
Programming Human-Drone Interactions:
Lessons from the Drone Arena Challenge

Mousa Sondoqah+, Fehmi Ben Abdesslem∗, Kristina Popova†, Moira McGregor‡, Joseph La Delfa†,
Rachael Garrett†, Airi Lampinen‡, Luca Mottola+, and Kristina Höök†

+Politecnico di Milano (Italy), ∗RI.SE Computer Science (Sweden),
†KTH Royal Institute of Technology (Sweden), ‡Stockholm University (Sweden)

ABSTRACT
We report on the lessons we learned on programming human-drone
interactions during a three-day challenge where five teams of drone
novices each programmed a nanodrone to be piloted through an
obstacle course using bodily movement. Center to the participants’
learning process was the eventual shift from the deceptively sim-
ple idea of seamless human-drone interactions, to the reality of
drones as non-predictable systems prone to crashes. This happened
as participants had to first realize, then to deal with the limita-
tions of the drone’s resource-constrained hardware. Coping with
these limitations was crucially complicated by the lack of appro-
priate programming abstractions, which led participants to focus
on plenty of low-level, sometimes immaterial details, while losing
focus on the ultimate objectives. We find concrete evidence of these
observations in how participants handled the visibility problem
in debugging drone behaviors, applied different defensive coding
techniques, and altered their piloting practice. Our insights may
inform further research efforts in drone programming, especially
in the vastly uncharted territory of human-drone interactions.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); • Computer systems organization → Robotics.

KEYWORDS
Human-drone interaction, Drone programming, Challenges

ACM Reference Format:
Mousa Sondoqah+, Fehmi BenAbdesslem∗, Kristina Popova†, MoiraMcGreg-
or‡, Joseph La Delfa†, Rachael Garrett†, Airi Lampinen‡, Luca Mottola+,
and Kristina Höök†, +Politecnico di Milano (Italy), ∗RI.SE Computer Science
(Sweden),, †KTH Royal Institute of Technology (Sweden), ‡Stockholm Uni-
versity (Sweden). 2024. Programming Human-Drone Interactions: Lessons
from the Drone Arena Challenge. In The 10th Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications (DroNet’ 24), June 3–7, 2024,
Minato-ku, Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3661810.3663471

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0656-1/24/06
https://doi.org/10.1145/3661810.3663471

1 INTRODUCTION
Aerial drone technology represents a new breed of mobile com-
puting platform, enabling applications in a range of fields such as
precision agriculture, film-making, and logistics [13].
Human-drone interactions. Aerial drones are also foreseen to
operate in close connection with humans [6, 14]. Human-drone
interactions are found in applications such as assisted living, aug-
mented reality games, and artistic performances [2, 11, 17–19].
Programming human-drone interactions is, however, a completely
different job compared to mainstream drone applications.

Drones that operate close to humans are usually resource-con-
strained, for safety and practical reasons. Consider for example
the Crazyflie nano-drone, often used in these settings [2, 18, 19].
It weights a mere 27 grams and mounts a single ARM Cortex M
microcontroller plus a few low-power sensors. Compare this to
the multi-core computing units and the multitude of sophisticated
sensors of regular DJI drones.

Human-drone interactions, moreover, are arguably much less
predictable compared to the interactions a drone experiences with
the surrounding environment in mainstream applications. Accu-
rately detecting human intentions is, however, crucial for drones to
show intelligent behaviors in response to human behaviors. Doing
so on top of constrained hardware greatly complicates matters.
Problem.We argue that the current state of the art in programming
human-drone interactions is largely insufficient. We offer concrete
evidence as we examine the unfolding of a three-day, hackathon-
style drone challenge where five teams each programmed a nan-
odrone to be piloted through an obstacle course using bodily move-
ment. We intentionally target novice drone programmers, as appli-
cations with human-drone interactions are likely to be developed
by domain experts, not by skilled embedded programmers.

Achieving the challenge goals required coping with the many
software/hardware limitations at hand. Doing so was complicated
by the lack of appropriate programming abstractions. Participants
spent great time dealing with low-level details, such as understand-
ing the readings of proximity sensors to detect humans’ intentions,
which dragged them away from the key objectives.

