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ABSTRACT

WepresentTaDA, a system architecture enabling efficient execution

of Internet of Things (IoT) applications across multiple computing

units, powered by ambient energy harvesting. Low-power micro-

controller units (MCUs) are increasingly specialized; for example,

custom designs feature hardware acceleration of neural network in-

ference, next to designs providing energy-efficient input/output. As

application requirements are growingly diverse, we argue that no

single MCU can efficiently fulfill them. TaDA allows programmers

to assign the execution of different slices of the application logic to

the most efficient MCU for the job. We achieve this by decoupling

task executions in time and space, using a special-purpose hardware

interconnect we design, while providing persistent storage to cross

periods of energy unavailability. We compare our prototype perfor-

mance against the single most efficient computing unit for a given

workload. We show that our prototype saves up to 96.7% energy

per application round. Given the same energy budget, this yields

up to a 68.7x throughput improvement.

KEYWORDS

Task decoupling, Internet of Things (IoT), energy harvesting, inter-

mittent computing

1 INTRODUCTION

To abate maintenance costs, ambient energy harvesting replaces

traditional batteries to power Internet of Things (IoT) devices [8, 16,

22, 32]. However, energy from the environment is generally erratic,

causing frequent and unanticipated energy failures. Increasingly

diverse application requirements [16] and the vast array of available

microcontroller units (MCUs) [4, 5, 7] further complicate matters.

Applications and MCUs. IoT applications blend diverse require-

ments, especially relative to energy consumption [48]. For example,

input/output (I/O) operations through sensors and actuators enable

interactions with the environment. The corresponding energy de-

mands depend on peripherals’ characteristics and the features of

the computing unit controlling them. Data processing using signal

processing [53] heavily depends on the computing unit’s ability

to handle floating-point operations. Embedded neural network in-

ference [28] requires efficient multiply-accumulate computations

(MACs). The energy performance of wireless transmissions depends

on the coupling between the MCU and the RF transceivers.

7 . 4

1 3 5 . 6 1 2 3 . 1
9 1 . 7

2 . 17 . 7

1 4 1 . 1

0 . 6
F l o a t i n g - p o i n t

a r i t h m e t i c
1 0  K b p s  b a c k s c a t t e r  
b a s e b a n d  g e n e r a t i o n

M a c h i n e  l e a r n i n g  
i n f e r e n c e

0
3 0
6 0
9 0

1 2 0
1 5 0
1 8 0

��
�	

�

���

��

 S T M 3 2 L 4 3 2  @ 8 0 M h z   M S P 4 3 0 F R 5 9 6 9  @ 1 M H z   M A X 7 8 0 0 0  @ 8 0 M H z

N / A

Figure 1: Energy consumption of different MCUs for given

workloads. No single MCU can fulfill the diverse requirements of

IoT applications.

No single available MCU fulfills these requirements alone. Fig. 1

illustrates key examples. When executing floating-point operations,

a 32-bit higher-power MCU with a hardware floating-point unit

(FPU) is ultimately more energy efficient compared to a lower-

power MCU with FPU emulation [33]. The MSP430FR5969 MCU

running at 1 MHz only consumes 0.4 mW compared to the Cortex

M4 STM32L432 MCU running at 80 MHz, which absorbs 25 mW.

To complete the same floating-point arithmetic workload, how-

ever, the MSP430FR5969 MCU requires 12 times the energy of the

STM32L432 MCU, due to longer processing times.

The opposite observation applies when using the same two

MCUs to achieve low-power communications with technologies

such as backscattering [49], which is an asset with energy harvest-

ing [11]. As ambient backscatter usually employs very low data

rates [35] and computations for carrier modulation are extremely

simple, and yet must occur at the same rate as data transmissions, a

low-power MCU usually provides better energy performance. Fig. 1

indicates, for example, that generating the same baseband signal for

10 Kbps backscatter communications using the STM32L432 MCU

running at 80 MHz consumes 65 times more energy than using the

MSP430FR5969 MCU running at 1 MHz.

Special-purpose accelerators and custom instruction set archi-

tectures [20] achieve better energy efficiency than general-purpose

MCUs for specific workloads. For example, the MAX78000 and

STM32L432 MCUs are both based on a Cortex M4 core but the for-

mer features a specialized accelerator for neural network inference.

