
Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup

Rei Barjami
Politecnico di Milano, Italy

Antonio Miele
Politecnico di Milano, Italy

Luca Mottola
Politecnico di Milano, Italy

ABSTRACT

We present INTERCEPT, a compile-time toolchain enabling man-

ifold throughput improvements when running intermittent DNN
inference on IoT devices, in exchange of a maximum 1% accuracy

loss. Intermittently-computing IoT devices rely on ambient energy
harvesting and compute opportunistically, as energy is available.
They use NVM to persist intermediate results in anticipation of
energy failures. Without requiring changes to existing models and
by exploiting the features of STT-MRAM as NVM, INTERCEPT
optimizes the placement and configuration of state persistence oper-
ations when executing the inference process. This happens off-line
with no user intervention, while enforcing a maximum 1% accuracy
loss. Our results, obtained across three platforms and six diverse
neural networks, indicate that INTERCEPT provides a 40% energy
gain in a single inference process, on average. With the same energy
budget, this yields a 1.9x throughput speedup.

CCS CONCEPTS

• Computer systems organization→ Embedded systems.

KEYWORDS

Intermittent computing; deep neural network (DNN) inference;
energy efficiency

1 INTRODUCTION

Energy harvesting allows Internet of Things (IoT) devices to elimi-
nate their dependency on regular batteries [10]. This reduces main-
tenance costs and enables multi-year unattended deployments [2,
19, 32]. However, energy from the environment is generally erratic,
causing frequent and unanticipated energy failures.
Intermittent inference. Because of erratic energy patterns, exe-
cutions become intermittent: intervals of active operation are in-
terleaved by periods of recharging energy buffers, such as capaci-
tors [5]. Energy failures normally cause a device to lose system state,
as applications run on bare hardware without operating system
support. To ensure forward progress across energy failures, systems
employ persistent state on Non-Volatile Memory (NVM). The energy
overhead of these operations is, however, often enormous [5].

Notwithstanding resource constraints, works exist that support
the intermittent execution of Deep Neural Networks (DNNs) [24],
as we discuss in Sec. 2. These provide the ability to locally exe-
cute the inference process, which allows systems to only transmit
the response instead of raw data, improving energy consumption
especially when using established wireless technologies, such as
Bluetooth and 802.15.4 [5]. Most of these works apply techniques
that either i) alter the model; for example, using compression [24],
ii) operate run-time decisions to reduce the energy requirements;
for example, using early exists [35], or iii) employ programming
techniques to reduce processing demands [24].

INTERCEPT. We take a different stand that provides efficient sys-
tem support for intermittent inference without requiring changes
to existing DNNs. We use Spin-Transfer Torque Magnetic Random-
Access Memory (STT-MRAM) in place of regular NVM technology.
STT-MRAM has a key feature: one can tune the current used for
write operations to save energy, but accepting that write errors may
occur with increasing probability as current settings reduce [20].

The trade-off between energy gains and the Write Error Rate
(WER) in STT-MRAM is the stepping stone for us to develop IN-
TERCEPT (INTERmittent inferenCE – Persist & Tune): a compile-
time toolchain that provides support for intermittent inference
without user intervention. Its functioning is based on multiple
stages, as shown in Fig. 1 and illustrated in Sec. 3. Given the DNN
model, we first Profile its energy consumption using existing
tools [4] or based on real hardware executions. This information
is input to a Prepare stage that creates an initial configuration in-
cluding placement of state persistence operations and correspond-
ing STT-MRAM write current settings. Because we use a multi-
capacitor architecture [17, 29, 66], based on the output of Prepare,
a Configure stage determines the capacitor array that ensures
eventual completion of the inference process.

Following the Configure stage, the Persist algorithm processes
the initial configuration to determine an efficient placement of state
persistence operations along the inference chain. The output of Per-
sist is fed as input to an further optimization step, called Tune, that
configures the STT-MRAM chip at each state persistence operation,
determining the most efficient current setting. Due to stochastic

switching, however, depending on this setting, a memory cell may
fail to commute to the new value, causing a write error. Being these
errors stochastic in nature, they appear randomly in written data.
We embrace, rather than avoid, these errors and carefully control
the current settings to reduce energy consumption, subject to a
constraint that accuracy losses do not exceed a given bound.

The output of Tune may potentially change the relative energy
patterns during the execution of the inference process. This means,
for example, that state persistence operations that consume a large
fraction of available energy before applying Tune may become
much more energy-savvy, compared to other state persistence oper-
ations that now grow to be dominating. Because of this, we feed the
output of Tune back to Persist to re-evaluate the number and po-
sitioning of state persistence operations. This effectively closes an
optimization loop that continues until we obtain a (possibly local)
optimal configuration or for a predetermined number of repetitions.
The code is then accordingly instrumented.
Benefits and insights.We use accurate simulations to measure
the performance of INTERCEPT. This is common in intermittent
computing because there is no network component, which is where
simulation models often fail miserably [42], and because of the
challenges in ensuring repeatability and fair conditions across the

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

DNN model
DNN energy

profile

P
R

E
PA

R
E

QL0 QL0 QL0QL0QL0 QL0QL0QL0

P
E

R
S

IS
T

TU
N

E

Continue?
No

Yes Best configuration

QL2 QL1 QL3Capacitor array

Optimization loop

C
O

N
FI

G
U

R
E

P
R

O
FI

LE

Number of capacitorsTarget MCU STT-MRAM chip

#

Figure 1: Overview of INTERCEPT. Profile determines the energy demands of layer execution. Prepare outputs an initial placement of state

persistence operations and STT-MRAM write current settings. Configure determines capacitor sizes based on energy demands and target MCU.

Persist determines an efficient placement of state persistence operations while favoring the use of smaller capacitors. Tune determines the most

efficient STT-MRAM current setting for each state persistence operation while keeping the accuracy loss within a given bound.

system under test and the baselines [27]. At the core of our setup
are energy profiles measured on real hardware, similar to multiple
existing works in the area [33, 34, 38, 48]. We examine the per-
formance of INTERCEPT across three different platforms and six
diverse neural networks, compared with the original unmodified
DNN in a configuration that ensures completion of the workload
and our own Persist stage applied in isolation.

The experimental results we collect, reported in Sec. 4, demon-
strate that INTERCEPT enables great energy gains, and correspond-
ing throughput improvements, in exchange for a maximum accu-
racy loss of just 1%. Compared with the baseline, these improve-
ments range from a maximum of 64.4% to a minimum of 21% en-
ergy gain, corresponding to a maximum (minimum) 2.98x (1.36x)
throughput speedup. Nonetheless, the optimization loop improves
the energy performance of a single round of Persist by 29.65% on
overage, yielding an average 1.44x throughput speedup. The 1%
bound on accuracy loss is, on the other hand, arguably immaterial
for most applications and is usually “lost in noise” [52]. It is also
smaller compared to many other techniques that trade accuracy for
energy efficiency in DNN inference [26, 64].

The fundamental insight we gain is that the inherent data re-
silience of DNNs is an asset to mitigate data errors. Because of this,
we exploit the energy gains we obtain by tuning STT-MRAM write
currents, and limit at the same time the impact on the resulting
accuracy of the inference process. We end the paper by offering a
few key observations, also on the choice of the 1% accuracy bound,
in Sec. 5, and with brief concluding remarks in Sec. 6.

2 RELATEDWORK AND BACKGROUND

We briefly survey existing work in intermittent inference and pro-
vide background information on STT-MRAM technology and on
error resilience of DNNs.

2.1 Intermittent Inference

Several works investigate the execution of DNN models on low-
power microcontroller units (MCUs) [56] and in intermittent sys-
tems [46]. Our work is orthogonal to most of these techniques. We
do not require or apply changes to the network or inference process,
and rather execute completely unchanged models, thus benefitting
from the existing training. We carefully optimize both the location
and the configuration of state persistence operation when using
STT-MRAM as NVM, which is arguably under-explored.

Works exist that apply a variety of compression techniques and
design multi-exist network architectures. As an example, Wu et
al. [64] design a network compression algorithm working with
multi-exit DNNs that selects exits based on energy predictions.
Given an existing multi-exit network, the notion of approximate
intermittent computing [9] allows the processing to step out of the
inference process before state persistence operations are necessary.

Model augmentation and pruning are often employed to run in-
termittent inference. Kang et al. [40, 41] and Yen et al. [65], append
components to existing models to allow progress tracking infor-
mation to be piggybacked onto output features. Without affecting
accuracy, this allows the system to efficiently recover the infer-
ence process after an energy failure. iPrune [44] embeds an ad-hoc
pruning strategy that produces compact models for intermittent
systems, whereas RAD [36] employs block circulant matrices and
structured pruning to exploit vector operation accelerators

Network architecture search is also investigated for intermittent
inference. HarvNet [39] includes two complementary techniques,
one enabling architecture search that optimizes multi-exit features
based on memory and energy constraints, the other returning effi-
cient inference policies by taking into account energy constraints.
iNas [50] seeks to strike a trade-off between data reuse and energy
overhead of state persistence operations while ensuring forward
progress and eventual completion of the inference process. EVE [37]
uses custom network search algorithms to produce different models,
enabling run-time selection based on energy constraints.