Abstractions that existing drone development environments pro-
vide towards human-drone interactions are minimal. Participants
had to use primitive programming interfaces and debugging facil-
ities, essentially reasoning on raw sensor readings. Contrast this,
for example, with the rich development environments available for
programming mobile apps for smartphones and the like: it would
be like pretending that one needed to reason with the specific (x,y)
coordinates affected by the user’s touches on a phone screen, rather
than with buttons and windows.

https://doi.org/10.1145/3661810.3663471
https://doi.org/10.1145/3661810.3663471
https://doi.org/10.1145/3661810.3663471


DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan Sondoquah et al.

Road-map. We briefly survey existing work in drone program-
ming and human-drone interactions in Sec. 2 and illustrate the
organization and setup of the challenge in Sec. 3.

In Sec. 4, we distill six lessons we learn by observing the partic-
ipants’ work and by inspecting their final implementations. We
discuss how participants handled the visibility problem [21] in de-
bugging drone behaviors, applied different defensive programming
techniques [25], and altered their piloting practice.

These lessons are the stepping stone for us to formulate direc-
tions for future work in programming human-drone interactions,
discussed in Sec. 5. The aspects we consider crucial include i) design-
ing abstractions that allow developers to reason on human intentions
using higher-level concepts such as “a person is waiving at the drone”,
rather than raw sensor readings, and ii) creating debugging tech-
niques to gain real-time accurate visibility into a drone’s internal
states as its interactions with humans evolve.

We focus on embedded drone programming here, yet also provide
a somaesthetically focused discussion and directions on how to
better support somatic engagement with drones elsewhere [28].

2 BACKGROUND AND RELATEDWORK
We briefly survey drone programming and discuss prior research
on human-drone interactions.
Drone programming. Several drone platforms employ ROS [26]
as underlying support with bindings available for several program-
ming systems and simulation environments. Based on this, software
packages are built to offer basic functionality such as waypoint nav-
igation [20]. Similarly, many commercial drone platforms offer
Software Development Kits (SDKs) to create mobile applications
for smartphones and tablets [8], which are often proprietary.

Programming drone swarms and teams is a different problem [7,
23]. In these systems, the programmers’ commands are translated
into a sequence of primitive instructions deployed onto all drones.
Simple drone behaviors are shown to produce emergent collecting
properties, such as dispersion or flocking.

Common to most works is enabling autonomous operation. A
drone’s program usually already embeds the entire application
logic and humans are normally out of the loop. In the setting we
consider, humans are integral part of the application logic, as their
interactions with the drone directly determine how efficiently the
human-drone ensemble achieves the goal.
Human-drone interactions. The social-cultural implications [22]
of moving drones from military to civil operations prompt research
into human-drone interactions [6, 14]. Research into the relational
aspects of drone technology focuses on so-called “natural” human-
drone interactions [4] and related emotions [5, 16, 30].

When humans interact with drones, they need to adapt them-
selves in how to control and move around them. This happens when
using drones for work purposes [18], as part of leisure activities
[2, 17], artistic performances [11, 19], or in family settings [15]. For
example, Popova et al. [24] open up a new design space through
the combination of humans and drones. Their account of a design
process that unfolds over a significant period of time contrasts with
this paper, where participants develop human–drone interactions
within a limited time frame and without dedicated training.

obstacleobstacle

markerboundaries

Figure 1: One of the drone arenas, seen from above.

Figure 2: Crazyflie nano-drone.

3 CHALLENGE
We set up the challenge as a three-day hackathon at the R1 Reactor
Hall of KTH campus in Stockholm, Sweden1. The hall sits 40 m
underground and used to host an experimental nuclear reactor. It
is used nowadays for exhibitions, concerts, and music videos.
Objective and rules.We take inspiration from the ’80s maze action
videogame Pac-Man. The goal is to fly a nanodrone through an
obstacle course set in a drone arena, shown in Fig. 1, in a fixed
time while collecting as many markers as possible. Drone piloting
is achieved by a competitor-participant who physically interacts
with the drone in the arena, for example, through gestures that
are detected by the drone’s onboard proximity sensors. Collecting a
marker is achieved by flying the drone over it at any height.