To complete the same inference process, the STM32L432 MCU con-

sumes 205 times more energy than the MAX78000 MCU, with both
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Figure 2: TaDA overview. Developers provide the application code

as a sequence of processing tasks running with transactional semantics.

Tasks exchange data asynchronously through a hardware interconnect

that also provides persistent storage.

platforms running at the same clock. In Fig. 1, the energy consump-

tion of the MAX78000 MCU in this case is so much lower compared

to the STM32L432 MCU that the green bar is barely visible.

TaDA. Our goal is to enable that given functionality is executed on

the best-performing MCU for that specific job. The best-performing

MCU is the one that consumes the least energy for the specific

workload, or for a specified slice of it, compared to the other avail-

able MCUs. For example, as shown in Fig. 1, the MAX78000 MCU

is the best-performing MCU for machine learning inference.

To accomplish this, we design a system architecture that allows

IoT applications to execute across a heterogeneous set of MCUs.

We call it TaDA. Fig. 2 illustrates its fundamental components. De-

velopers provide the application code as a sequence of processing

tasks [17, 36, 38] with defined inputs and outputs and executing

with transactional semantics, based on existing programming mod-

els [17, 36, 38]. With TaDA, the developer-provided tasks execute

over separate memory spaces of the different MCUs and only ex-

change data asynchronously through a special-purpose hardware

interconnect providing a message-passing interface. Task execution

is thus decoupled in space.

Battery-less IoT applications are also prone to energy failures.

Persisting intermediate results is necessary to cross periods of

energy unavailability, leading to an intermittent computing pat-

tern [11]. The use of non-volatile memories (NVMs) to this end is

challenging; as of now, only one family of commercially-available

MCUs provides dedicated support [5]. We equip TaDA’s hardware

interconnect with NVM to persist messages flowing betweenMCUs,

providing a means to intermittent computing also for platforms

with no built-in support for handling energy failures. MCUs push-

ing (pulling) data to (from) the interconnect, therefore, may not

be active at the same time and be powered by separate energy

harvesters. Task execution is therefore also decoupled in time.

We prototype TaDA’s interconnect using an MSP430FR5969

MCU with on-chip NVM support and a small software driver,

amounting to only around 1000 lines of C code. Using real hardware,

we concretely implement three staple IoT applications, namely hu-

man activity recognition (HAR), plant health monitoring (PHM),

and agriculture environment measurement (AEM). Each applica-

tion uses different sensing and communication technology, exposes

different processing and data requirements, and therefore employs

a different combination of MCUs around the TaDA interconnect.

As the interconnect itself bears an energy overhead, we investi-

gate whether that potentially cancels the gains obtained by running

each task on the best-performing MCU. We run the three appli-

cations on top of the TaDA prototype to compare their energy

and throughput performance with their execution on the best-

performing single MCU. This is the one that consumes the least

energy for each of the three applications compared to the other

available MCUs, when the application runs entirely on that MCU.

We find that TaDA saves up to 96.7% energy compared to the best-

performing single MCU in a single application round. Using a total

of 32 hours of 20 different real-world power traces, we demonstrate

that TaDA enables up to a 68.7x throughput improvement.

In summary, this paper presents three key contributions:

(1) we design a system architecture providing space- and time-

decoupled execution across different MCUs of IoT applica-

tions powered by energy harvesting;

(2) we create a prototype using off-the-shelf hardware and a thin

software layer we develop, and use this to implement three

staple IoT applications;

(3) using real hardware, we show up to 96.7% energy gains com-

pared to the best-performing single MCU for the same work-

load, corresponding to a 68.7x throughput improvement mea-

sured using real-world power traces.

The paper unfolds as follows. Sec. 2 provides background infor-

mation and contrasts our work with related efforts. Sec. 3 describes

the design and implementation of TaDA, whereas Sec. 4 describes

the three application prototypes. Sec. 5 illustrates the evaluation

settings and results. We end the paper in Sec. 6 with a discussion

on limitations and in Sec. 7 with brief concluding remarks.

2 BACKGROUND AND RELATEDWORK

Our work is loosely inspired by the concept of decoupled access-

execute (DAE), originally proposed by Smith [46] as a means to

improve execution performance by decoupling memory access and

execution in general-purpose computing [34]. Rather than focusing

on specific operations of the same application, TaDA decouples

different slices of the application code in space and time using an

NVM-equipped hardware interconnect, allowing workload-specific

MCUs asynchronously exchange data. We provide additional back-

ground and briefly survey related works next.