In other works, special-purpose execution and scheduling tech-
niques enable efficient inference. To reduce the energy overhead of
state persistence, Lv et al. [47] slice the network horizontally and ex-
ecute each slice in a depth-first manner, only saving a fraction of the
state on NVM. Zygarde [35] models the energy patterns together
with the relation between accuracy and processing requirements.

Closer to our efforts are works that combine software and hard-
ware support for intermittent inference. As an example, Gobieski
et al. [24] present a concept of loop continuation that reduces the
overhead of frequent state persistence operations during infer-
ence. Neuro.ZERO [43] uses a co-processor architecture to improve
the energy performance of the inference process running on a
main MCU; the co-processor runs special-purpose models that ac-
count for intermittent executions already during training. A few

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

works [6, 54, 55] also employ in-memory computing to enable par-
allelized executions or to improve the efficiency of state persistence
operations on special-purpose accelerators [14].

2.2 STT-MRAM

Manufacturers including Avalanche, Everspin, and Renesas produce
2MiB STT-MRAMs chips for under $10. The literature extensively
considers the problem of stochastic switching with this memory
technology and the resulting write errors. Besides ensuring correct-
ness using conservatively high currents, works exist that seek to
ensure data integrity through error correction codes [8], at the cost
of increased energy consumption. Unlike these works, we embrace
write errors in exchange for energy gains and rely on the inherent
error resilience of DNNs, discussed next, to limit the impact of these
errors on inference accuracy.

This resonates with existing techniques [51] that introduce con-
trolled data errors to save energy. For example, several works [1,
53, 58, 59] define architectures for caches or scratchpad memories
supporting current tuning. For example, CAST [1] exposes a driver
that defines a set of Quality Levels (QLs), each corresponding to a
write current setting and annotated with a pre-characterized write
error probability. Most of these works focus on the definition of ar-
chitectural aspects, presenting a limited experimental investigation
of the corresponding performance improvements.

We borrow the concept of QLs from CAST. We define five differ-
ent QL settings, from QL0 to QL4, corresponding to different write
error probabilities and energy consumption. The QL0 setting is the
highest current setting and ensures that write errors are (proba-
bilistically) guaranteed not to happen. This also corresponds to
the highest energy consumption. At the opposite extreme, the QL4
setting yields the highest write error probability, yet with the high-
est energy saving. The number of specific settings for each QL is
up to developers to determine anyway. A higher number of QLs
provides finer granularity in the optimization process and therefore
better final performance, at the cost of longer processing times at
compile-time because the solution space grows. Our specific choice
strikes a trade-off between the two requirements.

2.3 Error Resilience in DNNs

Extensive literature [3] studies hardware faults in DNN execution
and, in particular, the related data errors. The general observation
is that the large information redundancy in the model and weights
give DNNs high error resilience, that is, the DNN can produce the
correct outcome even if data errors corrupt the processing. This
capability is widely exploited [7]; systems are modified at hardware
or software level to elaborate data in a slightly inexact way, aiming
at reducing resource consumption at the cost of a limited accuracy
loss. In exchange of energy gains, in this work, we let write errors
happen when persisting state on STT-MRAM.

Our specific design choices rest on a two-pronged basis. DNN
targeting resource-constrained devices are normally quantized to
meet memory, processing, and energy requirements. Nonetheless,
quantization makes the networks more robust. Hoang et al. [30]
demonstrate that the narrower the range that a value in the interme-
diate layer can assume, the more this layer is robust to errors. With
8-bit quantization, as in intermittent inference [64], intermediate

STT-MRAM

Current knob

Low-power MCU

Capacitor array

Task 2 Task NTask 0 Task 1

Software
Hardware

Figure 2: Target system architecture. DNNs are encoded as a

sequence of tasks. State persistence operations are interleaved with task

executions. TheMCU is powered by amulti-capacitor architecture [17].

The STT-MRAM chip provides a knob to set the write current.

values assume a smaller range compared to their non-quantized
counterpart. The limited range acts as a hardening mechanism [15].

Ibrahim et al. [31] also show that when injected with errors,
different layers of a DNN bear a different impact on accuracy. They
identify the most critical layers and harden their values, increasing
the network’s error resilience. Tune is based on the same insight:
we can afford higher QLs for layers that are robust to errors, saving
energy, whereas layers that are more susceptible to errors should
use lower QLs, not to severely impact the inference accuracy.

3 INTERCEPT

This section describes INTERCEPT. We overview the target archi-
tecture and the optimization process first; then we detail the single
steps. We conclude with a quantitative example.

3.1 Overview

Target system. Fig. 2 shows the system architecture we target.
We consider a resource-constrained MCU and use STT-MRAM to
persist the system state. We map a single DNN layer to a task in a
task-based programming system [45]: state persistence operations
are placed in the code at task boundaries to dump their output on
NVM, ensuring forward progress. In our case, the output of a task
is the output tensor of a layer.

We base our design on existingmulti-capacitor architectures [17].
These ensure better energy efficiency than single-capacitor config-
urations while ensuring eventual completion of the workload [17,
29, 66]. When used in combination with a task-based programming
systems, the key benefit of a multi-capacitor architecture is the abil-
ity to accommodate different energy demands for different tasks.
This is found across layers within a DNN too, as we show experi-
mentally in Sec. 4. This variability depends on the workload and
prompts for customized capacitor sizing.

For a layer 𝑥 , we define 𝐸compute (𝑥) as the energy consump-
tion required for processing. Note that 𝐸compute (𝑥) is largely input-
independent, as the processing time of deep learning operators
does not generally depend on input data. It is, instead, dependent
on both the specific DNN layer and the underlying MCU. Similarly,
we define 𝐸persist (𝑥, 𝑞𝑙) as the energy required to persist the output
tensor of a layer 𝑥 at a given quality level 𝑞𝑙 . This quantity varies
based on the selected QL. The energy consumption to compute
a sequence 1..𝑛 of layers and persist the final output tensor at a

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

specific QL level is therefore

𝐸exec (𝑛) =
𝑛∑︁
𝑖=1

𝐸compute (𝑥 i) + 𝐸persist (𝑥n, 𝑞𝑙n) (1)

We describe next how to quantify 𝐸compute (𝑥) and 𝐸persist (𝑥, 𝑞𝑙).
Preprocessing. Fig. 1 shows the INTERCEPT compile-time opera-
tion. It takes as input the DNN source code. We feed this as input
to a Profile step that quantifies 𝐸compute (𝑥) for all layers in the
DNN. This quantity primarily depends on the target MCU and may
be quantified using existing tools [4] or by hardware profiling of
un-modified DNNs, as we do in Sec. 4.

In a Prepare step, we build an internal representation of the op-
timization problem. For each layer 𝑥 and quality level 𝑞𝑙 , we append
𝐸compute (𝑥) from the previous step and 𝐸persist (𝑥, 𝑞𝑙). The latter de-
pends on the specific STT-MRAM chip and may be obtained based
on a combination of datasheet information, hardware profiling, or
NVM simulators. We finally create an initial configuration where
we persist each tensor on STT-MRAM using a QL0 setting. This
setting ensures that write operations are (probabilistically) correct.
When the inference process eventually completes, it offers the same
accuracy as a non-intermittent execution.

Given the number of capacitors the target architecture accomo-
dates [17, 28, 29], the Configure step determines the size each of
the given capacitors before the optimization loop. This process is not
different compared with capacitor sizing for other workloads [16].
One of the available capacitors must necessarily be large enough
to store the energy required by the most energy-demanding task
(layer) of the original DNN and to persist its output tensor. We
size the other capacitors based on the expected energy demands of
the remaining tasks (layers), favoring smaller capacitors to reduce
charging times and leakage [2, 17, 29], while ensuring sufficient
energy for eventual completion of the inference process. Capacitor
sizing remains unchanged throughout the optimization loop.

Note that our design is independent of the number of capacitors.
INTERCEPT may work with an arbitrary number of capacitors or
even just one. Determining the number of capacitors of the target
architecture is an orthogonal problemwhose solutionmust consider
not just the workload but also fabrication challenges and physical
footprint [16, 17, 28, 29]. The results in Sec. 4 are based on a three
capacitor setup as it is most common in available platforms and
deployed systems [2, 17, 28].
Optimization loop. The right-hand side of Fig. 1 shows the core
of the optimization loop. Fig. 3 depicts an example of how the op-
timization process unfolds. Persist uses a heuristic algorithm to
modify state persistence operations, aiming to i) reduce energy
consumption and ii) favor the use of smaller capacitors among
those available, while retaining the guarantee of eventual comple-
tion. Smaller capacitors, indeed, recharge faster and experience
reduced leakage. Persist produces multiple configurations as out-
put, which are equivalent “by construction” in consumed energy
but with different placements of state persistence operations. In
Fig. 3, Persist produces two configurations at Iteration 1. The
execution branches out for each such configuration, using separate
copies of the internal problem representation.