The team members implement the drone control logic running
on a remotely-connected control station as a Python program. The
program determines how a drone reacts to a human pilot’s interac-
tions. For example, it steers the drone sideways when a participant
moves her hand closer to the drone on one side. Only one human
pilot at a time can be active in the arena during a run.

Participants cannot touch the drone, carry any digital device, or
install anything in the arena, such as additional markers. We also
discourage participants from taking an unnecessarily competitive
or rushed approach. We state learning about drones and having
fun as the main goals rather than winning, although we do explain
that there will be prizes for the most successful teams. Framing the
challenge around learning and emphasizing that the participants
are free to decide how much time they want to spend working on
the challenge, we try to establish a calm and supportive atmosphere.
Technology.We use the Crazyflie 2.1, shown in Fig. 2, and make
available to the participants the whole range of expansion decks,
including those with the ToFVL53L1x proximity sensors and the
PMW3901 optical flow sensor. Besides the Crazyflie environment,
we also provide examples of the control logic running on the control
station that shows how to achieve simple piloting functionality,
such us “pushing” the drone in a given direction when the drone’s
proximity sensor detects that someone’s hands are approaching, or
“pulling” the drone when the hands are withdrawing.

1We obtained IRB approval from the authors’ institution wherever applicable.



Programming Human-Drone Interactions DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan

We equip the drone arena with the Lighthouse localization sys-
tem. The system uses two base stations deployed at opposite corners
of the arena to emit infrared laser scans, as depicted in Fig. 2. These
are detected by the drone using dedicated sensors. The Lighthouse
localization system was sufficiently simple to install in a temporary
location and provided a user experience largely similar to other
indoor localization systems, including optical ones [1]. Collecting
a marker is achieved by matching the drone’s coordinates in the
horizontal plane with those of the marker, which we know a priori.

The Lighthouse system works reliably only as long as the laser
scans can constantly reach the drone, similar to an OptiTrack sys-
tem requiring line of sight to the markers aboard the drone. If the
path from a base station to the drone is somehow occluded, say
because a person moves in between, the drone temporarily loses
the base station inputs. The drone may then become unstable yet
eventually reclaims a stable behavior, or end up in a crash. These
aspects were a significant emergent factor during the challenge.
Schedule and teams. The event begins with an inspiring opening
talk, followed by a a two-hour tutorial on programming the Crazyflie,
using teaching material we develop. By the end of the tutorial, even
teams with no previous experience can fly their assigned drone.

The remainder of day one and the second day are devoted to
challenge trials; teams are free to work shorter or longer hours
at the Reactor Hall to program their drone to interact with their
nominated pilot in the arena. We set up two separate drone arenas
for the trials. Experts on our team are available to provide technical
support. Day three of the event begins with the obstacle challenge,
observing the objectives and rules outlined in Sec. 3. Each team is
allowed four attempts. The event concludes with a prize ceremony.

Participation is free of charge and open to anyone irrespective
of age, profession and past experience with drones, on a first-come-
first-served basis. As we provide all necessary drone hardware, a
team only needs to bring a computer for programming. Although
the challenge is advertised as open to all, the nature of the chal-
lenge makes it compelling for those with some familiarity with
drones and/or some programming skills. The timing of the chal-
lenge during three weekdays in June, along with its location on a
university campus, make it particularly attractive to students. Most
participants had previous programming experience, but only a few
had prior experience with drones, for example, in activities like
aerial filmography that have little overlap with the challenge.

A total of 22 persons participated, split in six teams. All teams but
one were entirely composed of university students. Video examples
of actual challenge runs are available [9].

4 LESSONS LEARNED
Based on interviews, field notes, video recordings, and code inspec-
tion, we report on how the lack of appropriate programming and
testing abstractions made it overly complex for the participants to
cope with the limitations of the drone hardware. In the following,
we discuss the concrete evidence we collected.