Intermittent computing. Battery-less IoT devices use ambient

energy sources, such as solar, thermal, and radio frequency (RF), as

their only power source [16]. However, due to erratic energy pat-

terns, executions become intermittent: intervals of active operation

are interleaved by periods of recharging energy buffers [11].

Battery-less IoT devices typically feature 16- or 32-bit MCUs

with a few kilobytes of memory. Applications run on bare hard-

ware with no operating system. Energy failures normally cause

a device to lose system state. To ensure forward progress across

energy failures, systems employ persistent state on NVM, which is
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restored when energy is back, so executions resume close to the

point of energy failure rather than performing a complete reboot.

The energy required for NVM operations, however, may reach up to

350% of the cost of the application processing [50]. Some solutions

employ a form of checkpointing to save the intermediate program

state to NVM [10, 12, 13, 15, 39, 45, 50]. This approach replicates

the application state on NVM at specific points in the program, and

restores the state once the system has sufficient energy to continue.

Existing techniques differ based on the amount of operation accom-

plished at compile- versus run-time, and by the logic used to place

checkpoints in the code.

Other approaches offer a task abstraction to define and manage

persistent state [17, 36, 38]. A task is a computational unit with de-

fined inputs and outputs, which runs with transactional semantics

and commits outputs on NVM. Tasks allow one to precisely map the

energy consumption to the available hardware, for example, when

using multiple capacitors [19]. Using existing techniques [18, 19],

the capacitor array may be configured, in number and size of indi-

vidual capacitors, to ensure eventual completion of the workload.

MCUs. Designs exist with built-in NVM support, for example,

the TI MSP430FRxxxx series [5]. Using these MCUs, the software

support only requires to checkpoint a few processor registers to

NVM [40]. Because of this feature, these MCUs are often the basis

for intermittent computing platforms [30] and deployments [8].

Ma et al. also present a design that uses NVM throughout the

entire memory hierarchy, down to flip-flops [37]. Checkpoints are

small but frequent, allowing the system to resume computation

quickly after energy failures. Programmers no longer need to man-

age state persistence operations explicitly in the code but hardware

complexity and energy overhead increase.

In TaDA, we seek to reap the greatest benefits from existing

MCUs regardless of their built-in support to intermittent comput-

ing. We let developers use the best-performing MCU for the job

depending on the requirements of specific slices of the applica-

tion logic. TaDA also allows general-purpose MCUs to be used to

compute intermittently by providing persistent storage.

Multiple MCUs. Modern System-on-Chip (SoC) devices package

multiple MCUs in the same integrated circuit. For instance, the TI

C13xx/CC26xx series [1] integrate two low-power MCUs besides

the main one. These MCUs are constrained to specific tasks, such as

sensing and wireless communication, and cannot be programmed

directly. The lack of shared memory requires the main MCU to be

active for any inter-MCU communication.

Other MCUs integrate two general-purpose computing cores,

such as the ARM Cortex-M4F and the ARM Cortex-M0+ in the

NXP’s K32 L Series MCUs [2]. A specific messaging unit (MU)

module allows the two cores within the MCU to exchange data.

Here again, this design is limited to these exact two computing cores,

which work in the same power and clock domains by construction.

They cannot be decoupled in time, as required by unpredictable

ambient energy patterns that may create the conditions for only

one of the two cores to be active at a time.

Modular architectures exist, including the 4-layer modular ar-

chitecture [44], the stackable architecture [43], the MIT Media Lab

List 1 TaDA asynchronous message-passing API

1: void push (𝑢𝑖𝑛𝑡8_𝑡∗ message, 𝑢𝑖𝑛𝑡8_𝑡 size);

2: void pull (𝑢𝑖𝑛𝑡8_𝑡∗ message, 𝑢𝑖𝑛𝑡8_𝑡 size, 𝑢𝑖𝑛𝑡8_𝑡 id);

3: uint8_t status (𝑢𝑖𝑛𝑡8_𝑡 id);

modular platform [14], and Epic [23]. In these designs, the compo-

nents communicate through a shared bus or standard communica-

tion protocols. They can accommodate more than two MCUs but

again lack shared memory in between for storing data. The MCUs

in these designs must be powered on at the same time to exchange

data with each other. Time decoupling, as above, is unfeasible.