Every new configuration generated by Persist is separately
taken as input by Tune, whose goal is to determine an efficient

ITERATION 3

QL0 QL0 QL0 QL0 QL0

QL0 QL0 QL0 QL0 QL0 QL0

PERSIST

TUNE TUNE

PERSIST PERSIST

TUNE

PERSIST

TUNE

PERSIST

ITERATION 1

ITERATION 2

QL2QL3 QL4 QL2 QL3 QL3

QL3 QL4 QL2 QL3 QL3 QL3

QL3 QL4 QL4 QL3

QL3 QL4 QL4 QL3

Figure 3: Example optimization loop. The interplay between

Persist and Tune reduces the energy overhead due to state persistence

operation, while keeping the accuracy loss within the specified bound.

QL setting for each state persistence operation. The application of
Tune affects the accuracy of the DNN. Varying QL setting yields
different probabilities of write errors in STT-MRAM that, in turn,
may differently impact the output accuracy. We let Tune push
the QL setting as much as possible but without violating a given
accuracy bound, which we set in our experiments to a mere 1% [52].

By setting different QLs for each state persistence operation,
Tune changes the energy patterns for that specific configuration.
As the energy demands reduce because write operations occur
with higher QLs, we obtain two effects: i) some state persistence
operations may be skipped because the execution has sufficient
energy to continue processing the next later and persist the state
later, and ii) an earlier choice of what capacitor to use for what
state persistence operation may no longer be optimal; as energy
demands reduce, smaller capacitors may be used. To account for the
new energy patterns, we feed the output of Tune back to Persist,
effectively closing the loop.

Note that Persist may reduce the accuracy loss determined
by Tune in a previous iteration. This happens because Persist
may eliminate a subset of state persistence operations, which are
also the points where write errors may occur. As a result, those
errors no longer have an impact, providing further room for energy
improvements when the same configuration is fed as input to Tune
again. Therefore, the process repeats, as shown in Fig. 3, for every
branch that Persist possibly creates every time it runs, as it happens
for example in Iteration 2 of Fig. 3.

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

START

Input: Groups not
analyzed so far (Glist)

Consider first
group in Glist

Select capacitor

Yes
END

 Merge
 with next
group?

Yes

Merge group with
next one

Remove group
from Glist

Fork
//Merge
groups

No

//Do not merge
groups

No

All groups
analyzed?

Glist==[]

Figure 4: Operation of Persist. The loop tries to extend the cur-

rently analyzed group, while forking branches to analyze both the

case where the group is extended and where it is not.

The process terminates along a branch whenever Persist yields
the same configuration taken as input, indicating that no more
gains are attainable. The whole process ends when all branches
terminate. Among all candidate configurations eventually produced
when every branch of the execution completes, we select the one
that maximizes the energy gains.

As the energy patterns change after applying INTERCEPT, we
may revise capacitor sizing as output by Configure and possibly
further improve performance by employing smaller capacitors. We
may even try and embed the Configure step within the optimiza-
tion loop and revise capacitor sizing at every iteration, possibly
amplifying the gains. However, doing so might prolong processing
times. We include exploring this opportunity in our immediate
research agenda. We do not consider changing the number of ca-
pacitors instead, as that might have repercussions on the target
architecture that exceed the scope of our work.

3.2 Persist

Persist places state persistence operations based on a two-pronged
rationale: i) execution of a layer occurs only if the residual energy
at the start of the execution is sufficient to process the layer and per-
sist the output tensor on STT-MRAM, and ii) in a multi-capacitor
setting, smaller capacitors should be favored instead of larger ones.
Similar to existing work [2, 11, 17], step i) ensures both transac-
tional semantics for layer execution and avoids wasting energy in
processing a layer without the guarantee to eventually persist the
output tensor. Differently and although Persist is applicable also
in single-capacitor systems, the use of smaller capacitors improves
overall energy efficiency [29], as discussed earlier.

The goal of Persist is this i) to group together the execution of
multiple subsequent layers as a single task to reduce the overall
number of state persistence operations, and ii) select the smallest
capacitor sufficient to support the entire task execution, including
state persistence operations at the end. Grouping layers is possible
whenever the residual energy at the end of a given layer’s execution
is sufficient to skip the state persistence operation for that layer
and execute both the next layer and persist its output tensor. The
energy required to do so is computed as in Eq. 1.

Persist operates in a greedy manner, as illustrated in Fig. 4. The
existing layer groups, included in a list𝐺𝑙𝑖𝑠𝑡 , are examined in topo-
logical order. In the initial configuration generated by Prepare, each
layer represents a separate group.We start by computing the energy
consumption 𝐸exec (𝑔1) for the execution of the first group 𝑔1 using
Eq. 1 and select for 𝑔1 the smallest capacitor with an energy budget
𝐸minCap (𝑔1) ≥ 𝐸exec (𝑔1). Then, we check if it is possible to merge
𝑔1 with the next group𝑔2; we compute the new energy consumption
𝐸exec (𝑔1 + 𝑔2) and check whether 𝐸minCap (𝑔1) ≥ 𝐸exec (𝑔1 + 𝑔2).

The latter condition determines whether merging 𝑔1 with the
next group 𝑔2 is feasible. If so, Persist forks in two, and the internal
problem representation is accordingly duplicated. In one branch,
we merge𝑔1 with𝑔2 and proceed to analyze the next group𝑔3 in the
same way. In the other branch, we keep group 𝑔1 intact and restart
the process from 𝑔2, attempting the merge with the subsequent
group 𝑔3. If merging is not feasible, only the latter branch proceeds.

The process continues through the entire DNN until all groups
in 𝐺𝑙𝑖𝑠𝑡 are analyzed. When all branches created out of forking
conclude, we only keep the configurations with minimum total
energy consumption. There may be multiple such configurations.
By construction, these configurations include the same number of
state persistence operations and use the same capacitor for the same
number of times. Only the placement of such operations along the
DNN may differ. Each such configuration yields a different branch
in the execution of the optimization loop, as seen in Fig. 3.

3.3 Tune

Given the placement of state persistence operations returned by
Persist, the goal of Tune is to determine the most efficient QL
setting for each such operation. By doing so, we seek energy gains
at the cost of lowering the output accuracy, due to write errors when
persisting the tensors on STT-MRAM. Tune limits the accuracy
loss by staying within a bound provided by system designers. Its
goal is thus to find a solution to a specific optimization problem.
Problem formulation. Given layers 𝑥1 ..𝑥𝑚,𝑚 ≤ 𝑛 whose output
tensors must be persisted according to the output of Persist, the
goal is to identify a set of quality levels 𝑞𝑙1 ..𝑞𝑙𝑚 such that

min
𝑚∑︁
𝑖

𝐸persist (𝑥 i, 𝑞𝑙 i)

while 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑜𝑠𝑠% ≤ 𝑘

(2)

where

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑜𝑠𝑠% =
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑞𝑙0) − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑞𝑙1 ..𝑞𝑙𝑛)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑞𝑙0) · 100 (3)

Note the objective function in (2) only considers state persistence
operations, since the compute part remains unchanged. Instead,
𝑘 is the maximum tolerated accuracy loss, provided by system

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

designers. In (3), we indicate with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑞𝑙0) the accuracy of
the DNN using the configuration of at Iteration 0 of Fig. 1, which
provides the same accuracy as a non-intermittent execution.

We use genetic search to find a solution to the problem. The op-
timization problem here is similar to many other problems dealing
with the identification of best operating points in embedded sys-
tems, such as task mapping, scheduling, or CPU voltage/frequency
tuning. Existing literature shows that genetic algorithms are effi-
cient and accurate in finding optimal solutions [13, 25, 63].
Genetic search. We encode the chromosome of each individual
as a string where each gene is associated with a state persistence
operation and indicates the corresponding QL setting. We select a
classical single-point crossover operator for mating, a uniform ran-
dom mutation operator to perturb chromosomes after mating, and
a steady-state approach to pick parents for mating. In preliminary
experiments, this demonstrates fast convergence with small popu-
lation sizes; this is fundamental in our case since the evaluation of
the fitness function is rather expensive, as discussed next.

We formulate a fitness function that embeds both the objective
function and the constraint of Eq. 2 as follows

𝑅 =

{
𝐸gain if accuracyLoss% < 𝑘

𝐸gain − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑜𝑠𝑠% · 𝐸
ql0

otherwise
(4)

with 𝐸gain is computed as

𝐸gain =

𝑚∑︁
𝑖

𝐸persist (𝑥 i, 𝑞𝑙0) −
𝑚∑︁
𝑖

𝐸persist (𝑥 i, 𝑞𝑙 i) (5)

the left-hand term sum is the energy consumption for state persis-
tence operations to guarantee the same accuracy as a non-intermittent
execution, whereas the right-hand sum is the same energy figure
but for the specific individual.

Note that the upper part of Eq. 4 returns the reward value for
individuals not violating the accuracy constraint; the larger the
energy saving, the higher the reward. We use the bottom part of
Eq. 4 to rank individuals violating the constraint; in this case, the
larger the violation, the more that specific individual is penalized.

