multi-sink
sensor networks with correlated sources. In Proc. of 5th Int. IFIP-TC6
Networking Conf., 2006.

[57] H. Zhang, A. Arora, Y. Choi, and M. G. Gouda. Reliable bursty
convergecast in wireless sensor networks. In Proc. of the 6th Int. Symp.
on Mobile Ad-hoc Networking and Computing (MOBIHOC), 2005.

15

Luca Mottola Luca Mottola is a Senior Researcher
at the Swedish Institute of Computer Science (SICS).
Previously, he has been a post-doctoral researcher
at the University of Trento (Italy), and a research
scholar at the University of Southern California
(USA). He carried out his Ph.D. studies at Po-
litecnico di Milano (Italy), completing in 2008. His
research interests include the design, implementa-
tion, and validation of modern distributed systems,
with particular attention to wireless sensor networks
and automatic verification of distributed software

architectures. He is a member of ACM and IEEE. More information are
available at http://www.sics.se/˜luca/.

Gian Pietro Picco Gian Pietro Picco is an Associate
Professor in the Department of Information Engi-
neering and Computer Science (DISI) at University
of Trento, Italy. Previously, he has been on the
faculty of Washington University in St. Louis, MO,
USA (1998-1999) and Politecnico di Milano, Italy
(1999- 2006). The goal of his current research is to
ease the development of modern distributed systems
through the design and implementation of appropri-
ate programming abstractions and of communica-
tion protocols efficiently supporting them. His work

spans the research fields of software engineering, middleware, and network-
ing, and is oriented in particular towards wireless sensor networks, mobile
computing, and large-scale distributed systems. He is a member of ACM and
IEEE. More information at http://disi.unitn.it/˜picco.

