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ABSTRACT
In a long-term commitment to designing for the aesthetics of human–
drone interactions, we have been troubled by the lack of tools for
shaping and interactively feeling drone behaviours. By observing
participants in a three-day drone challenge, we isolated components
of drones that, if made transparent, could have helped participants
better explore their aesthetic potential. Through a bricolage ap-
proach to analysing interviews, �eld notes, video recordings, and
inspection of each team’s code, we describe how teams 1) shifted
their e�orts from aiming for seamless human–drone interaction,
to seeing drones as fragile, wilful, and prone to crashes; 2) en-
gaged with intimate, bodily interactions to more precisely probe,
understand and de�ne their drone’s capabilities; 3) adopted di�er-
ent workaround strategies, emphasising either training the drone
or the pilot. We contribute an empirical account of constraints in
shaping the potential aesthetics of drone behaviour, and discuss
how programming environments could better support somaesthetic
perception–action loops for design and programming purposes.

CCS CONCEPTS
• Human-centered computing ! Systems and tools for inter-
action design.
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1 INTRODUCTION
In a long-term commitment to designing for the aesthetics of human–
drone interactions, designing drones for the opera stage, [15, 16],
drones for dancing [41], and drones that can modify their behaviour
to become uniquely entangled with their user [39, 42, 43], we have
approached this theme as a multidisciplinary team combining com-
petence in interaction design, human–computer interaction, em-
bedded systems, and mobile robotics. The complexities of program-
ming drones, shaping and feeling the potential aesthetics of their
behaviour, as well as handling their hardware and design, has posed
interesting challenges to our design team over the years. We have
increasingly identi�ed a need for bodily ways of understanding
and ‘programming’ drone behaviours rather than having to take a
detour via software programming, signal processing, and embedded
programming changes, done on a separate computer. When it is
made possible to move and be moved by the drones in a direct, per-
ceptual sense, it may become easier to feel the potential aesthetics
that could be shaped.

In order to document how pilots come to understand drones
and to shape human–drone interaction (HDI) by ‘programming
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through the body’, we decided to expand our approach beyond
solely observing our own design processes.We arranged a three-day
drone challengewhere participants with little to no prior experience
of programming and piloting drones, were given limited time to
explore and design interactions with an aerial nano-drone. To focus
the design space further, we asked participants to work toward
the speci�c objective of piloting their drone through an obstacle
course quickly and precisely. While an intensive three-day design
journey does not attain the depth of our previous projects – with
years, rather than days, spent on each drone design – we argue that
some of the core issues still emerged. What is more, the constrained
format of the challenge made the issues more readily observable,
allowing us to report on them here.

The aerial nano-drones we used are a fascinating and evoca-
tive type of robot. They have a material body [13] that moves and
makes noise, tempting us to interact with them as if they were more
communicative than they are. Prior accounts of design processes
focused on human—drone interaction have featured encounters be-
tween designers, with their designerly aims and �eshy bodies, and
drones, with unpredictable technological a�ordances and fragile
plastic bodies [22, 50], illustrating that as these encounters unfold,
designers shape not only the technology but also themselves, alter-
ing how they move to �t with the drone behaviour [16, 40].

In contrast to prior work that concerns human—drone observa-
tion [34, 52, 64] or human—drone gestures 1 [30, 37, 67], we were
especially keen to observe the coupling (or breakdowns) in per-
ception and action when controlling a drone with bodily inputs
[23, 32, 62]. Our focuses on the aesthetics of the mutual shaping of
pilots and drones, that is, how participants in the challenge were
shaping drone behaviour and, in turn, became shaped in bodily
ways by the drones’ limitations. Our aim was to get at the bodily,
felt experiences of engaging with the drones, including the mo-
ments when there were breakdowns because of the lack of access
to the inner workings of the drones.

Our bricolage analysis draws upon interviews, �eld notes fea-
turing both observations and organisers’ own experiences, video
recordings, and inspection of the teams’ code. Three key observa-
tions help deepen our understanding of what it took for our pilots
to get closer to the drones and to shape their behaviours:

(1) We depict how participants’ understanding of drones transi-
tioned from inspirational imagery of seamless human–drone
interaction to lived experience of drones as fragile, appar-
ently wilful, and prone to crashes. In the process of this
transformation of their perception of drone technology, our
participants encountered the visibility problem [44], common
in embedded programming: as the internal system states are
not visible to the external user, it is hard to disentangle or
explain the di�erent reasons why the drone may be behaving
in an erroneous or unexpected way.

(2) We describe how participants came to know their drones
better through intimate, bodily interactions which allowed
them to more precisely probe, understand, and determine the
capabilities of their drone. The iterative process of getting

1Here, we use the word gesture as a classi�ed set of movements interpreted as a
command, later in the paper we use the word in a di�erent sense to describe the
actions of the team members.

to know the drone unfolded through collaboration among
team members – and also with the support of the organising
team who provided technical support.

(3) Through discussing teams’ di�ering approaches to build-
ing up their drone interactions – shaping and being shaped
by these interactions – we illustrate the di�erence between
training the drone, for instance by applying defensive coding
in the form of programs that operate cautiously in anticipa-
tion of possible issues, and training the pilot, that is, changing
and rehearsing the pilot’s ownmovements to �t with existing
drone capabilities.

We contribute an empirical account of shaping and being shaped
by drones and lay out opportunities to better support the design
of human–drone interactions. We will be drawing upon insights
from the drone challenge, and the subsequent redesign we did of
the drones for a second challenge organised a year later, but also
further drone design projects our team members have worked on.
We conclude by discussing, �rst, the need for easy-to-approach
programming tools that allow pilots to adequately change the code
or modify sensor �lters of the drones in a more direct and trans-
parent manner. Second, we note that drones may simultaneously
‘train’ their pilots by providing somatic signs, signals, and feedback
that may be probed and felt in real-time [41]. These enhancements
would support pilots in learning how they might shape their own
movements to better partner with the drone, until they develop
a new way of moving together with the drone – exploring and
exploiting their aesthetic potential. As we discuss in another publi-
cation [59], our work with the drone challenge – and the lessons we
have learned through our multidisciplinary collaboration – have
implications also on the design and development of embedded pro-
gramming systems and their corresponding run-time support.

2 BACKGROUND
Let us, �rst, provide a brief overview of drone piloting from a tech-
nical standpoint before discussing prior research on the potential
somaesthetic experiences of human–drone interaction (HDI).

2.1 Drone Piloting
Conventionally, drone piloting may be achieved in three ways:

First, a control station may wirelessly connect to the drone to
issue high-level piloting commands, such as "move forward 1 m",
or "rotate 90� right". The control station runs a set of programs that
implements arbitrary application logic, for example, to achieve a
given coverage of a geographical area, achieving fully autonomous
behaviors [20]. Most professional drone platforms operate this way.

Alternatively, a piloting device can be manually operated by a
trained pilot, who has full control of the drone. This form of piloting
is challenging. The set of knobs and handles available on a piloting
device is both small and large. It is small in that modern drones
o�er a multitude of operating modes, and each such mode may
require a separate set of knobs and handles. It is, at the same time,
large for a human to control in real-time while maintaining eye
contact on the drone, as dictated by current regulations.

Halfway between the two extremes lie the many solutions that
o�er some form of assisted drone piloting. Some form of piloting
device is used, here, as well, like a mobile app on smartphones. The
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piloting device o�ers ways to achieve some degree of manual con-
trol, while the drone autonomously performs other piloting actions
in support, such as keeping the position hovering, if no piloting
input is received. Most consumer and pro-sumer drone platforms
adopt this approach. This is the type of drone our challenge focused
on (for more details, see Sec. 3.2).

The inputs received from either the control station or a piloting
device are processed by a piece of embedded software, running
aboard the drone, called �ight controller [7]. Its job is to realise
the movements requested by the control station or by the pilot,
translating their inputs into operational settings for the motors.

2.2 Somaesthetic Human–Drone Interaction
Tezza and Andujar [61] describe how drones expanded from mil-
itary operations to a range of civilian applications. The social-
cultural implications [46] of this expansion prompted a surge of
research into HDI [10, 21], particularly in the design space of so-
cial drones [5]. Much research into the relational aspects [29] of
drone technology in these settings has focused on so-called ‘natu-
ral’ HDI [8], integrating gestures and movements [9], and studying
emotions in relation to the design of such systems [11, 28, 64]. For
example, drawing upon Communication Studies to advance HRI,
Urakami and Seaborn [63] have suggested a series of nonverbal
codes that address the �ve human sensory systems to promote
more natural, inviting, and accessible experiences.