Closer to our work is Bolt [47], a dual-MCU platform that sup-

ports time-sensitive communication between MCUs. Its design is

originally motivated by the necessity to handle synchronous com-

munications [24] without halting the regular application processing.

To this end, BOLT decouples an application-specific MCU from a

communication-specific MCU, yet while guaranteeing that time

constraints necessary for synchronous communications are not

violated. These guarantees are formally verified properties using

Uppaal models, which are created for the two specific MCUs. Be-

cause of the time-sensitive setting, the two MCUs know exactly

when to push or pull data.

In contrast, we focus on decoupling intermittent computing tasks

that have no predictable time dynamics executing on independently-

powered MCUs. Rather than a specific two-MCU setting, moreover,

our design is general in that it accommodates an arbitrary number

of different MCUs, which are not necessarily fixed and may vary

depending on application requirements.

3 TADA

We describe the TaDA programming model, our prototype imple-

mentation, and the system configuration.

3.1 Programming Model

Developers provide applications encoded as an acyclic graph with

tasks represented as nodes in the graph. Tasks have defined inputs

and outputs connecting them together and execute with transac-

tional semantics. This application encoding is the same as exist-

ing task-based programming abstractions for intermittent comput-

ing [17, 36, 38, 52]. Tools exist to guide developers in the process

of decomposing existing application code into tasks [18].

List 1 shows the asynchronous message-passing API that the

tasks deployed on individual MCUs use to exchange data with

other MCUs. A small software driver implements this API for the

specific MCU. The API allows the single MCU to push (pull) data

to (from) the interconnect and to probe its status, enabling the

execution of the tasks deployed on different MCUs on separate

memory spaces. This effectively decouples task executions in space.

Tasks deployed on different MCUs and pushing (pulling) data to

(from) the interconnect may not execute at the same time or with

any specific synchronization. The interconnect buffers messages

over persistent storage in pairwise FIFO order. This way, regardless

of energy patterns, task executions are decoupled in time as well.

An arbitrary number of MCUs may attach to the interconnect.

The id parameter in List 1 is used to specify what MCU to pull from.
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Figure 3: Interconnect implementation. The MSP430FR5969

MCU provides persistent storage on FRAM. We use the SPI to handle

data exchanges with MCUs.

Moreover, whenever a TaDA-attached MCU starts the execution,

the interconnect is not necessarily ready to handle the data trans-

fers. For example, it might not have storage space to accommodate

the data. Hence, a pre-execution stage is necessary to ensure the in-

terconnect can handle the requests of the attached MCU before task

execution, as further detailed in Sec. 3.3. The status() operation
of List 1 returns information on the interconnect status.

3.2 Prototype

We prototype TaDA around a custom interconnect using off-the-

shelf hardware. This is not the only possible implementation; for

example, one may design a custom circuit providing the same se-

mantics. Our prototype provides a quick path to a working im-

plementation. It also demonstrates limited overhead and enables

significant overall performance gains, as we report in Sec. 5.

We use an MSP430FR5969 MCU, a low-power MCU with built-in

FRAM, for the interconnect prototype. It provides efficient opera-

tion especially when handling peripheral interactions. The built-in

64KB FRAM facilitates implementing persistent storage seman-

tics with low energy overhead. The MCU runs a custom memory

controller we implement in C. The controller manages a variable

number of FIFO queues stored in FRAM. We use one FIFO queue

for every pair of upstream-downstream MCUs that must exchange

data. This is configured at compile-time.

The software driver that implements the API of List 1 uses the

built-in serial peripheral interface (SPI) and the direct memory

access (DMA) controller of the MSP430FR5969 MCU to enable effi-

cient data exchanges between the MCUs and the interconnect. SPI

can achieve higher data rates compared to alternatives like I2C and

UART. The DMA controller enables faster and more efficient data

exchanges by moving data directly between MCUs and the inter-

connect without MCU intervention. We handle the control signals

indicating the status of the FIFO queues using the general-purpose

input/output (GPIO) pins.