As a result of the specific formulation of the reward, QL settings
that reduce the accuracy by more than 𝑘 are heavily and propor-
tionally penalized, yet not completely excluded. This allows the
genetic search to explore slices of the solution space with a limited,
yet greater than 𝑘 reduction in accuracy. This is useful to avoid get-
ting stuck in local minima and generally improves the effectiveness
of the genetic search by allowing it to explore a broader range of
potential solutions and to maintain diversity in the solution space.

Computing 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑞𝑙1 ..𝑞𝑙𝑛) requires careful consideration of
write errors, which are stochastic in nature. For a single execution
of the inference process with given inputs, we must consider mul-
tiple different occurrences of write errors to eventually obtain a
statistically significant estimate of the accuracy we may obtain with
a given QL setting. This is computationally heavy, which motivates
our choice of a limited population size illustrated earlier.

Nonetheless, in the specific case of 𝑘 = 1, the algorithm is guar-
anteed never to output a configuration that reduces accuracy more
than one percentage point. In the extreme case where no QL setting
achieves any positive energy gain by limiting the accuracy loss by

one percentage point, the algorithm eventually outputs the config-
uration with a QL0 setting. In this case, in fact, for any possible QL
setting, the upper part of 𝑅 becomes negative, as accuracyLoss% > 1.
The search then converges to a QL0 setting, where 𝐸gain = 0, which
is to be preferred over any negative quantity.

3.4 Quantitative Example

We complete the discussion with a quantitative example of the
optimization loop, shown in Fig. 5 and taken from a real execution
of INTERCEPT with Mobilenet_96 and targeting an M33 MCU.
The input configuration is the one produced by the Configure
step for a three-capacitor setup. The capacitors are sized as 13 𝑢F,
6 𝑢F, and 3 𝑢F. The system incurs in a total of 33 state persistence
operations using a QL0 setting, ensuring the same accuracy as a non-
intermittent execution. Fig. 5 shows the execution unfolding along
the branch that eventually leads to the configuration achieving the
highest energy gain among the nine branches created during the
execution. For a layer 𝑥 , the blue color indicates 𝐸compute (𝑥) and
the yellow color indicates 𝐸persist (𝑥).

At the start of Iteration 1, Persist processes the initial configu-
ration and, based on the processing in Sec. 3.2, reduces the number
of state persistence operations to just 10, with a 44% energy gain.
This is achieved solely by removing state persistence operations,
yet the energy consumption of those that remain stays the same.
Similarly, inference accuracy is unchanged because the remaining
state persistence operations still operate at a QL0.

The output of Persist at Iteration 1 is fed to Tune, which
optimizes the QL settings within a 𝑘 = 1% accuracy bound. In this
case, Tune yields another boost in energy gain, as it shaves another
17.5% of the initial energy at the cost of a marginal accuracy loss
that moves from 0.88 to 0.873. We show the energy gain due to
Tune at Iteration 1 with a reduction in the height of the yellow
bars. This gain actually depends on the specific layer, as some layers
experience higher energy gains than others.

The gains obtained by Tune at the end of Iteration 1 allow
Persist to eliminate additional state persistence operations in Iter-
ation 2, for example, because a reduction in the energy for persist-
ing output tensors enables new layer groups. Persist specifically
removes the state persistence operations for layers 1 and 11, reduc-
ing their total number from 10 to 8. This shaves another 1.1% of the
initial energy consumption and slightly increases the accuracy, as
some STT-MRAM write operations, which are potential sources of
data errors, are now completely removed. The new configuration is
now fed again back to Tune. The changes are minimal now, with an
increase to the QL setting for layer 16, which changes from QL2 to
QL3. This leaves the output accuracy unchanged and gains another
0.1% in energy consumption compared to the initial configuration.

At the start of Iteration 3, we feed the configuration back to
Persist, which outputs the same configuration again in that it finds
no opportunities for further energy gains. We reach the termination
condition that concludes with an energy gain of 62.7% compared
to the initial configuration, with just a 0.4% accuracy loss. Besides
this example, in Sec. 4 we dig deeper into the relative contribution
of Persist and Tune to the total energy gains.

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

Accuracy: 0.88
Egain: 44%

ITERATION 1

Accuracy: 0.88
Egain: 0%

Accuracy: 0.873
Egain: 61.5%

Accuracy: 0.876
Egain: 62.6%

Accuracy: 0.876
Egain: 62.7%

Accuracy: 0.876
Egain: 62.7%

PERSIST

TUNE

ITERATION 2 PERSIST

TUNE

ITERATION 3 PERSIST

No new
configuration

Figure 5: INTERCEPT execution on Mobilenet_96.We note a

gradual reduction of state persistence operations and a subsequent

tuning of corresponding QLs.

4 EVALUATION

We report on the energy gains we obtain by limiting the accuracy
loss to a 1% factor, and on the corresponding throughput improve-
ments. We end with a microscope analysis of the individual con-
tributions of Persist and Tune to the energy improvements and
with a summary discussion on the processing times of INTERCEPT.
Compared with the original model in a necessary configuration

Table 1: DNN models. We employ a diverse set of DNNs as bench-

marks, to provide evidence of general applicability.

Model Workload [M Multiply and
Accumulates (MACCs)]

Total tensor

size [KiB]
Mobilenet_96 7.511 396
Mobilenet_224 41.092 2134
FDMobilenet_128 3.953 126
FDMobilenet_224 12.099 385
SqueezeNet 81.244 1122
IGN_wl_48 0.052 3.19

that ensures completion of the inference process, further described
next, our results indicate that:
1) within the 1% bound on accuracy loss, INTERCEPT yields an

average 40% energy gain in a single inference process;
2) notwithstanding the 1% bound, the actual accuracy loss of the

INTERCEPT-optimized DNNs is often much lower;
3) the energy gains enable by INTERCEPT enable a 1.9x through-

put increase;
4) depending on the DNN architecture, Persist or Tune contribute

differently to the overall energy gain.
Before illustrating the experimental results, we describe the corre-
sponding setup.

4.1 Experimental Setup

Benchmarks and platforms. Similar to existing works [18], we
pick DNN models the from STModelZoo suite [62]. Tab. 1 summa-
rizes their features, mainly defined by their computational require-
ments. The models also vary in the dimension of the output tensors,
which impacts both computational requirements and memory us-
age. This diversity ensures our findings are robust across different
DNNs architectures.

We consider several Cortex M MCUs on top of STM boards, as
summarized in Tab. 2. The MCUs we consider are characterized by
different instruction sets and energy figures, adding to the general-
ity of the results. Due to memory limitations, FDMobilenet_224,
Mobilenet_224 and SqeezeNet cannot run on the M4 MCU.
Capacitor selection. We use a three-capacitor configuration as it
is most common in available platforms and deployed systems [2, 17,
28]. As for their sizing, each combination of DNN andMCU exhibits
different energy patterns for different layers. In our prototype, the
Configure step sizes each of the three available capacitors for each
combination of DNN and MCU by applying the following rationale:
• The first capacitor𝐶1 is sized to support themost energy-intensive

layer; its capacity is set to provide the energy required to execute
its processing and persist its output tensor.

• The second capacitor 𝐶2 is sized to support the least energy-
intensive layers; we find that 57.5% of the layers in the DNNs
we consider consume at least 4 times less energy than the most
energy-demanding layer, thus, we set 𝐶2 to 25% of 𝐶1.

• The third capacitor 𝐶3 strikes a trade-off between the two ex-
tremes; we find that 30.2% of the layers in the DNNs we consider
consume less than half of what𝐶1 can store but more than what
𝐶2 can store, thus, we set 𝐶3 to 50% of 𝐶1.

Asmentioned in Sec. 3, capacitor sizing remains unchanged through-
out the optimization loop.

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

Table 2: MCUs. The choice of MCUs is representative of different

instruction sets and energy figures.

MCU Board Active Power

(uW/MHz)

Main Memory

[KiB]

Cortex M33 NUCLEO-U575ZI-Q 12 786
Cortex M4 B-L475E-IOT01A2 32.82 128
Cortex M7 NUCLEO-H743ZI 58.5 1024

Table 3: Characterization of QLs for a 2MB 32nm scratchpad

STT-MRAM. Write energy decreases linearly; the corresponding

WER increases by orders of magnitude.

QL WER Set current (𝜇𝐴) Write energy/bit (p𝐽)
Q0 10-8 1153 167
Q1 10-6 865 94
Q2 10-5 769 74
Q3 10-4 673 57
Q4 10-3 577 43

Table 4: Tune genetic search parameters.We empirically tune

the algorithm to allow reasonably fast convergence.

Parameter Value

Population size 10
Crossover probability 60%
Mutation probability 10%
Stopping condition No improvement on 5 gens.

Comparison. We compare INTERCEPT with a baseline configura-
tion where all output tensors are persisted on STT-MRAM using a
QL0 setting. As write operations are probabilistically correct, the
accuracy is the same as a non-intermittent execution. This baseline
reflects the case where developers must ensure that the accuracy
of the original model is retained regardless of energy concerns.