Joining scholars who challenged straightforward notions of nat-
uralness [14, 33, 49, 60], we, instead, approach HDI with a somaes-
thetic sensibility. Starting from our somas – the lived and felt body
as it exists, moves, and senses in the world [57] – we explore what
novel aesthetic experiences can be spurred by the design of human–
drone interaction. We see a somaesthetic perspective as generative
for both designing and analysing human—drone interaction. A
soma design stance invites us to address and change the habitual
and limiting ways in which we move [33, 56]. When we interact
closely with drones, we have to adapt ourselves in how we control
them and move around them. This happens when using them for
work purposes [36, 58], as part of leisure activities [4, 35], artistic
performances [16, 37, 38], or in family settings [22, 24]. Here, we
draw on our own prior work on HDI in artistic performance [15, 16],
Tai Chi-inspired movement [40, 41], design processes [23, 50], and
somaesthetic human–machine interaction [42, 43].

These prior works o�er sca�olding for studying movement-
based interactions with drones, as they consider both the somatic
aspects of human–drone interaction as well as the social settings
where such interaction takes place. For example, Popova et al. [50]
explored possibilities for designing relationships with “drones as
‘the other’ – a distinctive and separate entity, which is neither com-
pletely controlled, nor fully autonomous”. Through interactional
work within the assemblage of humans and drone technology,
Popova et al. [50] opened up a design space in which to engage
with an unfamiliar technology, non-habitual design activities, and
exploratory ideas. Their account of an exploratory design process
that unfolded over a signi�cant period of time provides an inter-
esting contrast to the drone challenge we focus on in this paper, in
that the participants in our challenge were brought to explore and
develop human–drone interaction within the limited time frame of

a three-day event, without dedicated training in interaction design
or somaesthetics, and toward the speci�c objective of piloting the
drone through a competitive obstacle course.

3 DRONE CHALLENGE
The drone challenge was set up as a three-day hackathon, yet with-
out the overly stressful, competitive elements typical of hackathons.
It took place in a unique space, an abandoned reactor hall deep in
the bedrock underneath the Royal Institute of Technology (KTH)
campus in Stockholm, Sweden.

3.1 Objective and Rules
The challenge was to �y a nanodrone through an obstacle course set
in a drone arena, exempli�ed in Fig. 1, in a �xed timewhile collecting
as many markers as possible. Drone piloting was achieved by a
competitor-participant who physically interacted with the drone
in the arena, for example, by making gestures that were detected
by onboard proximity sensors. Collecting a marker was achieved by
successfully �ying the drone over a marker at any height.

The teams implemented the drone control logic running on a
control station as a Python program. The program determined how
a drone would react to a human pilot’s gestures. For example, the
program steers the drone sideways when a participant moves their
hand closer to the drone on one side. This is a form of assisted drone
piloting, achieved by interacting with the drone physically. Only
one human pilot at a time could be active in the arena during a
run. During runs, participants were not allowed touch the drone or
install anything in the arena, such as additional markers or sensors.

We purposefully set up the event so as to discourage participants
from taking an unnecessarily competitive or rushed approach. In
introducing the event to the participants, we stated learning about
the drones and having fun as the main goals of the challenge rather
thanwinning, althoughwe did explain that therewould be prizes for
the most successful teams. Framing the challenge around learning
and emphasising that the participants were free to decide how
much time they wanted to spend working on the challenge, we
tried to establish a calm and supportive atmosphere. We did this to
center values like curiosity and collaboration, rather than aggressive
rivalry and competitiveness. The teams had to leave the premises
within reasonable time each day to be transported up to the ground
from the reactor hall 12 meters down. No one worked through the
night or was asked to complete tasks in a stressful manner.

3.2 Technology
We used the Crazy�ie 2.1 (see Fig. 2), an open source nano-drone
platform that only weighs 27 g and �ts in the palm of a hand. The
Crazy�ie o�ers a complete development environment including
a piloting GUI, a rich set of application programming interfaces,
detailed documentation, and tutorials. We also provided examples
of the control logic running on the control station that showed
participants how to achieve simple piloting functionality, such us
"pushing" the drone in a given direction when the drone’s onboard
sensor detects that someone’s hands are approaching, or "pulling"
the drone when the hands are withdrawing.

An essential element to achieve this functionality is localising
the drone in a 3D reference system. As the challenge took place in
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Figure 1: The drone arena, located in the former reactor hall under the campus of KTH in Stockholm. One of the two identical
obstacle courses lies in the foreground, with markers and obstacles of various shapes and sizes.

Figure 2: Left: Crazy�ie nano-drone. Right: The Lighthouse
positioning system - infrared lasers that monitor the �ight
environment.

an indoor setting 12 meters underground, competitors were unable
to rely on GPS. Instead, we equipped the drone arena with the
Lighthouse localization system. This system used two base stations
deployed at opposite corners of the arena to emit infrared laser
scans (see Fig. 2). These were detected by the drone using dedicated
sensors. Based on the di�erence in time of arrival between the scans
from di�erent base stations, the drone technology could estimate
its position. The Lighthouse localization system was su�ciently
simple to install in a temporary location and provided a user experi-
ence largely similar to other indoor localization systems, including
optical ones, such as OptiTrack [1].

The Lighthouse localization system worked reliably only as long
as the laser scans were able to constantly reach the drone, similar to
an OptiTrack system requiring line of sight to the markers aboard
the drone. If the path from a base station to the drone got occluded,

say because a person moved in between the two, the drone tem-
porarily lost the base station inputs. Depending on the number
of base station occlusions and the duration of the disruption, the
drone either became temporarily unstable (yet eventually reclaimed
a stable behavior), or crashed due to having lost positioning infor-
mation completely. The operation of the localization system was a
signi�cant emergent factor in shaping relationships between pilots
and drones during the challenge.

3.3 Schedule and Teams
The event began with a kick-o� at lunch time, including an opening
talk to inspire the participants, as well as a a two-hour tutorial
on programming the Crazy�ie, using teaching material developed
speci�cally for the event. By the end of the tutorial, even teams
with no previous experience of the technology were able to �y their
assigned drone. The remainder of the �rst day and the entire second
day were, then, devoted to challenge trials. Teams were free to work
shorter or longer hours as they preferred, to program their drone
to interact with their nominated pilot in the arena.

We set up two separate drone arenas for the trials. Experts on our
team were available to provide technical support throughout the
trials. They spent much of their time helping the teams resolve tech-
nical issues before they submitted their code for the �nal challenge.
The third day of the event began with the challenge, observing the
objectives and rules outlined in Sec. 3.1. Each team was allowed
four attempts to complete the obstacle course. The event concluded
with with a short prize ceremony and lunch.
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Participation was open to anyone free-of-charge irrespective of
age, profession, and past experience with drones, on a �rst-come-
�rst-served basis. When circulating the call for participation, we
advertised prizes for the most successful teams, including wireless
headphones, movie tickets, and the opportunity to keep the drone
the team had worked with. As we provided all necessary drone
hardware, a team only needed to bring a computer for programming.
While the challenge was advertised as open to all, the details of
the challenge likely made it more compelling to those with some
familiarity with drones and/or at least some programming skills.
The timing of the challenge during three weekdays in June, at the
end of the semester, along with its location on a university campus,
also likely played a role in making it particularly attractive to local
university students, especially from engineering programs.

Of the six teams that signed up, �ve participated fully, resulting in
a total of 22 participants. All teams but one were entirely composed
of university students.Most participants had previous programming
experience in a variety of languages, including Python, but only a
few had any prior experience of drones, e.g. in activities like aerial
�lmography that had little overlap with the challenge.

4 MATERIAL AND METHODS
Next to arranging the challenge as a demonstration of movement-
based drone piloting and an opportunity for participants to learn
about drones, we approached it as a means to study HDI.