Each MCU is equipped with a dedicated capacitor. However, the

interconnect does not have its own capacitor; it is directly powered

by the capacitor powering the MCU that is currently using it. This

Figure 4: TaDA hardware prototype. The interconnect prototype

in the middle connects two different MCUs.

design ensures that the interconnect is active at the same time as

the MCU attempting a data exchange with it.

3.3 System Configuration

We size the capacitors based on the peak energy demand of the

tasks assigned to that MCU and on its active power, using the same

principles as in existing multi-capacitor architectures [19]. The

capacitors size is specifically determined to ensure that the attached

MCU has sufficient energy to sustain the worst-case processing

demands of the most energy-demand task, plus the required data

exchanges with the interconnect.

The capacitors may be charged in different ways. One may attach

them in parallel with a single energy harvester, which entails the

capacitors are charged proportionally to their size. Alternatively,

one may design a simple circuit that distributes incoming energy

equally among the capacitors, or attach each capacitor to a different

energy harvester. We evaluate the effect of the former two charg-

ing strategies in Sec. 5. We disregard the latter in that it increases

the total energy budget available to the system, and hence is not

comparable with any other configurations.

The pre-execution stage also requires energy. Two possible con-

figurations are available here. We call one Check-Only. With this,

we factor into the estimate of the capacitor size described earlier a

minimal amount of additional energy. The MCU uses the additional

energy to execute the pre-execution stage. If the interconnect can-

not handle the requests, the MCU shuts down and waits for the

next time it can activate.

A different design option, instead, entails reserving some addi-

tional energy to perform repeated checks during the pre-execution

stage. This essentially requires selecting a capacitor storing en-

ergy beyond what is strictly needed by task execution and data

exchanges with the interconnect. For example, say a task requires

10 𝜇𝐽 to complete. One may add a 20% fraction of energy to per-

form the pre-execution, ultimately using a capacitor worth 12 𝜇𝐽 .

In this case, if the interconnect cannot handle the request, the MCU

enters sleep mode and waits for an interrupt from the interconnect

through GPIO, which wakes it up and triggers another attempt. The

process repeats for a number of times limited by the additional en-

ergy budget, that is, 2 𝜇𝐽 in this example. Using more energy would

put at risk the completion of the task, should the interconnect be

eventually ready to handle the request.
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4 APPLICATION PROTOTYPES

We develop three staple IoT applications to study the performance

of a TaDA-based full-fledged implementation, compared to a single-

MCU counterpart. We begin by manually partitioning the appli-

cation code in tasks, isolating key functionality such as sensing,

processing, and wireless communications in separate tasks, similar

to how an application developer using TaDA operates.

To determine the deployment configuration of TaDA for each

application, including the number of different MCUs to employ,

what MCU runs what tasks, and the interconnect configuration, we

profile the application processing using existing tools [9, 25, 30].

Based on this information, we compute the energy that different

functionality require depending on the target MCU and attached

peripherals, if any, among the three MCUs we discussed in Sec. 1

and by considering the application-specific sensors. These MCUs

are representative of different trade-offs, in that they include a low-

power MCU, a high-power MCU with hardware FPU, and a special-

purpose hardware accelerator. We return to the choice of the three

specific MCUs we consider in this work in Sec.6. The measured

energy consumption of each task within an application on each

MCU is compared to identify the MCU that executes that specific

task with the least energy consumption. This MCU is considered

the best-performing MCU for that specific task.

We also explore two wireless technologies, namely, BLE [31] and

backscatter communications [35]. We use the nRF52840 chip as the

BLE transceiver, which works in advertising mode to send data. The

on-board Cortex M core does not run any slice of the application

logic and only runs the BLE stack. We use the MSP430FR5969 MCU

for backscatter baseband signal generation and test the two different

data rates. The encoding functionality we mention hereafter only

applies to backscatter. We attach a simple backscatter tag to the

MSP430FR5969 MCU to enable data transmissions.

Agricultural environment measurement (AEM). AEM senses

the environmental temperature and humidity for monitoring of

greenhouses [21]. Data is locally processed first and then relayed

to a central collection point for processing, using wireless com-

munication. This is representative of a large class of environment

monitoring IoT applications [42], including many that employ en-

ergy harvesting [16].