We also compare INTERCEPT with a single run of our own
Persist stage, called PersistOnce, using the same inputs as IN-
TERCEPT. With this, we obtain a configuration where the output
tensors are persisted at QL0, thus not affecting the DNN accuracy.
PersistOnce is useful to understand the performance gains ob-
tained by looping through Persist and Tune, and independent of
NVM technology as it may operate on any such kind of memory.
Metrics. We primarily measure two quantities: energy consump-

tion and throughput improvement. Energy consumption is the net
amount of energy required to complete an inference process, in-
cluding both processing and STT-MRAM operations. We measure
the energy invested in processing by looking at the execution trace
given as input to the optimization loop.

We compute the throughput improvement by considering that
recharge times vastly dominate active times in intermittent sys-
tems [10]. Although absolute throughput values are inherently
a function of the specific energy patterns [10], we can compute
the corresponding improvements by normalizing this figure to the
throughput of the baseline. The improvement is thus a function of
energy consumption and capacitor usage. We consider the smallest
capacitor used by the baseline as a unit of charge, and normalize
the use of all other capacitors in the INTERCEPT-optimized version
to that. Note this is, instead, independent of the specific energy pat-
terns; the corresponding conclusions, therefore, apply regardless
and across different energy sources.

A different reasoning applies to examining the accuracy of the
inference process. An upper-bound on this quantity, which we call
𝑘 and set to 1 hereafter, is given as input to the optimization process
described in Sec. 3 and is at the core of the functioning of Tune.
The solution eventually returned to the user is guaranteed to stay
within this bound. However, this does not necessarily mean that
the solution loses exactly 𝑘 percentage points of accuracy. The set
of QLs we consider is finite and limited, for example. This means
that a solution may use a set of QLs that make it lose less than 𝑘

percentage points of accuracy, provided no other solution is found
that offers higher energy efficiency within the same bound. We
examine this aspect next to energy consumption.
Simulation design. Our setup enables measuring the system per-
formance in practical time across the many combinations of MCU,
DNN, and systems under test, while taming potential sources of
inaccuracy. The energy consumption for the execution of each
layer of the DNN is taken from real hardware using the CYCCNT
register available on the Cortex M MCUs to count the number of
cycles required for each layer execution and relating this to energy
consumption as in existing works [33, 34, 38, 48].

We use NVSim [21] to obtain the energy consumption figures
for STT-MRAM and the corresponding WER. NVSim is a widely
employed [1, 57] simulator that allows system designers to charac-
terize the operation of NVM chips. Using NVSim, we profile a 32nm
2MB STT-MRAM chip powered at 0.9V. Its energy consumption fig-
ures and corresponding WER are in Tab. 3. Write energy decreases
linearly, whereas the corresponding WER increases by orders of
magnitude. This is a peculiar feature of STT-MRAM technology
and requires careful consideration of the related trade-offs [1].

Auxiliary circuitry generally mounted on a board, such as low-
dropout regulators necessary to adapt capacitor voltage to the
various chips, consume at least three orders of magnitude less
power than major components, such MCU and NVM [28, 60, 61].
These components impact the systems under test in the same way,
or would even limit their impact in INTERCEPT compared with
the baseline [61]. We choose not to account for these factors.

The fundamental threath to validity in our setup is the that
the energy harvested from the environment during the very short
computing phases (up to a few ms) is assumed not to affect the
duration of the computing phase. Based on existing work and avail-
able power traces [23], we argue that the energy harvested during
these short periods is indeed largely insufficient to extend their
duration and/or drastically change the execution pattern.
Prototype. INTERCEPT is written in Python, processing Tensor-
Flow DNN models, based on STModelZoo implementations. We
implement the genetic search for Tune by means of the PyGAD
library [22] and use the parameters in Tab. 4.

To compute the reward defined in Sec. 3.3, we need to evaluate
the accuracy of a specific QL configuration. To do so, running
inference predictions on large datasets is necessary. It is impractical
to do so on embedded hardware. We adopt an application-level
error injection method. As in existing work [12], we develop a
custom TensorFlow DNN layer that enables us to simulate errors
exactly like those caused by STT-MRAM writes at different QLs.

The custom layer takes as input a tensor and introduces bit-
switch errors in the tensor. The probability of introducing these

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

(a) M4 vs baseline. (b) M7 vs baseline. (c) M33 vs baseline.

(d) M4 vs PersistOnce. (e) M7 vs PersistOnce. (f) M33 vs PersistOnce.

Figure 6: Energy gains compared with the baseline and PersistOnce with a 1% bound on accuracy loss, depending on MCU. The

gains vary from 64.4% to 12.6%. The gains are due to reducing the cost of state persistence operations.

(a) Avg over DNNs vs

baseline. (b) Avg over MCUs vs baseline.

(c) Avg over DNNs vs

PersistOnce. (d) Avg over MCUs vs PersistOnce.

Figure 7: Energy gains of INTERCEPT-optimized DNNs with

a 1% bound on accuracy loss, averaged over MCUs and DNNs.

INTERCEPT is beneficial independent of the target MCU and DNN.

errors can be adjusted as needed. We do so according to the WER
of the QL we want to test. After applying these changes to the data,
the layer outputs the corrupted tensor. We insert this custom layer
right after the layers whose output are persisted in STT-MRAM.
Being an experimental artifact, this entire processing happens at
compile-time and does not contribute to any energy estimation.

4.2 Results→ Energy Consumption

Fig. 6 depicts the energy gain, corresponding to the yellow shaded
area, after applying INTERCEPT, based on the target MCU and
compared with the baseline and PersistOnce respectively.

We demonstrate that INTERCEPT enables improvements across
all configurations we test. When compared with the baseline, the
greatest gains are with Mobilenet_224 running on the M33 MCU,
where INTERCEPT shaves 64.4% of the energy consumption. The
smallest gain in energy is instead with SqeezeNet running on the
M7 MCU, where this figure amounts to a 21% gain compared with
the baseline. When compared with PersistOnce, we obtain most
gains with FDMobilenet_224 running on the M33 MCU, saving
49.3% of the energy consumption. The smallest gains are again
obtained with SqeezeNet running on the M7 MCU, where the
energy saved is 12.7% of the energy consumption of PersistOnce.

We return to these extremes in Sec. 4.4, where we gain deeper
insights that explain how different network architectures andMCUs
impact performance with INTERCEPT. In all cases, these gains are
obtained by limiting the accuracy loss to just 1%, which is arguably
immaterial for most applications [52] and smaller than that of
many other existing techniques that trade accuracy for the energy
efficiency in DNN inference [26, 64].

The energy gains in Fig. 6 are due to the ability to reduce, by
means of Tune, or to eliminate, using Persist, the energy cost
𝐸persist (𝑥, 𝑞𝑙) for a layer 𝑥 using 𝑞𝑙 . Looping through their repeated

execution amplifies their individual contributions to the final per-
formance, enabling an overall 40% and 29.65% average energy gain
considering the baseline and PersistOnce, respectively. What re-
mains of state persistence operations, that is, the yellow solid part in
Fig. 6, is limited to 7.22% (8.56%) of the overall energy cost compared
with considering the baseline (PersistOnce). This is notable com-
pared with the overhead of state persistence in existing literature,
which is reported to reach up to 350% [38].

In contrast, we do not affect 𝐸compute (𝑥), which depends on
several factors: the layer’s dimensions, the active energy of theMCU
while computing, and the number of cycles required to compute a
layer. The relative proportion of the overall energy consumed to

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

(a) M4. (b) M7. (c) M33.

Figure 8: Accuracy of INTERCEPT-optimized DNNs within the 1% bound on accuracy loss, depending on MCU. The net accuracy

loss is often much lower than the 1% bound.

(a) M4 vs baseline. (b) M7 vs baseline. (c) M33 vs baseline.

(d) M4 vs PersistOnce. (e) M7 vs PersistOnce. (f) M33 vs PersistOnce.

Figure 9: Throughput speedup with a 1% bound on accuracy loss considering both the baseline and PersistOnce, depending on

MCU. The energy gains enable many-fold improvements in throughput, sometimes more than doubling that of the baseline.

persist all the layers of the DNN, namely 𝐸persist , compared with
the compute counterpart 𝐸compute is a function of MCU and DNN.

To investigate these aspects, Fig. 7 provides a different view of
the results. Less energy-efficient MCUs might benefit less from
INTERCEPT, compared with highly energy-efficient ones, since
their 𝐸compute tends to dominate the energy figure and we do not
alter that. Fig. 7a and Fig. 7c show the overall performance across
all DNNs we test, depending on the MCU. The M33 MCU is the
one reaping the most benefits, with an average gain of 56.24% and
41.72% compared with the baseline and PersistOnce, respectively.
Still, the gains are only slightly less pronounced with theM4 andM7
MCUs but still significant. The chart ultimately provides evidence
that INTERCEPT is beneficial independent of the target MCU.