4.1 Crashes
The message conveyed during the opening talk concentrated on
success stories, showing humans smoothly interacting with drones.

Figure 3: Investigating drone behaviors through logging data.

The speaker demonstrated videos showing gestures accurately com-
manding drones, akin to what the participants are to accomplish in
the challenge, without commenting on how these interactions are
technically achieved. Not a single crash or malfunction was shown,
yet the drone platform at hand was the same as in the challenge.

When the time came for the trials, participants realized that they
were essentially operating on a different playground compared to
the opening talk. The drone behavior out of the box was described
as brittle and hard to predict. Discussions with our technical sup-
port were mostly about how to understand why the drone did not
behave as expected and (most often) crashed. Participants even-
tually figured that much of what they were observing, compared
to the opening talk, was due to a fundamentally different setup,
which drastically increased the uncertainty of how a drone can
sense human intentions. Two aspects were key.

Albeit immaterial w.r.t. the work in the opening talk, those
demonstrations often relied on some sort of instrumentation on
the human body, which we explicitly forbid in the challenge in-
stead. For example, videos were shown in the opening talk where
hand gestures were recognized with the human wearing a pair of
Lighthouse receivers, one on each hand, identical to the one on the
drone. This way, hand gestures were tracked exactly like drones,
on a control station that was never shown in the video and much
greater accuracy that with the ToFVL53L1x proximity sensors.

The navigation sensors in the opening talk, moreover, were never
used for anything but feeding the flight controller. The application
logic resided entirely on the control station, and no changes were
required to the firmware aboard the drone. Adopting the same
design was not fully possible in the challenge. As we explain next,
the sensor readings required to recognize the piloting commands in
the challenge partly overlap with those necessary for flight control.
From a programming standpoint, managing such a double use of
the same sensor greatly complicated matters.

4.2 Visibility
Participants sought to understand the causes of the drone crashes.
Debugging on a device with no operating system and only a few
LEDs is arguably an instance of the visibility problem [21]. Tools
exist to address this problem [31] but they are hard for beginners.

Participants used the Crazyflie logging facility to dump as much
run-time data as possible on the control station, as shown in Fig. 3.
This is a problem per se. First, the amount of data that some of
the teams tried to transfer to the control station was excessive and
caused memory issues on the Crazyflie, eventually leading to phys-
ical crashes. Second, the logging data was not aligned in time with
the interactions between the human and the drone in the arena.



DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan Sondoquah et al.

It was indeed incredibly difficult for participants to figure how
a given drone movement in space translated to given sensor read-
ings showing up at different times on the control station. To tame
this issue, some participants performed several mock-up flights. As
shown on the left of Fig. 3, team RoboNerds entered the arena with
the drone in their hands and mimicked an actual run. While doing
so, another team member was monitoring on a laptop the sensor
readings coming from the drone as it was approaching obstacles or
being subject to different piloting gestures.

Based on these observations, we argue the following.
Lesson 1: Gaining visibility into human-drone inter-
actions requires abstractions to select the slice of the
system state of interest, as merely inspecting the com-
plete state is unfeasible given available resources. Fur-
ther, a notion of time must be embedded in state in-
formation to let developers map human interactions
with the evolution of the drone’s internal states.

Note how the setting that participants had to deal with is quite
different compared to mainstream drone applications [1]. In those
cases, predefined sequences of actions the drone should perform
are usually known. Consider for example a photogrammetry appli-
cation [23], where a portion of a site is to be swept by following
predefined flight trajectories. In the challenge, the drone behavior
is exclusively a function of impromptu human interactions, and no
predefined sequences to test against exist.

Next to the troubles in gaining system visibility, participants
explored different parameter settings in the example code we pro-
vided. As an example, determining the “right” threshold to be used
when “pushing” the drone in a given direction when the proximity
sensor detects the participant’s hand was extremely laborious, of-
ten leading to unexplainable crashes. The participants noted that
the same parameter setting and similar human gestures were often
leading to sharply different drone behaviors.