Fig. 5(a) shows the tasks used to encode the application process-

ing. Based on profiling information, we only use two MCUs: we

deploy a task including sensing and processing onto an STM32L432

MCU, whereas packet preparation, encoding and transmissions

are deployed onto an MSP430FR5969 MCU. This configuration is

natural in that the MSP430FR5969 MCU provides energy-efficient

I/O operations. In contrast, floating-point arithmetic is required to

process temperature and humidity readings, which is where the

STM32L432 MCU excels compared to the alternatives. We dimen-

sion the FIFO buffer at the interconnect to accommodate 700 data

items of 32 bits each, which leaves as much room as possible to

handle data bursts, as we further discuss in Sec. 5.

Plant health monitoring (PHM). PHM is an IoT application that

classifies plant diseases [6, 26]. An embedded camera takes pictures

of the leaves; a machine-learning (ML) model is used to infer the

plant status. The outcome is eventually sent to a central collection

point using wireless. The processing is a paradigmatic example of

Sensing Computation Wireless transmission
AEM

STM32L432 MSP430FR5969

nRF52840

tag
Backscatter

OR

(a) AEM application

Sensing ML inference Wireless transmission

HAR/PHM

MAX78000 MSP430FR5969

nRF52840

tag
Backscatter

OR

MSP430FR5969

AIAI

(b) PHM and HAR applications

Figure 5: Tasks encoding for three applications. We use

an MSP430FR5969 MCU to handle I/O with peripherals and RF

transceivers, a MAX78000 MCU to run inference processes, and an

STM32L432 MCU to perform floating-point calculations.

handling large data on IoT devices, in that images impose quite a

significant memory overhead, and of running ML functionality [29].

We split the application processing in three tasks, shown in

Fig. 5(b). Profiling information leads us to employ all three MCUs.

We use an MSP430FR5969 MCU to drive the camera operation,

that is, the sensing task. Packet preparation and execution of the

inference step are deployed onto a MAX78000 MCU. As for the

AEM application, encoding and transmission functionality are de-

ployed to a (different) MSP430FR5969 MCU. The rationale is that an

MSP430FR5969 MCU is the most efficient, among the alternatives

we consider, to handle I/O operations with sensors and transceivers,

whereas the MAX78000 MCU provides acceleration for inference.

The FIFO buffer between the MSP430FR5969 MCU driving the

camera and theMAX78000MCU is set to accommodate up to 15 data

items, each of 64x64x8 bits, which is the maximum our hardware

prototype can support due to memory constraints. The other FIFO

buffer between the MAX78000 MCU and the MSP430FR5969 MCU

is set to provide space for 15 data items of 32 bits each.

Human activity recognition (HAR). HAR is an IoT application

that categorizes human actions based on high-frequency accelerom-

eter data [6, 51], using an ML classification model. As in the other

cases, wireless communications are used to relay the outcome to a

central collection point. The processing at hand is another exam-

ple of running ML functionality at the edge [29], yet this time the

individual samples are small but acquired at higher frequency.

Fig. 5(b) shows the three tasks we use to encode the application

logic. An MSP430FR5969 MCU drives the accelerometer and buffers

incoming data. As in the PHM application, an MAX78000 MCU runs

the packet preparation and inference step, whereas a (different)

MSP430FR5969 MCU handles encoding and transmissions. The

rationale is similar as above. This configuration, however, also

5



shows how TaDA allows the same accelerator to handle different

types of data independent of how they are generated. In both the

HAR and PHM applications, the MSP430FR5969 MCU upstream

prepares the data for the MAX78000 MCU to proceed. It can do

that much more efficiently than the MAX78000 MCU itself, which

mainly accelerates neural network inference. We dimension each

of the two FIFO buffers at the interconnect to accommodate 700

data items of 32 bits each.

5 EVALUATION

Our evaluation is three-pronged. Sec. 5.1 investigates the energy

performance of the three prototype applications in Sec. 4, based

on real hardware measurements. Sec. 5.2 studies how the energy

savings enabled byTaDA in a single application round unlockmany-

fold throughput improvements, using real-world power traces that

ensure reproducibility. We report on the execution of several micro-

benchmarks in Sec. 5.3, which are instrumental to understand the

impact of parameter settings and the architecture’s limitations. Our

results indicate that

(1) a TaDA-based implementation of the applications we con-

sider enables up to a 96.7% improvement compared to the

best-performing single MCU;

(2) the prototype of TaDA interconnect bears limited energy

overhead, which amounts to 2.6% of the total energy con-

sumption in the worst case;

(3) depending on energy patterns, a TaDA-based implementa-

tion can complete 68.7x more application rounds than the

single MCU configuration.