In contrast, Fig. 7b and Fig. 7d show the energy gain for each
DNN model we test, averaged across different MCUs. DNNs whose
layers generate large tensors that need to be persisted on NVM
within fewer computing cycles, like Mobilenet_224, show higher

energy gains compared with DNNswhere longer computations gen-
erate smaller tensors, like SqeezeNet. In the latter case, however,
the energy gain is still 32% compared with the baseline 21.5%
comparedwith PersistOnce. The benefits provided by INTERCEPT
also apply across diverse neural network architectures.

Fig. 8 examines the accuracy of the INTERCEPT-optimizedDNNs.
As expected, the accuracy stays within the 𝑘 = 1 bound. Inter-
estingly, nonetheless, the net accuracy loss is often much lower
than that. For example, the INTERCEPT-optimizedMobilenet_224
gains a 64.4% of energy compared with the baseline at the cost of
a tiny 0.56% accuracy loss when running on the M33 MCU. This
result is due to the inherent error resilience of DNNs, discussed in
Sec. 2.3. The fundamental insight we gain is that exerting careful
control on the trade-off between energy gain and write errors on
STT-MRAM unlocks great energy benefits, at the expense of almost
immaterial losses in accuracy.

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

4.3 Results→ Throughput

Fig. 9 shows the increase in system throughput enabled by INTER-
CEPT. Compared with the baseline, the largest throughput increase
amounts to a 2.98x factor for Mobilenet_224 running on the M33
MCU, whereas the smallest one is a 1.36x factor with SqeezeNet
running on the M7 MCU. Compared with PersistOnce, the largest
throughput speedup amounts to a 1.94x for FDMobilenet_224 run-
ning on the M33MCU, while the smallest one is again SqeezeNet
running on the M7 MCU, with a speedup of 1.15x.

Comparing Fig. 6 with Fig. 9 provides evidence that the increase
in throughput comes from the energy gains shown earlier. TheMCU
manifesting the highest throughput increase is indeed the M33
MCU for both the baseline and PersistOnce, with an average 2.48x
speedup considering the baseline and a 1.73x speedup considering
PersistOnce, while the M4 and M7 MCUs measure respectively a
1.59x and 1.49x speedup compared with the baseline, and a speedup
of 1.34x and 1.25x compared with PersistOnce.

Recharge times dominate active times in an intermittent sys-
tem [10]. Reducing their number and duration is one way to in-
crease throughput. This is precisely what INTERCEPT enables by
lowering the energy demands for running the inference process.
Lower energy demands allow the inference process to progress
further with the same energy budget, reducing the number of times
state persistence is required and capacitors must be recharged.

Lower energy demands, in addition, also allow one to use smaller
capacitors, which recharge faster and further reduce recharge times.
This is one of the knobs that Persist exploits. Smaller capacitors
also experience reduced leakage [10]. We do not account for capac-
itor leakage in our throughput measures, while the capacitor selec-
tion output by the Configure stage remains unchanged through
the INTERCEPT processing, as explained in Sec. 3, thus missing the
concrete opportunity to shorten the recharge times. This means
that the throughput improvements we discuss here are, in fact, a
lower bound and performance is likely even better.

4.4 Microscope Analysis

Fig. 10 shows the amount of energy we shave because of Persist or
Tune. Unlike existing techniques [49], Persist works based on the
static task structure. Differently, Tune reduces the energy consump-
tion of individual state persistence operations. Worth observing is
that the energy gains they enable are due not just to their individual
contribution, but especially to their repeated operation, enabled by
the INTERCEPT optimization loop. Simply applying Persist, as
demostated earlier through the comparison with PersistOnce, or
applying Persist followed by Tune just once would only enable a
fraction of the improvements.

Compared with the baseline, as shown in Fig. 10, we observe that
the contribution of either step to the overall energy gain depends
on the network. For bothMobilenet_96 andMobilenet_224, Per-
sist is responsible for most gains; conversely, Tune generates
the greatest gains for FDMobilenet_128, FDMobilenet_224, and
IGN_wl_48. In SqeezeNet, both contribute similarly.

The relative impact of Persist or Tune appears to be tied to the
specific DNN architecture, that is, the type of layers and the way
they are organized. Indeed, the relative contributions are similar in
networks with same architectures but different tensor and input

(a) Vs baseline.

(b) Vs PersistOnce.

Figure 10: Contribution of Persist and Tune to the overall

energy gain. The specific DNN architecture impacts the relative

contribution of Persist and Tune.

dimensions, such as Mobilenet_96 and Mobilenet_224, where
Persist bears the greater impact, as opposed to FDMobilenet_128,
FDMobilenet_224, where Tune is most effective.

A closer look reveals that networks with frequent alternations of
layers where the energy required for computation 𝐸compute is rela-
tively small but the energy for state persistence operation 𝐸persist is
large, with layers where both 𝐸compute and 𝐸persist are small, benefit
from Persist. In these cases, Persist effectively skips state persis-
tence operations for layers with large output tensors, performing
persistence only for those with smaller tensors. This pattern is
indeed found inMobilenet_96 andMobilenet_224.

In contrast, networks with a more even distribution of energy
across compute and state persistence operations offer fewer oppor-
tunities for Persist to skip state persistence operations. In this case,
the operation of Tune becomes more fundamental to lower the
energy consumption of those state persistence operations that are
difficult to remove. This is achieved by adjusting the QL settings.

Differently, comparing INTERCEPTwith PersistOnce from this
perspective essentially means looking at the optimization process
one step ahed, as Persist already executed once. Fig. 10b shows that
the reactive contribution of Persist is smaller, as the gains it enables
in the first iteration are not accounted for in the chart anymore.
Still, the plot demonstrates that the contribution of Persist remains
significant also in later iterations.

4.5 Processing Times

The time taken for a full execution of INTERCEPT depends on two
factors: i) the number of possible state persistence configurations
generated by Persist, that is, the number of times the optimization
loop branches out, and ii) the time required to complete the genetic
search at each step along every branch.

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

Figure 11: Energy gains with different bounds on accuracy

loss, consideringMobilenet_96 running on the M33 MCU.

Note how 𝐸gain drops and quickly flattens when 𝑘 increases.

The first aspect only depends on the depth of the DNN. As an
example, in the case of a shallow neural network like IGN_wl_48,
the number of different state persistence configurations we gen-
erate through the whole execution of INTERCEPT is just two. A
different DNN, like FDMobilenet_224, only generates seven dif-
ferent state persistence configurations. The average fan-out seen
during optimization process is generally limited.

With the experimental setup described earlier, the average pro-
cessing time for the genetic search in a Google Colab environment
equipped with an NVIDIA T4 GPU is roughly 1.5 hours. Factors im-
pacting this time are the number of state persistence operations, as
determined by Persist, and the DNN size. The former determines
the combinatorial complexity of the optimization problem, affecting
how many generations the genetic algorithm needs to explore. The
the DNN size impacts the effort to compute the reward for each
population element. Evaluating the accuracy of a larger network on
a given dataset is more computationally demanding than evaluating
a smaller one. For example, a search involving six state persistence
operations for a small DNN like IGN_wl_48 takes about 0.25 h,
whereas a search with twenty state persistence operations on a
larger network like FDMobilenet_224 takes about 3 h.

5 DISCUSSION

We offer a few considerations on INTERCEPT design and operation.
Selection of 𝑘 and general optimality. We obtain the results
of Sec. 4 by setting a 1% bound on accuracy loss. Such a value is
arguably irrelevant in the operation of most applications using
DNNs, which tend to have a probabilistic nature in the first place.
A natural question, however, is whether it is worth pushing this
further and selecting 𝑘 > 1, hoping for even higher energy gains
and corresponding throughput improvements.

Fig. 6 already provides an intuition. INTERCEPT exclusively
operates on the energy invested in state persistence operations (the
yellow parts), whereas it does not alter the cost of computing (the
blue part). Alreadywith𝑘 = 1, INTERCEPT savesmost of the energy
normally required for state persistence operations, corresponding
to the yellow shaded area. What is left, that is, the yellow solid
areas, is limited. Setting 𝑘 > 1 could only reduce this part further,
yet there is not much room for improvement.

Fig. 11 provides an example quantitative analysis, considering
Mobilenet_96 running on the M33 MCU. We run this experiment
by increasing𝑘 by one percentage at a time, starting from 1. The plot
shows that the curve describing the energy gain quickly flattens
as 𝑘 increases. This is precisely because of the intuition above:

with 𝑘 = 1, INTERCEPT has limited margins to maneuver further.
Similar observations apply to all other settings we explore.

In general, due to the operation of Tune and especially to the
nature of genetic search, we have no guarantee that the solution IN-
TERCEPT outputs is optimal. Computing an optimal configuration
may be computationally challenging due to the size of the solution
space. The shape of the solution space is also not known. We argue,
nonetheless, that the energy gains INTERCEPT provides are worth
also a sub-optimal solution, which is obtained within reasonable
times, as discussed in Sec. 4.5, yet entirely off-line.
Real-world operation. Environmental factors may impact the per-
formance of embedded devices. However, the setting we consider,
and especially the functioning of STT-MRAM in such a setting,
is largely oblivious to such factors. The literature specifically in-
dicates a distinct relationship with chip temperature [67], which
may hurt reliability [57]. Chip temperature, however, is not due
to environmental factors, but to intensive write operations caus-
ing the memory to self-heat. This my happen, for example, where
STT-MRAM is used as an on-chip last-level cache, yielding fre-
quent write operations that cause self-heating [57, 59]. We use
STT-MRAM as a scratch-pad memory at the very end of a comput-
ing cycle; writes are performed sparingly and separate in time by
at least a cycle of recharge. This may take minutes if not hours.