Our data collection encompassed multiple methods. First, we
took �eld notes, detailing our observations and experiences. These
include notes from both the researchers who served as technical
support – and hence heard �rst-hand about issues the teams were
facing and the solutions they were resorting to – and the rest of the
teamwhose main task was to observe and record the event, drawing
upon their training in the social sciences and human–computer
interaction. Second, the teams needed to submit the code they pro-
duced for controlling the drone ahead of the challenge. This gives
us a detailed view into the design choices they made and provides
evidence of some of the technical options that were explored but
ultimately abandoned. Third, we video-recorded large parts of the
challenge. We used stationary cameras to capture the activity in
each of the arenas during the trials and the challenge. We used
smartphones to capture shorter instances of teams’ activities and
interactions by their desks and in the event space. Fourth, two re-
searchers conducted short group interviews with the teams, asking
about their backgrounds, their motivations for participating, and
their experiences of the challenge. These complement the insights
into the teams’ experiences we gained through observation.

We conducted our data analysis in the spirit of bricolage [54].
The code and the �eld notes, taken together, provide a rich de-
scription of the challenge. We worked collaboratively to re�ect on
observations from revisiting �eld notes and inspecting the code [17],
scrutinising overlaps and distinctions in what caught di�erent re-
searchers’ attention during initial data analysis. Through this, we
identi�ed the mutual shaping of pilots and drones, that is, how par-
ticipants adapted the drones to match their aims but also how the
participants adapted themselves so as to interact with the drones, as
a core theme for closer analytic development in which we included
also the interview and video data.

We attended to ethical research practice by following stan-
dard procedures for informed consent and through conversation
among the authors2. All participants were given an information
sheet as they �rst arrived to the event. After having had the time
to read it and ask any questions, they gave written consent for
their participation in the study, with the understanding that the
authors would (1) observe the challenge, (2) video record parts of
it, and (3) invite participants to take part in interviews, which they
could freely choose to join or decline, without any repercussions.
We also explained to participants that they could withdraw their
participation at any point, without needing to provide a reason,
and that we would remove their data from our study if requested.
We use pseudonyms when referring to participants and teams.

5 FINDINGS
Our �ndings are three-pronged. First, we report on how partici-
pants’ understanding of drones transformed from the early inspira-
tional imagery of seamless human–drone interactions to the reality
of fragile, wilful drones, prone to crash. Second, we illustrate partici-
pants’ bodily interactions to make sense of drone capabilities. Third,
we depict teams’ explorations in building up their drone interac-
tions, considering the spectrum between shaping drone behaviours
to give the pilot more leeway versus changing pilots’ behaviours
to �t with the drone.

5.1 Learning about Drones
We, now, illustrate the multiple narratives around drones that
emerged during the challenge. We pay particular attention to how
these narratives were re�ected in participants’ programs, and how
they in�uenced teams’ development of interactions with their drone.

First, the message conveyed during the opening talk was uplift-
ing, evocative, with a focus on success stories. The speaker empha-
sised the need to establish a shared body language between humans
and drones. The slides shown to the participants were void of any
technical detail. The speaker drew attention to the challenges in
establishing synchrony between people and robots, acknowledging
the di�culty of building a shared language: “When we see people
in the movies moving with a robot, with robot bodies that look like
our own, it is very easy to imagine what this is about. But what do
you do when the robot looks di�erent to you? How do you control,
for example, sensing and actuating for additional limbs that have
hundreds of joints? The movies make it look really easy but there is
a lot that has to happen between your familiar body and this weird
robot-body.” However, the speaker did not get into the technical de-
tails of how to achieve such interactions. Instead, he demonstrated
the development of shared language through videos showing ges-
tures implicitly commanding drones, akin to what the participants
needed to accomplish in the challenge. Not a single crash or mal-
function was shown at any point during this presentation.

Second, in striking contrast to the opening talk, the subsequent
tutorial focused almost exclusively on technical details (see Fig. 3).
It was centered around possible issues and how to avoid them. Even
the simplest operation, such as getting the drone to take o�, was
narrated as an activity that requires careful preparations. These

2The study does not fall within the purview of ethical review in the country where
the authors work.
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Figure 3: The programming tutorial that outlines how each
teams can edit the code and replace broken propellers on
their drones.

Figure 4: Left: a team of pilots examines code on a laptop.
Right: discussions during the trials in the drone arena.

include both mechanical aspects, such as assembling the drone in
the right way, balancing it manually, and checking it meticulously
before turning it on, and actions related to software, since the
development environment must be set up correctly and connected
wirelessly to the drone, before issuing any command. Roughly half
of the time of the tutorial went into describing what could go wrong
and how to work around those issues. The speakers conveyed lots of
"hands-on" experience of the sort that is rarely available in manuals.

Third, discussions during the trials (see Fig. 4), took place be-
tween the participating teams and our technical support. They were
mostly related to questions about how to understand drone behav-
iors in the many cases when the drone did not behave as expected,
the reasons for why the drone crashed, and how to repair it when
something broke. Participants came to the technical experts with
many questions:

How come the drone was hovering stably for several
seconds and suddenly lost control?
Even without imparting any command, the drone keeps
moving around... why?
How can I see at all what the readings of the onboard
sensors are, to check what the drone is doing?

The technical experts’ responses acknowledged the high degree of
unpredictability common for drones:

"There may be di�erent reasons why it doesn’t take o�.
Sometimes the best solution is to turn it on and o�."
"It is really super random. Sometimes it could work,
sometimes it doesn’t."

These situations are arguably an instance of the visibility prob-
lem [44], common in embedded system programming. Resource-
constrained embedded systems, such as drones, often do not run

full-�edged operating systems and, hence, lack most of the inspec-
tion and debugging facilities. The nano-drone, Crazy�ie, adopts a
form of assisted �ight (see Sec. 2), and the �ight controller aboard
the drone runs on bare hardware. Understanding the execution of
programs on a device that has no operating system and only a few
LEDs for debugging is often compared to "looking at an elephant
through a keyhole" [44]. Tools exist to address this problem [65] but
they are hard to approach for beginners.

During the challenge, the issues experienced by our participants
arose mainly due to two factors. First, the sensors aboard the drone
used to detect human gestures are both slow and imprecise. The
time it takes to detect a nearby obstacle may reach up to a few
seconds, defeating the illusion that a mutual relationship between
the drone and the pilot could develop with the same time dynamics
as between people. Second, the localization system (see Sec. 3.2)
requires constant line of sight between the base stations and the
drone, or the latter loses control and crashes. The participants did
not immediately realise the consequences of this and how the pilot
needed to this feature into account.

As the technical experts progressively answered the participants’
questions and explained the reasons why problematic situations
occurred, participants entered a mutual adaptation loop, adapting
the programs piloting the drones and/or their own bodymovements,
depending on what factor they considered easier to handle.

The transition from the early representation of smooth and ex-
pressive human–drone interaction in the opening talk, to brittle
behaviors and crashes in the arena was abrupt. This shift in per-
spective is apparent also in the participants’ programs: Through
applying established code inspection techniques [17], we were able
to shed further light on how the di�erent narratives around drones
manifest in participants’ coding. As concrete evidence, AppendixA
reports an excerpt of the program by the team Bellman Brothers.

Many teams began with high ambitions, aspiring to the forms of
HDI shown during the opening talk. Those interactions were rich
and smooth, yet what was not apparent in the opening talk were
a number of technical features that made the input to the �ying
drone much more accurate than the on-board navigation sensors
that we asked our participants to use. Participants came to realise
this discrepancy through trial and error.

After multiple crashes and conversations with the technical team,
participants turned to dealing with the inaccuracy of the onboard
sensors. This is where they started commenting out portions of code
that were originally meant to replicate the human–drone dynamics
seen in the opening talk. This is evidenced, for example, in the ex-
istence of multiple versions of the function get_speed_command
in Bellman Brothers’ program (AppendixA), or in their work on the
which_region function, which is de�ned and implemented, but
ultimately never used. These functions were eventually considered
not suited to deal with the unreliable inputs and, thus, dismissed.

The process of shaping drone behavior based on its actual capa-
bilities was taken to extremes, with entire functionality typically
used on drones intentionally excluded from the �ight control loop
(such as the processing of inputs from the altitude sensor or from
the �ow sensor). The code in the main function of AppendixA
used a workaround to exclude both sensors from the processing
of the extended Kalmann �lter used for �ight control [55]. These
sensors are normally used to achieve better �ight stability. For the
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Figure 5: Left: Pilots probe the drone through movement to
�nd out its capabilities and limits. Right: Two pilots examine
a drone while sensor input appears on the screen.

challenge, however, four teams out of �ve decided to use these
sensors to command the drone in the vertical direction using their
gestures, and eventually gave up on doubling these inputs for the
�ight control loop, considering this to be too complex to achieve.