Two factors contribute to these behaviors. The ToFVL53L1x
proximity sensors are both slow and imprecise, which is the price
for using a harmless, yet resource-constrained nano-drone platform.
The time it takes to detect a nearby obstacle may reach up to a
few seconds, compounding the timing problem when checking
sensor logs at the control station. On the other hand, human-drone
interactions often do not require perfect accuracy of absolute values.
The application logic is likely to operate based on given thresholds,
like when detecting whether someone’s hand is close.

We summarize these observations as a further lesson.
Lesson 2: Low-level sensing parameters may have un-
predictable, and not necessarily deterministic effects
when detecting human intentions. Latency and noise
of sensor readings must be tamed before the data is
useful, yet absolute values are not as relevant as in
general drone applications, as long as we can robustly
detect whether given thresholds are passed.

The other factor contributing to unexplainable behaviors was the
Lighthouse system requiring almost-constant line of sight between
the base stations and the drone, or the latter would lose control and
crash. The participants did not immediately realize this. Issues with
the localization system were not directly related to any parameter
setting, yet they were manifesting with the same drone behavior,

that is, a crash. Participants fully understood this only when we
explained how exactly a drone knows where it is in the arena.

We therefore conclude the following.
Lesson 3:Masking low-level details through proper ab-
stractions may help beginners program human-drone
interactions, yet specific technical aspects exist, such as
the functioning of the localization system, that even
drone novices must be aware of.

4.3 Defensive Programming
In response to the lack of a full understanding of drone behaviors,
participants applied a number of different defensive programming
techniques [25]: a programming practice meant to avoid issues
before they arise. This is concretely achieved by writing code that,
in essence, attempts to cover any possible scenario thrown at it,
including situations that might never occur.

Using established code inspection techniques [12], we found
evidence of defensive programming at multiple places in the par-
ticipants’ code. Multiple teams changed sensor rates when these
are used to detect human gestures, up to a 5𝑥 increase w.r.t. the
examples provided. Obtaining more data allowed them to apply
aggressive averaging and filtering to exclude outliers. One team
used buffers of up to 100 readings to do so, which is 10 times more
than what is normally found in flight controllers [3]. Most teams
also capped the maximum drone velocity down to half of what the
Crazyflie can do, in an attempt to facilitate the human pilot.

A paradigmatic example, however, is the code written by team
Cyber Ravens, which includes a single if statement with 14 different
branches, basically identifying as many different situations and
different ways to handle them. We verified that indeed the way
this team handles each of these situations is unique, that is, there is
no way to refactor the code while keeping the same functionality
that would reduce the number of branches. Note how this is not
necessarily an indication of an inefficient implementation: team
Cyber Ravens gained second spot in the final challenge. We did,
however, run their code in a lab replica of one of the arenas, and
across 36 different runs executed by 5 different people, 9 out of the
14 branches were never executed.

Defensive programming produced two effects. First, codebases
grow, sometimes in ways disproportionate compared to the com-
plexity of the functionality to be achieved. Some of the teams ended
up triplicating the number of code lines compared to the examples
provided. We also measured the cyclomatic complexity [10] of the
teams’ code and found that it is 146% higher than the examples,
on average. Larger codebases become more difficult to test, adding
to the issues outlined in Sec. 4.2. When more complex execution
flows are deployed on the drone, moreover, these require more pro-
cessing and thus yield slightly higher energy consumption. Albeit
processing is generally not an issue on drones as most of the energy
is spent in operating the motors, affecting the already limited flight
time of a nano-drone may become an issue.

Based on this analysis, we derive a further lesson.
Lesson 4: The uncertainty in detecting human-drone
interactions may prompt programmers to apply defen-
sive programming techniques, which however have
a cost that cannot be neglected. The question also



Programming Human-Drone Interactions DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan

remains as to how far programmers should push this,
as the lack of system visibility makes it difficult to
understand what is really necessary.