Voltage fluctuations may occur during memory write operations
due to capacitor discharges. The STT-MRAM we consider features
a working supply voltage that is sensibly lower than the MCUs one.
During the whole computing phase, the capacitor supplies enough
voltage to power the STT-MRAM without causing unwanted per-
formance deviations. Moreover, since the amount of data to be
persisted is small, that is, in the order of few KBytes, and the mem-
ory bandwidth is some hundreds of MB/s, the time to complete
memory operations is reasonably shorter than any correspond-
ing capacitor voltage variation. Drops in supply voltage below the
working tension of the STT-MRAM are extremely unlikely.

6 CONCLUSION

We presented INTERCEPT, a toolchain for efficient DNN inference
on STT-MRAM-equipped intermittent systems. INTERCEPT en-
ables throughput improvements in exchange for bounded accuracy
losses, as provided by system designers. Operating entirely at com-
pile time, it does not require any user intervention or changes to
the DNN model. INTERCEPT consists of two distinct components
cast in an optimization loop. Persistminimizes the number of state
persistence operations required to ensure the eventual completion
of the inference process while favoring the use of smaller capaci-
tors. Tune leverages STT-MRAM trade-off between energy savings
and write errors to reduce the energy consumption of the state
persistence operations. By setting the bound on accuracy loss to
a mere 1%, we demonstrate across three different MCUs and six
diverse DNN models that INTERCEPT achieves an average 40%
energy gain, in turn enabling a 1.9x speedup in system throughput.
Acknowledgments.Thiswork is partially supported by the Swedish
Science Foundation (SSF) and by the National Recovery and Re-
silience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call
for tender No. 1561 of 11.10.2022 of Ministero dell’Università e della
Ricerca (MUR); funded by the European Union - NextGenerationEU.

Intermittent Inference:
Trading a 1% Accuracy Loss for a 1.9x Throughput Speedup Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] A. M. Hosseini Monazzah, A. M. Rahmani, A. Miele, and N. Dutt. 2020. CAST:
Content-Aware STT-MRAM Cache Write Management for Different Levels of
Approximation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 39, 12 (2020), 4385–4398.
[2] M. Afanasov, N. A. Bhatti, A. Naveed, D. Campagna, G. Caslini, F. M. Centonze,

K. Dolui, A. Maioli, E. Barone, M. H. Alizai, J. H. Siddiqui, and L. Mottola. 2020.
Battery-Less Zero-Maintenance Embedded Sensing at the Mithræum of Circus
Maximus. In Proc. of ACM Conf. on Embedded Networked Sensor Systems (SenSys).
368–381.

[3] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin. 2024. A
Systematic Literature Review on Hardware Reliability Assessment Methods for
Deep Neural Networks. ACM Comput. Surv. 56, 6 (2024), 1–39.

[4] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola. 2019.
The betrayal of constant power×time: Finding the missing joules of transiently-
powered computers. In Proc. of the 20th ACM SIGPLAN/SIGBED Intl. Conf. on

Languages, Compilers, and Tools for Embedded Systems (LCTES). 97–109.
[5] S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, P. Pawełczak, M. H. Alizai,

B. Lucia, L. Mottola, J. Sorber, and J. Hester. 2024. The Internet of Batteryless
Things. Commun. ACM 67, 3 (2024), 64–73.

[6] K. Akhunov and K. S. Yıldırım. 2024. CRAM-Based Acceleration for Intermittent
Computing of Parallelizable Tasks. IEEE Trans. on Emerging Topics in Computing

12, 1 (2024), 48–59.
[7] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel. 2022. Hardware Approxi-

mate Techniques for Deep Neural Network Accelerators: A Survey. ACM Comput.

Surv. 55, 4 (2022), 1–36.
[8] Z. Azad, H. Farbeh, A. M. H. Monazzah, and S. G. Miremadi. 2017. An Efficient

Protection Technique for Last Level STT-RAM Caches in Multi-Core Processors.
IEEE Trans. on Parallel and Distributed Systems 28, 6 (2017), 1564–1577.

[9] F. Bambusi, F. Cerizzi, Y. Lee, and L. Mottola. 2022. The Case for Approximate
Intermittent Computing. In Proc. of Intl. Conf. on Information Processing in Sensor

Networks (IPSN). 463–476.
[10] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. 2016. Energy Harvesting and

Wireless Transfer in Sensor Network Applications: Concepts and Experiences.
ACM Trans. on Sensor Networks 12, 3 (2016), 1–40.

[11] N. A. Bhatti and L. Mottola. 2017. HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Sensing. In Proc. of ACM/IEEE Intl. Conf. on

Information Processing in Sensor Networks (IPSN). 209–220.
[12] C. Bolchini, L. Cassano, A. Miele, and A. Toschi. 2023. Fast and Accurate Error

Simulation for CNNs Against Soft Errors. IEEE Trans. on Computers 72, 4 (2023),
984–997.

[13] C. Bolchini and A. Miele. 2013. Reliability-Driven System-Level Synthesis for
Mixed-Critical Embedded Systems. IEEE Trans. on Computers 62, 12 (2013), 2489–
2502.

[14] L. Caronti, K. Akhunov, M. Nardello, K. S. Yıldırım, and D. Brunelli. 2023. Fine-
grained hardware acceleration for efficient batteryless intermittent inference on
the edge. ACM Trans. on Embedded Computing Systems 22, 5 (2023), 1–19.

[15] Z. Chen, G. Li, and K. Pattabiraman. 2021. A low-cost fault corrector for Deep
Neural Networks through range restriction. In Proc. Intl. Conf. Dependable Systems

and Networks (DSN). 1–13.
[16] A. Colin et al. 2018. Termination Checking and Task Decomposition for Task-

based Intermittent Programs. In Proceedings of the 27th International Conference

on Compiler Construction (CC 2018).
[17] A. Colin, E. Ruppel, and B. Lucia. 2018. A reconfigurable energy storage architec-

ture for energy-harvesting devices. In Proc. of Intl. Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS). 767–781.
[18] Fabrizio De Vita, Rawan MA Nawaiseh, Dario Bruneo, Valeria Tomaselli, Marco

Lattuada, and Mirko Falchetto. 2023. 𝜇-ff: On-device forward-forward training
algorithm for microcontrollers. In 2023 IEEE International Conference on Smart

Computing (SMARTCOMP). 49–56.
[19] B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi. 2023. Kodan:

Addressing the Computational Bottleneck in Space. In Proc. of Intl. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS).
392–403.

[20] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat, N. Zerounian,
J.-V. Kim, C. Chappert, and H. Ohno. 2008. Single-Shot Time-Resolved Measure-
ments of Nanosecond-Scale Spin-Transfer Induced Switching: Stochastic Versus
Deterministic Aspects. Physical Review Letters 100 (2008), 057206. Issue 5.

[21] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. 2012. Nvsim: A circuit-level perfor-
mance, energy, and area model for emerging nonvolatile memory. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems 31, 7 (2012), 994–1007.
[22] A. F. Gad. 2023. Pygad: An intuitive genetic algorithm python library. Multimedia

Tools and Applications 83 (2023), 58029–58042.
[23] K. Geissdoerfer and M. Zimmerling. 2022. Learning to communicate effectively

between battery-free devices. In 19th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 22). 419–435.
[24] G. Gobieski, B. Lucia, and N. Beckmann. 2019. Intelligence beyond the edge:

Inference on intermittent embedded systems. In Proc. of Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). 199–213.
[25] H. M. G. de A. Rocha, A. C. S. Beck, S. M. D. M. Maia, M. E. Kreutz, and M. M.

Pereira. 2020. A Routing based Genetic Algorithm for Task Mapping on MPSoC.
In Proc. Brazilian Symp on Computing Systems Engineering (SBESC). 1–8.

[26] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R Iris Bahar, and Sherief
Reda. 2017. Understanding the impact of precision quantization on the accuracy
and energy of neural networks. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017. 1474–1479.
[27] J. Hester et al. 2014. Ekho: Realistic and Repeatable Experimentation for Tiny

Energy-harvesting Sensors. In Proc. of ACM Conf. on Embedded Network Sensor

Systems (SenSys).
[28] J. Hester et al. 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-

Things. In Proc. of ACM Conf. on Embedded Network Sensor Systems (SenSys).
[29] J. Hester, L. Sitanayah, and J. Sorber. 2015. Tragedy of the coulombs: Federating

energy storage for tiny, intermittently-powered sensors. In Proc. of ACM Conf.

on Embedded Networked Sensor Systems (SenSys). 5–16.
[30] L.-H. Hoang, M. A. Hanif, and M. Shafique. 2020. Ft-clipact: Resilience analysis of

deep neural networks and improving their fault tolerance using clipped activation.
In Proc. of Design, Automation & Test in Europe Conf. & Exhibition (DATE). 1241–
1246.