Participants looked for other approaches that o�ered greater
simplicity and robustness against the volatility and inaccuracies of
the onboard sensors. From pretending that distance readings are
millimeter-accurate, for example, the teams realised that the ranges
they should work with are rather tens of centimeters. The �nal
program of AppendixA determines drone reactions to the pilot’s
gestures based on multiple hard-wired parameters, likely obtained
through trial and error. These observations apply to the programs
of three out of the �ve participating teams (Bellman Brothers, Flying
Ferrets, and RoboNerds). Rather than shaping the drone behavior
programmatically, two teams, Robo Geeks and Spark Speed, chose
to focus on shaping their own bodily movements, instead.

5.2 Exploring Drone Capabilities
Once the participants realised that the HDI seen in the opening talk
was not attainable out of the box, they started a process of exploring
the drone’s capabilities to �nd out what was actually feasible. This
spanned both the drone’s hardware and software. As one participant
described, it involved collaborative experimentation with di�erent
parameters where one team member was in charge of tweaking
the parameters by the computer while another interacted with the
drone: "A big part of the problem is just tuning the parameters: the
velocity, tuning the push distance, and so on... So we have to try and
see is it too fast now? Is it too slow? Is it... Do we need to move too
close to it to make it react? So we just try di�erent parameters and
see how well it works and our rules is, we don’t have the rules, but
Leif deals mostly with the computer, he changed the parameters. I’m
mostly with the drone, setting it up and moving with it."

Throughout the event, teams were constantly experimenting
in the arenas: changing one parameter at a time and verifying
the e�ect of those changes on the drone behavior. This required
plenty of touching and bodily adjustments to the drone, checking
connections among the di�erent components, understanding the
weak points and what parts are prone to break, plus �xing whatever
broke. We observed participants tilting drones, trying to identify
its top and bottom, and sometimes hurting their �ngers on the

propellers in the process. In interviews, participants brought up
feelings of concern, both for themselves and for the drone: “When
the drone comes, comes to you from this part [pointing at the torso]
I feel more vulnerable, but when it is around a foot, I am not as
much vulnerable. When it is around a head or the eye, I feel like I
am in danger. But when it is just going around on the ground, I am
just worried that the drone itself gets damaged so they cannot �x it".
The participants also reported on learning to adjust to the drone
and developing more and more courage in handling these fragile
devices: “They always look so fragile. So �rst you are afraid to just
handle them: whether you will just destroy it or a sensor will come
out. So you have to handle them with a lot of care.” These feelings
became essential to participants’ developing understandings of the
drone capabilities, even though they are not commonly mentioned
in papers or drone manuals.

Some teams eventually created boundary situations to push the
drone to its limits to determine where those are. One team admit-
ted having tried out an approach whereby the drone coped with
obstacles by physically bumping into them, making the sensing
problem essentially irrelevant as the drone would directly feel the
obstacle when it touches it. The team quickly abandoned this idea,
facing irremediable breakages at every encounter with an obstacle.
In general, crashes became the norm rather than the exception;
participants appeared surprised and felt amused whenever things
actually (momentarily) worked. Some participants performed sev-
eral mock-up �ights. As shown on the left of Fig. 5, team RoboNerds
entered the arena with the drone in their hands and mimicked an
actual run. While doing so, another team member was monitoring
on a laptop the sensor readings coming from the drone as it was
approaching obstacles or being subject to di�erent piloting gestures.
The data was instrumental to understanding the accuracy of the
sensors and tuning the di�erent parameters in the code accordingly.

These procedures may be regarded as a crude, bodily approach
at solving the visibility problem. Rather than relying on dedicated
industry-strength solutions, participants engaged in an intimate
form of bodily interaction with the drone to "get to know it", as one
of the participants in Flying Ferrets put it. These activities – not
required by the challenge but ultimately productive for achieving
its objectives – unfolded over time, likely because the teams were
gaining deeper understandings of the drone and eventually "got to
know it", as the same participant declared at the verge of the �nal
day, feeling con�dent of their outcome.

As the trials progressed, and especially during the actual chal-
lenge, some participants started interacting with the drone as if it
was a living entity, capable of more advanced communication than
its actual capability. We observed participants talking to the drone,
suggesting where to move, and making gestures akin to giving
directions to another person rather than to a robot. While such ac-
tivities could, of course, be interpreted as directed toward the other
people observing the pilot’s interaction with the drone – making
one’s actions and struggles accountable to a human audience – here
they came across as genuine attempts at human–drone interaction.

5.3 Training the Drone vs. Training the Pilot
We observed strikingly di�erent approaches at shaping the human–
drone interaction necessary to tackle the challenge.
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First, adopting an emphasis on training the drone, some teams
largely concentrated their e�orts on producing a program that
was su�ciently intelligent to handle sensor inaccuracies and could
accurately respond to the pilot gestures. Bellman Brothers’ code
(AppendixA) is one such example, but this approach was taken to
an extreme by another team, the Flying Ferrets, whose program we
report in Appendix B. This team demonstrates how background and
prior skills impact the shaping of HDI: members of Flying Ferrets
were enrolled in an Aerospace Engineering program and had solid
knowledge in �ight control, including the use of Kalman �lters [66]
for state estimation.

Flying Ferrets was the only team who wrote their code from
scratch, instead of adapting one of the examples provided during
the tutorial. Their parameter setting and velocity estimations, as
implemented in function compute_velocity, demonstrate their
intimate knowledge of where and how input data is gathered and
of the sensitivity of velocity estimations. The team explicitly de-
�ned parameters to strike a trade-o� between maximum veloc-
ity and accuracy of control in their code, as in ActionLimit and
VelocityLimit. Flying Ferrets were also an example of defensive
programming [51], which they used to handle sensor inaccuracies.
Defensive programming is the creation of programs designed to
avoid problematic issues before they arise. One common method
for achieving this is through code that is meant to deal with any
possible scenario thrown at it, making the program able to run
properly even through unforeseen situations.

Defensive programming often relies on considering situations
whose concrete occurrence might not ever take place.3 We found ev-
idence of defensive programming, for example, in the change of the
default reading frequency of sensors, which many teams applied up
to a 5G increase compared to the factory con�guration. Obtaining
more data allowed these teams to apply aggressive averaging and
�ltering to exclude outliers. Team RoboNerds implemented bu�ers
of up to 100 readings to do so, which is 10 times more than what
is normally performed on most existing �ight controllers [7]. This
increases the drone stability during �ights, in exchange of slightly
higher energy consumption. The latter, however, was not an issue
during the challenge, as the battery lifetime far exceeded the dura-
tion of a single run and the technical support made plenty of spare
batteries available. Most teams also capped the maximum drone
velocity down to half of what the Crazy�ie can do, in an attempt to
make things easier for the human pilot.

Second, at the opposite extreme, we �nd teams focused on train-
ing the pilot. These teams made very limited changes to the example
code provided during the tutorials and, instead, spent more time
in the arenas to gain the necessary piloting skills. One team, Robo
Geeks, only added 7 lines of code to one of the tutorial examples
and spent most of their time in the arenas running that program,
learning how to best command the drone with their gestures.

According to our recordings of the event, Robo Geeks spent
roughly 40% more time in the arenas than any other team. During
the actual challenge, Robo Geeks were inadvertently penalised for
this approach – which held a lot of promise throughout the trials –

3Existing statistics [12] report that, when adopting this form of programming style,
roughly 30% of the produced code is never actually executed in production. In many
ways, the concept is akin to that of defensive driving, in that problems are considered
before they arise and not because they occurred in the past.

Figure 6: A pilot uses cardboard paddles as an extension of
his body to pilot the drone.

because none of the code examples we provided was su�cient to
reach all markers. The marker placed on one of the obstacles, in
particular, required changing �ight altitude, which was not possible
with the example code alone. Robo Geeks recognised the problem on
the last day and, after the initial disappointment, decided to simply
skip the problematic marker during the challenge, hoping their
well-rehearsed piloting would compensate for this shortcoming by
allowing them to collect all other markers in a faster tempo.