4.4 Piloting
We observed strikingly different approaches at shaping the human-
drone interactions necessary to tackle the challenge. Some teams
concentrated on creating programs to shape the drone behavior.
Other teams applied minimal modifications to the examples we
provided and rather worked to shape their own piloting behavior.
Shaping drones. The process of shaping drone behaviors must
reconcile with the limited hardware available. A key example of this
issue is in piloting the drone vertically. The examples we provided
at the start were not sufficient to capture all markers in the final
challenge, as some of the markers were placed on top of objects
and not on the floor. The ability to control the drone vertically, not
implemented in any of the examples, was mandatory.

To achieve vertical control, many teams tried to use the altitude
sensor or the flow sensor mounted at the bottom of the Crazyflie.
These sensor inputs, however, are normally not used to impart
piloting commands, but contribute to the flight control logic to
ensure stable flight. Nonetheless, team Flying Ferrets, for example,
used a workaround to exclude both sensors from the processing of
the flight control loop [27] and used those readings to input piloting
commands. We found similar approaches in four teams out of five.
They did realize that they were taking an important input away
from the flight control logic, but eventually gave up on doubling
these inputs for the latter, considering this to be too complex.

These design choices greatly sacrificed overall flight stability,
adding to the brittle behaviors we discussed earlier. During the
final challenge runs, roughly one in two runs resulted in a crash.
Arguably, drones behaved more reliably in the examples we pro-
vided at the start of the challenge, even though none of them was
sufficient alone to accomplish the challenge.

These insights led us to argue the following.
Lesson 5: Shaping drone behaviors when interacting
with humans requires a distinct separation of sensors
used to detect human intentions and sensors used for
flight control. Existing drone platforms lack the nec-
essary hardware for this, while compensating for this
via software is extremely difficult.

Rather than shaping the drone behavior programmatically, two
teams chose to focus on shaping their own movements.
Shaping the pilot. Teams Robo Geeks and Spark Speed applied very
limited changes to the examples we provided and spent most time
in the arenas to gain piloting skills. Robo Geeks only added 7 lines of
code to one of the examples and spent significantly more time in the
arenas compared to other teams; they were ultimately penalized,
however, because their additions did not enable vertical control,
which was necessary as discussed earlier. When recognizing the
problem, they decided to simply skip markers on top of objects
during the challenge, hoping their improved piloting skills would
compensate for this by collecting all other markers more quickly.

Some teams figured new piloting practices. Team Cyber Ravens
tried to use self-made cardboard paddles, shown on the left of Fig. 4,
to extend the area the sensor could detect. Many also assumed

Lighthouse 
basestation

drone

drone

paddlespaddles

Figure 4: Adapting piloting behaviors.

unconventional poses to keep line of sight between the Lighthouse
base stations and the drone, shown on the right of Fig. 4.

These changes to one’s piloting practice are, in essence, a direct
consequence of the technical shortcomings reported above. The
difficulties in programming and testing drone behaviors when in-
teracting with humans brought the latter to give up on making the
drone somehow more intelligent, and to resort to changing their
own behavior instead. In a way, this is a sign that further work is
necessary from a purely technical standpoint, as we further elabo-
rate in Sec. 5, as human behaviors when interacting with drones
should be a function of application goals, not of technical hurdles.

We summarize these insights as follows.

Lesson 6: The lack of appropriate abstractions for pro-
gramming and testing human-drone interactions, to-
gether with the inherent hardware limitations of the
target platforms, lead to humans trying to adapt their
own behaviors to overcome technical difficulties, which
may not necessarily match the application goals.

5 OUTLOOK
Two directions emerge that are worth additional efforts.
Abstractions. Appropriate abstractions are needed to relieve pro-
grammers of low-level details of sensor readings and flight control
loops, enabling reasoning at higher semantics levels. As much as
programmers of mobile apps reason with buttons and windows in
the creation of user interfaces, we advocate the development of
analogous concepts at the interface between humans and drones [29].

Abstractions of a catalogue of human gestures may be defined,
for example, whose implementation is fine-tuned based on the
specific hardware and orthogonal to the application goals. Program-
mers should employ these notions as re-usable building blocks with
little to no customization required. Applications should be devel-
oped by composing building blocks to achieve application-specific
goals, such as capturing the markers in the drone arena challenge.