[31] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen. 2020. Soft
error resilience of deep residual networks for object recognition. IEEE Access 8
(2020), 19490–19503.

[32] N. Ikeda, R. Shigeta, J. Shiomi, and Y. Kawahara. 2020. Soil-Monitoring Sensor
Powered by Temperature Difference between Air and Shallow Underground Soil.
Proc. of ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1
(2020), 1–22.

[33] B. Islam, Y. Luo, and S. Nirjon. 2023. Amalgamated intermittent computing
systems. In Proceedings of the 8th ACM/IEEE Conference on Internet of Things

Design and Implementation. 184–196.
[34] B. Islam and S. Nirjon. 2020. Scheduling computational and energy harvest-

ing tasks in deadline-aware intermittent systems. In 2020 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). IEEE, 95–109.
[35] B. Islam and S. Nirjon. 2020. Zygarde: Time-Sensitive On-Device Deep Inference

and Adaptation on Intermittently-Powered Systems. Proc. of ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies 4, 3 (2020), 1–29.
[36] S. Islam, J. Deng, S. Zhou, C. Pan, C. Ding, and M. Xie. 2022. Enabling fast deep

learning on tiny energy-harvesting IoT devices. In Proc. of Design, Automation &

Test in Europe Conf. & Exhibition (DATE). 921–926.
[37] S. Islam, S. Zhou, R. Ran, Y.-F. Jin, W. Wen, C. Ding, and M. Xie. 2022. Eve:

Environmental adaptive neural network models for low-power energy harvesting
system. In Proc. of IEEE/ACM Intl. Conf. on Computer-Aided Design (ICCAD). 1–9.

[38] J. Van Der Woude and M. Hicks. 2016. Intermittent Computation Without
Hardware Support or Programmer Intervention. In Proc. of USENIX Symp. on

Operating Systems Design and Implementation (OSDI). 17–32.
[39] S. Jeon, Y. Choi, Y. Cho, and H. Cha. 2023. Harvnet: resource-optimized operation

of multi-exit deep neural networks on energy harvesting devices. In Proc. of the

Annual Intl. Conf. on Mobile Systems, Applications and Services (MobiSys). 42–55.
[40] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu. 2020. Everything

leaves footprints: Hardware accelerated intermittent deep inference. IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 3479–
3491.

[41] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu. 2022. More is less:
Model augmentation for intermittent deep inference. ACM Trans. on Embedded

Computing Systems 21, 5 (2022), 1–26.
[42] K. Langendoen. 2006. Apples, oranges, and testbeds. In 2006 IEEE International

Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 387–396.
[43] S. Lee and S. Nirjon. 2019. Neuro.ZERO: a zero-energy neural network accelerator

for embedded sensing and inference systems. In Proc. of ACM Conf. on Embedded

Networked Sensor Systems (SenSys). 138–152.
[44] C.-C. Lin, C.-Y. Liu, C.-H. Yen, T.-W. Kuo, and P.-C. Hsiu. 2023. Intermittent-aware

neural network pruning. In Proc. of ACM/IEEE Design Automation Conf. (DAC).
1–6.

[45] B. Lucia and B. Ransford. 2015. A Simpler, Safer Programming and Execution
Model for Intermittent Systems. In Proc. of ACM SIGPLAN Conf. on Programming

Language Design and Implementation (PLDI). 575–585.
[46] M. Lv and E. Xu. 2022. Deep Learning on Energy Harvesting IoT Devices: Survey

and Future Challenges. IEEE Access 10 (2022), 124999–125014.
[47] Mingsong Lv and Enyu Xu. 2022. Efficient dnn execution on intermittently-

powered iot devices with depth-first inference. IEEE Access 10 (2022), 101999–
102008.

[48] A. Maioli and L. Mottola. 2021. Alfred: Virtual memory for intermittent comput-
ing. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor

Systems. 261–273.
[49] A. Y. Majid et al. 2020. Dynamic Task-Based Intermittent Execution for Energy-

Harvesting Devices. ACM Trans. on Sensor Networks 16, 1 (2020), 1–24.
[50] H. R. Mendis, C.-K. Kang, and P.-C. Hsiu. 2021. Intermittent-aware neural ar-

chitecture search. ACM Trans. on Embedded Computing Systems 20, 5s (2021),

Conference’17, July 2017, Washington, DC, USA Rei Barjami, Antonio Miele, and Luca Mottola

1–27.
[51] S. Mittal. 2016. A survey of techniques for approximate computing. ACM Comput.

Surv. 48, 4 (2016), 1–33.
[52] H. Noh, T. You, J. Mun, and B. Han. 2017. Regularizing deep neural networks

by noise: Its interpretation and optimization. In Conf. on Neural Information

Processing Systems (NIPS). 5115–5124.
[53] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan. 2015. Ap-

proximate storage for energy efficient spintronic memories. In Proc. of ACM/IEEE

Design Automation Conf. (DAC). 1–6.
[54] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, H. Cilasun, J.-P.

Wang, S. S. Sapatnekar, and U. R. Karpuzcu. 2020. MOUSE: Inference in non-
volatile memory for energy harvesting applications. In Proc. of Annual IEEE/ACM

Intl. Symp. on Microarchitecture (MICRO). 400–414.
[55] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, H. Cilasun, J.-P.

Wang, S. S. Sapatnekar, and U. R. Karpuzcu. 2022. Energy-efficient and reliable
inference in nonvolatile memory under extreme operating conditions. ACM

Trans. on Embedded Computing Systems 21, 5 (2022), 1–36.
[56] S. S. Saha, S. S. Sandha, and M. Srivastava. 2022. Machine learning for

microcontroller-class hardware: A review. IEEE Sensors Journal 22, 22 (2022),
21362–21390.

[57] Arash Salahvarzi, Mohsen Khosroanjam, AmirMahdi Hosseini Monazzah, Hakem
Beitollahi, Umit Y. Ogras, and Mahdi Fazeli. 2023. WiSE: When Learning Assists
Resolving STT-MRAM Efficiency Challenges. IEEE Trans. on Emerging Topics in

Computing 11, 1 (2023), 43–55.
[58] N. Sayed, F. Oboril, A. Shirvanian, R. Bishnoi, and M. B. Tahoori. 2017. Exploiting

STT-MRAM for approximate computing. In Proc. of European Test Symp. (ETS).
1–6.

[59] S. Seyedfaraji, J. T. Daryani, M. M. Sabry Aly, and S. Rehman. 2022. EXTENT:
Enabling Approximation-Oriented Energy Efficient STT-RAMWrite Circuit. IEEE
Access 10 (2022), 82144–82155.

[60] Joshua R Smith, Alanson P Sample, Pauline S Powledge, Sumit Roy, and Alexander
Mamishev. 2006. A wirelessly-powered platform for sensing and computation.
In International Conference on Ubiquitous Computing. Springer, 495–506.

[61] STMicroelectronics. 2023. STLQ015 Datasheet. https://www.st.com/resource/en/
datasheet/stlq015.pdf. Accessed: 2024-09-23.

[62] STMicroelectronics. 2023. STM32AI Model Zoo - Image Classification Mod-
els. https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_
classification/models. Accessed: January 22, 2024.

[63] S. Tosun, O. Ozturk, E. Ozkan, andM. Ozen. 2015. Applicationmapping algorithms
for mesh-based network-on-chip architectures. Journal of Supercomputing 71, 3
(2015), 995–1017.

[64] Y. Wu, Z. Wang, Z. Jia, Y. Shi, and J. Hu. 2020. Intermittent inference with nonuni-
formly compressed multi-exit neural network for energy harvesting powered
devices. In Proc. of ACM/IEEE Design Automation Conf. (DAC). 1–6.

[65] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2022. Stateful neural networks
for intermittent systems. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 41, 11 (2022), 4229–4240.
[66] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester.

2018. Ink: Reactive kernel for tiny batteryless sensors. In Proc. of ACM Conf. on

Embedded Networked Sensor Systems (SenSys). 41–53.
[67] Liuyang Zhang, Yuanqing Cheng, Wang Kang, Lionel Torres, Youguang Zhang,

Aida Todri-Sanial, and Weisheng Zhao. 2018. Addressing the Thermal Issues
of STT-MRAM From Compact Modeling to Design Techniques. IEEE Trans. on

Nanotechnology 17, 2 (2018), 345–352.

https://www.st.com/resource/en/datasheet/stlq015.pdf
https://www.st.com/resource/en/datasheet/stlq015.pdf
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/models
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/models

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Intermittent Inference
	2.2 STT-MRAM
	2.3 Error Resilience in DNN

	3 INTERCEPT
	3.1 Overview
	3.2 Persist
	3.3 Tune
	3.4 Quantitative Example

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results Energy Consumption
	4.3 Results Throughput
	4.4 Microscope Analysis
	4.5 Processing Times

	5 Discussion
	6 Conclusion
	References