As a result of shaping their own movements, some teams even-
tually discovered new and unconventional ways to pilot the drone.
Team Spark Speed, for example, realised that in addition to the two
inputs provided with their hands, further input may be provided by
other body parts, especially the belly. This allowed them to better
control the drone as it could be piloted through one additional input.
Another team, Cyber Ravens, came to think that their own hands
were one source of sensor inaccuracies. This has some technical
foundation: the beam of the drone sensors is narrow, so extending
the sensed surface may provide more accurate and stable readings.
To extend the pilot’s physical body so as to provide better inputs
to the drone, Cyber Ravens eventually opted for wearing self-made
cardboard paddles to command the drone (see Fig. 6), to extend the
area that the drone sensor could detect.

Most pilots also performed atypical, stilted movements to cope
with the localization system’s need for line of sight between the
base stations and the drone. Some of these put signi�cant strain on
the pilot’s body (see Fig. 7 for an example).We observed participants
bending their backs to stay in the vicinity of the drone with their
hands and provide continuous piloting input without standing in
the way of the localization system. During the trials, one participant
attempted piloting the drone on his knees, but this turned out too
impractical and unsafe as the drone propellers ended up on level
with the participant’s eyes.

In the end, team Spark Speed won the challenge, striking the
best trade-o� between shaping the drone behavior and extending
their own capabilities by using not just their hands, but other parts
of the body as piloting input. Team Cyber Ravens ranked second,
thanks in part to their use of cardboard paddles as an extension of
the pilot’s hands. Flying Ferrets, with their accurate tuning of state
estimation algorithms, ranked third.
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basestation

drone

Figure 7: A pilot moves in a stilted manner to maintain line
of sight between Lighthouse basestation and drone.

6 SOMATIC ENGAGEMENT IN THE DESIGN OF
HUMAN–DRONE INTERACTION: WHAT IS
NEEDED?

We acknowledge that our drone challenge is an edge case in that
we look at a group of people who are given limited time to get to
know the drone and shape their interaction with it. Our call for
action, here, is based not only on participants’ experiences, but
also on the drone experts in our team, as well as our prior work in
the area [16, 39, 41–43, 50]. Our research is geared to understand
human–drone interaction so as to better support it, with a par-
ticular focus on design-through-use, as opposed to the traditional
design for intended use (see [53, p.79-80]). This approach to design
recognises that technology is rarely used exactly as intended, but
is, instead, adapted (or subverted) by users to �t their unique con-
text. This is re�ected in our data – for example, in how each team
approached the challenge di�erently, some adapting their bodies,
others the code, and others a mixture of both. This also resonates
with the broad engagement with drones we have seen in a variety

of designerly settings [16, 24, 37, 39, 41] - some of which we will
draw upon here.

Design-through-use is a way of, not only understanding human–
drone interaction, but to generate new ways of conceiving it. As
drones move into domestic and social contexts, new ways of en-
gaging or understanding them – ones suitable for non-engineers
and technical novices – are warranted. We need to make space
for people to actively shape technology into their lives, including
helping designers to situate them into their creative processes. This
is why we deem our drone challenge with ‘novices’ a generative
research setting, similar to Gamboa’s research on children engaging
with drones [22]: it sheds light on the inseparable coupling between
perception and action when controlling a drone with bodily inputs,
and on what is needed to support explorations that result in novel
interactions through the mutual shaping of pilots and drones. As
we argue next, getting to know drones aesthetically is a deeper and
more involved process than merely learning to understand how to
program them, how to handle their broken propellers, or how to
�gure out the sensor systems within them.

6.1 Beyond Opening The Black Box
Messy details of interacting with the drone were at the core of the
challenge. The team work mostly consisted of failures: crashes and
breakdowns led to better understanding of the drone, fostering
bodily knowledge on how to handle the drone, how to optimise the
code, or how to make sense of sensor readings. This is exempli�ed
by how Spark Speed discovered – through trial and error – that
di�erent body parts o�ered more reliable inputs, helping them in
understanding the drone’s onboard sensors. Handling failure, there-
fore, occupied the teams for most of the three days of the event -
only the team runs during the challenge �nale itself went, for the
most part, smoothly. That said, even the �nal performances of the
winning team were, at times, interrupted by technical problems.
These constant problems and breakdowns are in stark contrast to
the narrative of success [31] that we often see in design reports.
However, as we argue here, and as has been highlighted in prior
work [3], not only are real-world robots far from perfect, but break-
downs are, in fact, essential for design practice. They can help us
develop technical qualities, articulate mutual understanding within
a design team, and allow the team to explore and exploit a�ordances
of the technology at hand [50] – in this case, understanding the
complexities of drones. As Fdili-Alaoui argues on the tensions be-
tween technology constraints and artistic aims [18, p. 1204]: "Some
of the readers might think that this paper draws a dark portrait of
technologies in art, how can we �x this? There is no problem here,
there is no solution neither. Artists are experimenting with technol-
ogy, facing its resistances, pushing its limits." We, therefore, echo
calls to refrain from binary dichotomies between successes and
failures [31].

Considering the teams’ explorations to get to know the drones,
we note that the challenge involved not so much coding – although
some teams chose to write their own – as tweaking parameters:
changes were often not algorithmic but adjustments to improve
how the drone’s sensing picked up on the pilot’s movements. The
challenge, then, could be framed as changing, rather than shaping,
the drone. Importantly, we have illustrated numerous situations
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where what is trained and shaped is not the drone but the pilot. As
reported above, one of the teams decided to focus almost entirely
on training their pilot, adjusting their program only minimally. This
approach of focusing on training the pilot held a lot of promise
throughout the trials, even though it ultimately introduced some
challenges, in particular when the obstacle course was changed
ahead of the challenge runs in a way that would have necessitated
the drone to have capabilities that it had not been coded to have.

We also saw many instances of pilots making bodily movements
to �gure out how the drone would respond: while the pilot was
moving with the drone, another team member looked at the screen,
trying to followwhat data is generated and when exactly something
goes wrong. It is, after all, impossible to move with the drone while
also looking at a laptop screen. This begs the question whether
we could have given the teams better tools to explore drone be-
haviour. We note a fundamental gap between coding the drone
behaviour and the drone’s behavior once the program runs. The
issue largely stems from the visibility problem [44] we discussed in
Sec. 5.1: much happens "inside" the drone that is not visible from the
"outside". Since embedded programming environments for drones
are still rather rudimentary, drones often produce incomprehen-
sible behaviors. As Ajaykumar and colleagues found in a survey
on end-user programming of robots [2], for the most part, the ro-
bot remains a black box. While the survey focused on “end-user
program speci�cation” – in essence, tools designed to democratise
the complexities of programming robots – our work, while in part
similarly motivated, has a di�erent emphasis: Here, the design iter-
ations and mastering of the interactions relied heavily on the felt
experience of the participants whilst they were directly controlling
the drones. We observed that, through "feeling out" and observing
what kind of movements resulted in the most stable connection
between the drone and the lighthouse, our pilots developed atypical
and stilted movements. This somatic aspect is largely missing from
the review article [2], prompting us to call for its incorporation into
the programming environment. While more can be done to create
better embedded programming environments [47] – simulators,
visualisations, proper debugging, and ways of watching live data
streams – the issues we uncovered here also point to an underlying
problem relating to somatics and bodily knowledge.

6.2 Perception–Action Loops
As Suchman [60] argues, to act intelligently in a situation, ma-
chines need to become readable/writable. A pre-requisite for this
is that their inner states must become visible. Machines must con-
vey their inner state, making them readable, but they should also
provide us with inscribable surfaces that allow us to dynamically
change our plans and behaviours to attain our goals depending on,
and in response to, what the machine does [60]. We acknowledge
that achieving this within the limited computing and energy en-
velop of nano-drones, usually equipped with low-power resource-
constrained microcontrollers, is incredibly challenging. Yet, we
argue that to understand drones, we cannot focus solely on watch-
ing their behaviour, nor on �guring out how they sense human
movement. We need to enter a perception–action loop where we can
both probe and change the drone’s behaviours in a tight loop.

To better explain what we mean by perception–action loops, we
draw on the evolution of personal computing and an analogy to
direct-manipulation. As discussed by Mueller [48], an analogue
between early compilers and today’s modern interactive compi-
lation techniques can be drawn to modern technologies, such as
3D-printers – or, in our case, drone behaviours. Instead of �rst
sending a blueprint to the 3D-printer and then waiting until the
object is drawn, Mueller imagines interactive, direct-manipulated,
printers where you can, on the �y, modify the printing process.