We particularly advocate abstractions as programming concepts,
regardless of their specific rendering in a given programming lan-
guage. The specific implementation in language constructs, as well
as the underlying run-time support providing the necessary seman-
tics, may change depending, for example, on whether the execution
occurs on the drone or on a control station. The goal should be
to define the abstraction semantics independent of the deployment



DroNet’ 24, June 3–7, 2024, Minato-ku, Tokyo, Japan Sondoquah et al.

configuration, providing programmers with an additional degree of
flexibility w.r.t. where to execute the application logic.

In contrast, code written by participants of the challenge has
no evidence of these higher semantics levels, as participants lose
their way in a multitude of sometimes irrelevant details. Their
implementations are tied to both the sensing hardware and the
deployment configuration. We acknowledge this may be partly
due to the specific setting the participants worked in, that is, a
hackathon-style event that certainly does not encourage writing
reusable code. However, the same teams would have likely achieved
much more, in terms of robustness of their implementations, had
they been provided with the abstractions we advocate.
Visibility. Gaining sufficient visibility into the system operation is
challenging because of two aspects: i) human-drone interactions
employ resource-constrained hardware, and ii) user inputs are un-
predictable and unfold over time in response to the drone behavior.

Tackling the first issue is more complex than with regular embed-
ded systems, where plenty of debugging hooks exist and physical
connections to the device under test are possible [21]. To increase
the realism in testing and debugging, the drone should be let free
to fly. The wireless channel linking the drone to a control station is
usually a bottleneck per se and often doubles as a control channel.

We argue that the issue should be tackled with a dedicated
hardware-software co-design. One may design dedicated debug-
ging hardware, for example, as an additional expansion deck for the
Crazyflie platform, which implements the necessary hooks into the
main computing unit to monitor the local execution with minimal
overhead, so to avoid Heisenbugs [21]. Using state-of-the-art sys-
tems on chip, the debugging deck may also offer a separate wireless
channel to relay the data to a control station, avoiding the over-
load of the wireless control channel. Programming the debugging
expansion deck should, for example, allow programmers to define
watches over specific variables to retrieve needed information.

We recognize that the additional debugging deck would come at
the cost of increased weight, impacting the flight time. This is the
unavoidable price to pay to gain the necessary visibility into the
device internals that would incredibly speed up the debugging and
testing tasks in developing human-drone interactions.

A dedicated hardware-software co-design may also address issue
ii) above. The problem is to match the user input with the system
state, which was difficult for participants as they had to do that
visually, by manually monitoring a screen and the pilot in the arena.
Similar to the Crazyflie AI-deck, the debugging hardware may be
equipped with a low-power camera, which would record the user
interactions with the drone in real time. By joining the video feed
from the camera and the data from the drone computing unit, the
debugging hardware could precisely timestamp the latter.

A camera would further increase the weight and the on-board
processing required to handle the video stream would probably
restrict the range of feasible designs. Systems on chip already exist,
however, that are apt to the job. The same GAP8 core used on the
AI-deck, if appropriately re-purposed, is arguably sufficient.

6 CONCLUSION
Team Spark Speed won the challenge, striking the best trade-off
between shaping the drone behavior and extending their piloting

skills. Team Cyber Ravens ranked second, also due to their use of
cardboard paddles as an extension of the pilot’s hands. Team Flying
Ferrets ranked third with an accurate tuning of state estimation.

This paper reported an account of the lessons we learned on
programming human-drone interactions during the challenge. We
recognized that many of the issues at hand originate from the
lack of appropriate programming abstractions and the difficulty in
gaining the necessary visibility into the system state. We provided
directions for future efforts in drone programming, cast into the
uncharted territory of human-drone interactions.
Acknowledgments. The work was supported by Digital Futures,
project Drone Arena and by WASP-HS, project MMW 2019.0228.

REFERENCES
[1] M. Afanasov et al. 2019. FlyZone: A testbed for experimenting with aerial drone

applications. In MOBISYS.
[2] B. Baldursson et al. 2021. DroRun: Drone Visual Interactions toMediate a Running

Group (HRI ’21 Companion).
[3] E. Bregu et al. 2016. Reactive control of autonomous drones. In MOBISYS.
[4] J. Cauchard et al. 2015. Drone andMe: An Exploration into Natural Human-Drone

Interaction. In UbiComp.
[5] J. Cauchard et al. 2016. Emotion encoding in Human-Drone Interaction. In HRI.
[6] J. Cauchard et al. 2021. Toward a roadmap for human-drone interaction. Interac-

tions 28, 2 (2021).
[7] K. Dantu et al. 2011. Programming micro-aerial vehicle swarms with Karma. In

SENSYS.
[8] DJI. 2024. Developer Kit. developer.dji.com.
[9] Drone Arena Challenge. 2024. Example runs. youtu.be/H551SFiZQ-w.
[10] C. Ebert et al. 2016. Cyclomatic complexity. IEEE Software 33, 6 (2016).
[11] S. Eriksson et al. 2019. Dancing with drones: Crafting novel artistic expressions

through intercorporeality. In CHI.
[12] M. Fagan. 2002. Design and code inspections to reduce errors in program devel-

opment. Software pioneers: contributions to software engineering (2002).
[13] D. Floreano and R. Wood. 2015. Science, technology and the future of small

autonomous drones. Nature 521, 7553 (2015).
[14] M. Funk. 2018. Human-Drone Interaction: Let’s Get Ready for Flying User

Interfaces! Interactions 25, 3 (2018).
[15] M. Gamboa et al. 2021. Ritual Drones: Designing and Studying Critical Flying

Companions (HRI ’21 Companion).
[16] V. Herdel et al. 2021. Drone in Love: Emotional Perception of Facial Expressions

on Flying Robots. In CHI.
[17] K. Karjalainen et al. 2017. Social drone companion for the home environment: A

user-centric exploration. In International Conference on Human Agent Interaction.
[18] M Khan and C. Neustaedter. 2019. An exploratory study of the use of drones for

assisting firefighters during emergency situations. In CHI.
[19] H. Kim and J. Landay. 2018. Aeroquake: Drone Augmented Dance. In DIS.
[20] J. Kramer and M. Scheutz. 2007. Development environments for autonomous

mobile robots: A survey. Autonomous Robots 22, 2 (2007).
[21] E. Lee and S. Seshia. 2016. Introduction to embedded systems: A cyber-physical

systems approach. Mit Press.
[22] A. Miah. 2020. Drones: the brilliant, the bad and the beautiful. Emerald Group

Publishing.
[23] L. Mottola et al. 2014. Team-level programming of drone sensor networks. In

SENSYS.
[24] K. Popova et al. 2022. Vulnerability as an ethical stance in soma design processes.

In CHI.
[25] X. Qie et al. 2002. Defensive programming: Using an annotation toolkit to build

DoS-resistant software. ACM SIGOPS Operating Systems Review 36 (2002).
[26] M. Quigley et al. 2009. ROS: An open-source Robot Operating System. ICRA

Workshop on Open Source Software (2009).
[27] S. Roumeliotis and G. Bekey. 2000. Bayesian estimation and Kalman filtering: A

unified framework for mobile robot localization. In ICRA.
[28] M. Sondoqah et al. 2023. Shaping and Being Shaped by Drones: Supporting

Perception-Action Loops. In DIS.
[29] D. Tezza and M. Andujar. 2019. The state-of-the-art of human–drone interaction:

A survey. IEEE Access 7 (2019).
[30] S. van Waveren et al. 2023. Increasing Perceived Safety in Motion Planning for

Human-Drone Interaction. In HRI.
[31] D. Wallace and R. Fujii. 1989. Software verification and validation: an overview.

IEEE Software 6, 3 (1989).

developer.dji.com
youtu.be/H551SFiZQ-w

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Challenge
	4 Lessons Learned
	4.1 Crashes
	4.2 Visibility
	4.3 Defensive Programming
	4.4 Piloting

	5 Outlook
	6 Conclusion
	References