One of Mueller’s systems, FormFab, allows for such direct control
of a 3D-printer, speci�cally, of the vacuum forming process which is
typically a high-temperature moulding process that only allows for
one shape to be explored at a time. FormFab uses a work piece that,
when warmed up, becomes compliant and can be reshaped. To re-
shape it, users direct-manipulate a pneumatic system interactively.
As they do so, they see the shape in the 3D-printer change in
real-time. FormFab allows the user to select a section of the work
piece to be heated by a robotic arm. This section, then, becomes
compliant and can be reshaped bymanipulating a pneumatic system
interactively. As users interact with the system, they see the plastic
sheet change in real time as a result of the pressure changes.

Löwgren asks us to re�ne the design of such systems until the
experience becomes pliable [45]. He argues that a pliable interaction
feels like a tight loop between eye and hand, between action and
response. For example, when zooming on a map, the pinch gesture
makes us feel as if we are inside the map, a very di�erent experience
than when using a control panel on the side of the map. The pinch
gesture allows for a tight coupling between �nger movement and
the map. This renders immediate pleasure and a sense of involve-
ment. The objects inside the system become tangible and real to us.
Löwgren [45, p. 86] argues that "[p]liability is a sensuous quality,
having to do with how it feels to use the artifact in the here-and-now
of the use situation, and as such it plays a role in understanding the
aesthetics of interaction." It goes beyond function, providing for a
somatic aesthetics of sort.

Our drone challenge participants found roundabout ways of cre-
ating for those perception–action loops. As discussed in section 5.2,
one team placed one team member in front of the computer while
another gestured around the drone, so that they, together, could
see what sensor data would be rendered depending on the settings
in the code. Another team �gured out that wearing a cardboard-
paddle would enhance the feeling of directing the drone as the
readings became less �aky, thereby fostering a stronger sense of
bodily connection with the drone. In both cases, teams were seeking
a stronger somatic feel for the sensing of the drone.

While it can be argued that these are novice behaviours, these ex-
periences rhyme with our own struggles in creating human–drone
interactions and dancing with drones. Note, however, that we are
not advocating for the willfulness of the drones to be entirely re-
moved or for aiming at interactions that are always smooth and
�awless. Based on our design process for drones on the opera stage
[16], we argue that some forms of resistance or glitches in a system
can be productive in shaping the aesthetics of the performance.
When the choreographer of the opera-drones interacted with them,
she was keen to explore those cracks and problems, but they �rst
had to be made felt and somatically known to her. A slow process
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of continuously exploring and feeling, through movement, inter-
leaved with re-programming the drones, until she and "the drones’
technological bodies �nally came to a state where she could adjust and
coordinate her responses in a sort of pre-re�ective state. This intercor-
poreal connection is not something that just arose ‘naturally’. It was
a learning process that took time. Åsa had to learn to understand the
drones’ ’otherness’ and ability to follow her, a process that required
kinesthetic engagement." [16, p. 5]

In summary, we argue for translating the pliability quality into in-
teraction tools for drones, engaging users in tight action–perception
loops that let them somatically feel (and appreciate) the drone ac-
tions – wilful and annoying as they may be.

6.3 It Is Not Natural: Mutual Movement-based
Shaping

As Norman [49] points out, designing for some ‘natural movement’
will not help as meaning-making arises from seeing the conse-
quences – the feedback – of a gesture, or movement, as it unfolds in
real-time. This feedback needs to be overtly accessible throughout
the whole interaction. It is an interaction that is learnt, but that
learning can only happen if we can make sense of the interaction.
This becomes particularly di�cult when we make gestures at a
system and cannot disambiguate whether the gestures were done
incorrectly or perhaps were not ‘seen’ by the system. Norman [49,
p. 6-7] frames the problem as: "More important, gestures lack critical
clues deemed essential for successful human-computer interaction.
Because gestures are ephemeral, they do not leave behind any record
of their path, which means that if one makes a gesture and either
gets no response or the wrong response, there is little information
available to help understand why. The requisite feedback is lacking".
Drawing on these ideas, programming environments for drones
could be of substantial help, if they could not only make those
action–feedback loops somatically felt in the moment and as they
unfold over time, but also provide relevant feedback of whether the
drone ‘recognised’ a gesture, noted a gesture but could not decode
it, or did not even ‘see’ the pilot. Performing an action with the
drone without knowing for sure if it was perceived by the drone
makes the learning process very complex.

Crucially, though, issues with drones do not arise solely from
a lack of accurate real-time feedback from the software execution
in the drone. The material body of the drone itself is fragile and
error-prone. In our challenge, we noted repeatedly how teams were
mysti�ed as to why their drone acted the way it did. Was it the
battery failing? A broken propeller? A sensor malfunction? Teams
had to tease out the fragilities of the drone’s physical body from
other problems, such as a bug in their code, or anomalies, like when
the pilot gets in the way of the positioning system. Telling the
di�erent potential sources of trouble apart was far from trivial. The
messiness of the design process the teams experienced does not
dismiss but rather supports, our call for programming environments
that elucidate action–feedback loops for somatic appreciation.

Movement-based programming systems [19, 27] are gaining pop-
ularity as designers increasingly work with complex algorithms
they have not been trained for [6, 68]. We see the somatic training
of designers who interact with these movement-based systems as
part of a multi-faceted approach to the somatic processes and bodily

understanding required to utilise these systems to greater e�ect.
We argue that systems purporting to elicit supposedly ‘natural’ ges-
tures or movements [8] often assume that such bodily knowledge
does not need to be ‘trained’ or ‘developed’ in the same way as
technical skills, such as coding. However, our study suggests that
the cultivation and development of somatic capabilities also plays
a fundamental role when developing movement-based robotic sys-
tems. A similar argument is made by La Delfa and colleagues [42]
who show how participants can develop strong understandings
of the inner workings of a drone, given that the drone provides
enough somatic signs and signals conveying its state.

Similarly as regular programming systems evolved from textual
representations of the application logic to graphical ones, our call
for action here is to push programming environments for drones
and the like to elucidate perception–action loops through somatic
engagement. The aim should be to support people’s engagement
in these loops rather than forcing them to break out of it which
is what happened during the challenge when participants needed
to go back-and-forth between checking the code on a screen and
piloting the drone. We envision augmenting human–drone interac-
tion design processes by making space for somatic sense-making
of autonomous robot technologies [25, 26], as this would serve
designers in their e�orts to uncover the various possibilities – both
creative and technological – o�ered by such technologies [18].

7 EXAMPLES OF DESIGNING FOR
PERCEPTION–ACTION LOOPS

Myriads of possible designs can help make the black box of the
drone engage in an open-ended perception–action loop with its
pilot. Here, we will provide a few examples on how it can be done
to make it easier to grasp our conceptual discussion. Our purpose is
not to provide an ultimate solution, as we do not consider there to
be any solution that would work for every context. Furthermore, the
unexpected breakdowns, crashes, and the wilfulness of the drone
are, as we argued above, not just a problem to be (partially) �xed,
but also an opportunity for aesthetic expression.

We organise the section in line with three themes. In addition
to drawing on design work our team members have created for
other contexts (see in particular [16, 39, 42, 43]), some of the drone
behaviours we discuss are ones we implemented for a second drone
challenge that we arranged a year after the one described above.4

7.1 Readable/Writeable Drones
As shown in our account of the drone challenge above, it is not
always clear to the pilot when the drone is listening to them, or
when it is lost, or doing its own thing. Here, we use an example by
La Delfa and colleagues – the How to Train your Drone (HTTYD)
system [39, 42, 43] – to illustrate how a drone can communicate, in
an embodied manner, when it is ‘looking for’ and possibly locates
the pilot.

In HTTYD, the participant wears a tracker on each hand (see
Fig. 8). These trackers form a triangle space with the drone. Until the
4Due to space limitations, we will not go into details of this second drone challenge but,
in short, we asked participants to come and dance with a drone. A few trained dancers
signed up but most were amateurs. The participants were not asked to program the
drone at all, but, instead, to get to know it, explore its expressiveness, and, ultimately,
choreograph and prepare a performance.
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Figure 8: How to Train your Drone – a person wears trackers
on their hands while controlling the drone that hovers near
his head.

drone �nds the pilot, forming the triangle with the hand trackers,
the drone spins in place, emitting a clicking sound. Once it �nds
the position of the pilot’s two hands, the spinning slows down, and
the clicking sound becomes progressively faster, coalescing into
a rising tone. When the position of the two hands is successfully
determined, the spinning comes to an abrupt stop, the drone hovers
in place, and turns to face the participant. The rising tone is cut. A
singular alien ‘eye’ on the drone looks at the pilot. This signals that
the drone is now ready to move with the pilot (and in fact, learns
the dimensions of the current triangle formed between them).

This spinning behaviour reveals the drone’s ‘inner state’, telling
the pilot when the drone is attending to them. This makes the
drone readable. Pilots of HTTYD learned how to wait, keeping still,
until the drone eventually detected them. Only then was the drone
available to learning a new position, opening its inscribable surface.
In the HTTYD system, the drone learns a new relative position of
the hands this way, and can, as a result, start moving with the pilot,
becoming writable.

The HTTYD example illustrates one way of portraying the inner
workings of a drone in a manner that neither makes the drone
into something that it is not (anthropomorphising), nor tries to
portray its inner workings "truthfully", in a one-to-one-manner.
Not all black boxes need to be opened. Instead, La Delfa designed
an interaction we can somatically, kinaesthetically, perceive, learn
and act on – even letting us change the drone’s behaviour over
time.

7.2 Mutual Shaping: A Movement-based
Learning Process

Building on the insights from the drone challengewe have described
above, we implemented a few minimal, basic behaviours for the
second drone challenge that, so to say, let the drone become a
partner ‘in the dance’ with the pilot. We put a camera at the front
of the drone so that it could ‘see’ the pilot (who we can also think
of as the dancer) and react to their movements.

The drones were programmed to recognise the dancer’s body
and move with it. As drones accelerate and decelerate in their own
manner, with slight delays compared to the human dancer, wobbling
at times, this ‘moving with’ did not feel or look like a straight

line between dancer and drone, but more of a mutual leading and
following. The dancers had to learn to adjust to the tempo and
movement patterns of the drone. When the dancer was not moving
(or the drone failed to ‘see’ the dancer), the drone would ‘dance’ on
its own, circling around the space, moving up/down, left/right. If
the dancer got too close, the drone would move ‘around’ the dancer
(or other obstacles), in order to avoid crashing. This helped to avoid
breaking the illusion of a �ow between the two.

To engage with these behaviours, the dancer, at times, had to
let the drone complete its own (autonomous) movement. If the
dancer got in the way of its behaviour right when it was making,
for example, a circle around the room, the drone would have to
compensate for the disruption – at times crashing, at other times
wobbling, stopping, or hovering. The dancer had to learn to see the
drone more as a real dance partner with its own agency, letting it
complete its dance before directing it to move in some particular
direction. Once the dancer knew what to expect (in an embodied,
pre-re�ective sense), they could shape the aesthetic expression
within the limits of these simple drone behaviours. Here, dancers
have to adjust their gestures to the drone’s algorithms, changing
their movements in order to dance with the drone. In other words,
dancers’ movements are shaped by the drone’s behaviours.

As a second example of shaping and being shaped by the drone
behaviour, let us return to the opera drones. We discussed above
how the choreographer, Åsa, came to a somatic understanding,
a pre-re�ective kinaesthetic meaning-making process [16]. This
intercorporeal connection is not something that just arose ‘natu-
rally’. It was a learning process that took time. Åsa had to learn
to understand the drone’s ‘otherness’ and ability to follow her – a
process that required repeated somatic engagement. Her learning
process was interleaved with re-programming the drone based on
her feedback. For example, the algorithm for following Åsa’s hand,
moving with her movement, was made so that Åsa could move at
the right speed to create a "bent" circular gesture, rather than going
straight from A to B. This opened up the drone behaviour to Åsa
so that she could start gesturing to it – "go there". The one-year
process of mutual shaping between Åsa and the drone became a
fertile ground for the aesthetic expression of the resulting opera
performance.

These two examples illustrate ways of opening the drone design
so that meaning-making can arise between drone and dancer/pilot
in a somatically felt sense.

7.3 Making Sense of the Willful Drone:
Disambiguating Crashes

We will never fully avoid drone crashes or other unwanted drone
behaviours. Instead, we believe the aim should be to help the pilot
disambiguate the reasons for crashes and other problems, making
it easier to understand what went wrong and why. For example, a
problem in the �rst drone challenge described above arose when
the pilot got in the way of the beam of the lighthouse (see Fig
7), causing loss of orientation and potential crashes. This issue
was not immediately clear to participants who were new to the
drone setup, and it took them time to understand why their drones
kept crashing. For the second challenge, we decided to replace the
lighthouse solution through adding a camera to the bottom of the
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drone. The camera allowed the drone to look down at the �oor,
letting it stabilise itself by keeping its distance from the ground.
By drawing a line on the �oor around the performance space, and
letting the camera identify this delimited space, the drone could
keep away from the edges of the performance scene. Not only did
this reduce the number of crashes, the behaviour of the drone also
became somewhat more predictable.

Note that if dancers put their hand or foot underneath the drone,
it lost its bearings as the limb got in the way of ‘seeing’ the �oor,
moving in unpredictable ways. This might sound like a bad solution
– and there are surely other ways to design the sensing of location
that could be better – but the advantage lies in the clarity of the
behaviour. It is easier to �gure out what is happening if the action–
perception loop is tight. Putting a foot under the drone immediately
makes it ‘go crazy’, while putting one’s body in-between the drone
and the lighthouse did not render equally clear feedback.

Rather than assuming that we can design perfect drone be-
haviours, avoiding crashes altogether, we propose acknowledging
that crashes and other unintended behaviours will happen. We
cannot predict every action that a pilot might do, but once we see
them, we can note whether the relationship between action and
what is perceived is clear – step by step modifying the drone be-
haviour until reasons for crashes are easier to disambiguate for the
pilot. In this example, dancers might even �nd this unpredictable
behaviour aesthetically interesting and choose to integrate it into
their performance.

8 CONCLUSION
We contribute an empirical, somaesthetically focused account of
current challenges in how to shape human–drone interaction. Re-
porting on a three-day drone challenge, we have illustrated how
teams 1) shifted from aiming for seamless human–drone interaction,
to seeing drones as fragile, wilful, and prone to crashes; 2) engaged
in intimate, bodily interactions to more precisely understand, probe,
and delimit their drone’s capabilities; and 3) adopted di�erent strate-
gies, emphasising either training the drone or training the pilot in
a somatic, movement-based manner.

Drawing upon insights from the drone challenge, a second chal-
lenge we organised a year later, as well as further drone design
projects our team members have worked on, we argue for support-
ing somatic engagement in the design and development of drones
and drone tools to: elucidate and enable tighter perception–action
loops; rely on somatic signs and signals to let pilots feel the drone’s
inner states rather than having to reason about them; and, at times,
make unwanted drone behaviours, such as the drone losing track of
where it is, be triggered by movements that pilots can more readily
make sense of. Embedded programming tools for drones do not
only need to allow programmers to adequately change the code or
sensor �lters of the drones, but also to ‘train’ their pilots through
providing somatic signs and signals that can be probed and felt in
real-time [41]. This will let pilots learn about how to change their
own movements to �y the drone, until they create a new way of
moving together with the drone. It will be in this interplay, between
shaping and being shaped by the drone – perceiving and acting
on what is perceived through all the senses – that the aesthetic
exploration of human–drone interaction will thrive.
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A CODE EXAMPLE
An excerpt of code produced by team Bellman Brothers. We use #... to omit lines of code that are not relevant to the discussion. Because of
formatting, we could not keep the regular Python indentation. The whole program is ⇡ 400 lines of code.

from functools
import reduce

import time
from cflib.positioning.motion_commander

import MotionCommander
from Utility.extension.decks.deck

import DeckType
from utils

import ActionLimit , VelocityLimit ,get_vx , get_vy
from Utility.extension.extended_crazyflie

import ExtendedCrazyFlie
from Utility.extension.decks.z_ranger

import ZRanger
import numpy as np
import matplotlib.pyplot as plt

SPEED_CLIP = 1
BATTERY_LIMIT = 10
ADJUST_VELOCITY = 0.3 # [m/s]
threshold = 0.1 # [m]
DEFAULT_HEIGHT = 1
prev = 0 # 0=hovering , -1=lowering , +1= raising
def which_region(d,push_range ,pull_range ,unsensible_range ):

# ...

def adjust_height(zrange_state : float ):
global prev
h = zrange_state
if (h < DEFAULT_HEIGHT + threshold) and prev < 1:

prev = 1
# zranger.contribute_to_state_estimate = False
# disable zrange contribution
return ADJUST_VELOCITY

elif (h > DEFAULT_HEIGHT - threshold) and prev >-1:
prev = -1
zranger.contribute_to_state_estimate = True
return -ADJUST_VELOCITY

elif prev != 0:
prev = 0
return 0

class state_to_filter:
def __init__(self ,n_steps ):

self.array = np.zeros((n_steps ,))
self.mean_value = 0
self.measurement_ready = None

def add_new_value(self ,value ):
self.array = np.hstack ((value ,self.array [: -2]))
# mask = (self.array != 0.)
self.mean_value = np.mean(self.array)
# self.measurement_ready = self.array [0]!=0

n_avg = 20
front_range = state_to_filter(n_avg)
back_range = state_to_filter(n_avg)
left_range = state_to_filter(n_avg)
right_range = state_to_filter(n_avg)

#def get_speed_command(distance ,lower_bound ,upper_bound ):
# ...

def get_speed_command(distance ,lower_bound ,upper_bound ):
if distance >lower_bound and distance <upper_bound :

gap_width = np.abs(upper_bound -lower_bound)
current_gap_dist = np.abs(distance -lower_bound)
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return 0.4
else :

return 0

def script(multiranger_state : dict , mc : MotionCommander) :
# ...

front_range.
add_new_value(multiranger_state[�front �]/1000)

back_range.
add_new_value( multiranger_state[�back�] /1000)

left_range.
add_new_value( multiranger_state[�right �]/1000)

right_range.
add_new_value( multiranger_state[�left�] /1000)

v_front =
- get_speed_command(front_range.mean_value ,

push_range_start ,
push_range_end)

v_back =
get_speed_command(back_range.mean_value ,

push_range_start ,
push_range_end)

v_right =
- get_speed_command(right_range.mean_value ,

push_range_start ,
push_range_end)

v_left =
get_speed_command(left_range.mean_value ,

push_range_start ,
push_range_end)

# front_readings.append(front_range.mean_value)
# left_readings .append(left_range .mean_value)
# right_readings.append(right_range .mean_value)
# back_readings .append(back_range.mean_value)

z_range = ecf.coordination_manager.
get_observable_state(zranger.

observable_name )[�zrange �]/1000
# z_readings.append(z_range)
vz = adjust_height(z_range )*0
mc.start_linear_motion(v_front+v_back ,

v_right+v_left ,vz ) # raise up
# ...

if __name__ == �__main__ �:
# ...
# disabling height and/or flow measurament from EKF
zranger : ZRanger = None
# disable flow contribution
if DeckType.bcFlow2 in ecf.decks:

ecf.decks[DeckType.bcFlow2 ].
contribute_to_state_estimate = True

# get the ZRanger of the FlowDeck
zranger = ecf.decks[DeckType.bcFlow2 ]. zranger

if DeckType.bcZRanger2 in ecf.decks:
zranger = ecf.decks[DeckType.bcZRanger2]
# disable zrange contribution
zranger.contribute_to_state_estimate = True
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B CODE EXAMPLE
An excerpt of code produced by teams Flying Ferrets. We use #... to omit lines of code that are not relevant to the discussion. Because of
formatting, we could not keep the regular Python indentation. The whole program is ⇡ 380 lines of code.

import logging
import sys
import time
# ...
import cflib.crtp # to scan for Crazyflies instances
# to easily connect/send/receive data from a Crazyflie
from cflib.crazyflie import Crazyflie
# wrapper around the normal Crazyflie class
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
# to help connecting to a Crazyflie with a URI
from cflib.utils import uri_helper
from Utility.log import Log # to log position

# to help moving the drone
from cflib.positioning.motion_commander import MotionCommander
# to use the Multiranger deck
from cflib.utils.multiranger import Multiranger

#...

ADJUST_VELOCITY = 0.2 # [m/s]
threshold = 0.1 # [m]
DEFAULT_HEIGHT = 0.2
prev = 0 #
class ActionLimit ():

#measure unit millimeters
MIN = 0.150
MAX = 0.400
SAFE = 0.100

class VelocityLimit ():
#measure unit meters/second
MIN = 0
MAX = 0.8

def is_close(range , distance ):
if range is None:

return False
else:

return range < distance

def is_far(range , distance ):
if range is None:

return False
else:

return range > distance

def compute_velocity(value , limits=ActionLimit) -> float:
#fixing values in the range (0, ACTION_LIMIT)
value = ActionLimit.MIN if value < ActionLimit.MIN

else value
value = ActionLimit.MAX if value > ActionLimit.MAX

else value
# NewValue = ((( OldValue - OldMin) * (NewMax - NewMin ))

#/ (OldMax - OldMin )) + NewMin where:
# OldValue = range_in_mm
# NewValue = velocity_in_ms
# OldMin = ActionLimit.MAX (range)
# OldMax = ActionLimit.MIN (range)
# NewMin = VelocityLimit.MIN (velocity)
# NewMax = VelocityLimit.MAX (velocity)

# NOTICE: we inverted the ActionLimits to get
# the inverted range conversion
return ((( value - ActionLimit.MAX) *

(VelocityLimit.MAX - VelocityLimit.MIN)) /
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(ActionLimit.MIN - ActionLimit.MAX)) +
VelocityLimit.MIN

# this function will compute the Velocity in the x-axis direction
def get_vx(front , back , limits=ActionLimit)-> float:

vx = 0
if(ActionLimit.MIN <= back <= ActionLimit.MAX):

#back gives a push in the positive x direction
vx += compute_velocity(back)

if(ActionLimit.MIN <= front <= ActionLimit.MAX):
#back gives a push in the negative x direction
vx -= compute_velocity(front)

return vx
# this function will compute the Velocity in the y-axis direction
def get_vy(right , left , limits=ActionLimit)-> float:

vy = 0
if(ActionLimit.MIN <= right <= ActionLimit.MAX):

#back gives a push in the positive y direction
vy += compute_velocity(right)

if(ActionLimit.MIN <= left <= ActionLimit.MAX):
#back gives a push in the negative y direction
vy -= compute_velocity(left)

return vy

def main ():
# Initialize the low -level drivers
cflib.crtp.init_drivers ()

#...

cf = Crazyflie(rw_cache=�./cache �)
with SyncCrazyflie(URI , cf=cf) as scf:

print(�SyncCrazyflie open�)
# to start logging position (DO NOT REMOVE)
with Log(scf) as log:

# ...
with MotionCommander(scf ,

default_height=DEFAULT_HEIGHT)
as motion_commander:
print(�MotionCommander open�)
with Multiranger(scf) as multiranger:

print(�Multiranger open�)
keep_flying = True
is_started = False
velocity_x = 0.0
velocity_y = 0.0

lastt = time.time()
time.sleep (1)
while keep_flying:

#vz = compute_velocity
#(multiranger.down , 10000.0)

#print(multiranger.front , multiranger.back ,
#multiranger.right , multiranger.left)

front = multiranger.front
back = multiranger.back
left = multiranger.left
right = multiranger.right
if front is None:

front = 1000.0
if back is None:

back = 1000.0
if left is None:

left = 1000.0
if right is None:

right = 1000.0
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if is_close(multiranger.down ,
DEFAULT_HEIGHT - threshold ):

vz = ADJUST_VELOCITY *2
#motion_commander.

#start_linear_motion (0, 0,
#ADJUST_VELOCITY)

elif is_far(multiranger.down ,
DEFAULT_HEIGHT + threshold ):

vz = -ADJUST_VELOCITY
#motion_commander.

#start_linear_motion (0,0,
#-ADJUST_VELOCITY)

else:
vz = 0
#motion_commander.
#start_linear_motion (0, 0, 0)

if multiranger is None:
print(�Multiranger is None!�)
motion_commander.land()
time.sleep (0.5)
break

if time.time()-lastt > 0.1:
print(f�{front} {back} {right} {left}�)

vx = get_vx(front , back)
vy = get_vy(right , left)
if time.time()-lastt > 0.1:

print(f�{mr.down} {vx} {vy} {vz}�)
lastt = time.time()

motion_commander.
start_linear_motion(vx, vy, vz)

time.sleep (0.01)

if __name__ == �__main__�:
main()
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