5.1 Energy

We describe the setup of the energy measurements and the results

we obtain. The energy improvements are the basis to enable the

throughput improvements we illustrate next.

Setup.We use the hardware/software prototypes in Sec. 4 to run

the application code and measure its energy consumption with real

hardware. To do so, we attach the hardware prototypes to a digital

power supply [3], which provides a fixed voltage to the hardware

prototypes and records their power consumption over time. We

can calculate the energy consumption of the hardware prototypes

based on the power consumption traces we obtain.

We compare the energy consumption of a TaDA-based imple-

mentation of three applications with the best-performing single

MCU implementation. To identify the best-performing single MCU

for each application, we experimentally measure its energy con-

sumption when running on each of the three MCUs of Sec. 1. The

processing task in the AEM application is floating-point arithmetic,

which is best served by an STM32L432 MCU as shown in Fig. 1.

However, because wireless communication involves long MCU idle

time, we will obtain the best energy performance for theAEM appli-

cation with a single MSP430FR5969 MCU because of its low power

consumption. The MSP430FR5969 MCU is not practical for applica-

tions including machine learning functionality, that is, PHM and

HAR, due to hardware limitations and the lack of toolchain support

for machine learning inference. In contrast, the MAX78000 MCU

achieves the best energy performance for machine learning infer-

ence compared to the STM32L432 MCU. Since both the MAX78000

MCU and STM32L432 MCU exhibit similar power consumption,

their energy consumption for wireless communication is also simi-

lar. As a result, the MAX78000 MCU is the best-performing single

MCU whenever machine learning inference is needed, that is, in

the PHR and HAR applications.

For communications, we explore both the use of BLE using the

nRF52840 transceiver and of backscatter communication at 10Kbps

or 1Kbps using an MSP430FR5969 MCU for encoding the baseband

signal, as discussed in Sec. 4.

Results. Fig. 6 shows the energy figures we obtain. The TaDA-

based implementations consistently outperform the corresponding

single-MCU configurations.

As shown in Fig. 6(b), we achieve the best performance improve-

ment when using TaDA for the HAR application with 1 Kbps

backscatter communication, yielding a 96.7% energy improvement

compared to the single MAX78000 MCU. The latter is the best-

performing single MCU for the specific workload and yet consumes

much energy when generating the baseband signal for backscatter

communication, because of long processing times and high power

consumption. Much of the gain here originates from the ability of

offloading signal generation onto an MSP430FR5969 MCU. Given

the processing times are fixed, this abates the corresponding energy

consumption due to lower power consumption.

The lowest, still significant energy gain is obtained with the PHM

application using BLE communication. Compared to the single

MAX78000 MCU, which is the best-performing single MCU for the

specific workload, the TaDA-based implementation cuts almost a

third of the energy consumption. In this case, the gain is due to

the ability of employing an MSP430FR5969 MCU to perform the

sensing task, especially including driving the embedded camera.

Fig. 6 also depicts the contribution of each MCU attached to the

TaDA interconnect for every configuration, along with the energy

consumption of the interconnect itself. Crucially, the interconnect’s

energy consumption is immaterial across all configurations we test,

to the point of being barely visible in the charts. The worst-case

energy consumption due to the interconnect is 2.6% of the total.

For the AEM application, shown in Fig. 6(a), the major contri-

bution to the total energy consumption are the STM32L432 MCU

handling floating-point calculations for signal processing and ei-

ther the MSP430FR5969 MCU or the nRF52840 transceiver handling

backscatter and BLE communications, respectively. In the HAR

application, shown in Fig. 6(b), the contribution to the total energy

consumption of the three MCUs we used is roughly even. The only

noticeable difference is the impact of the MSP430FR5969 MCU used

to drive backscatter communications, which consumes much more

in the 1 Kbps configuration because of longer packet transmis-

sion times, as expected. The sensing task using the MSP430FR5969

MCU vastly dominates energy consumption in the PHM application,

shown in Fig. 6(c), whereas the contribution of the MCU handling

communications is negligible.

Worth observing is also that each MCU attached to the intercon-

nect incurs an additional energy overhead in TaDA that would not

exist if the system ran in a single MCU configuration. This is the

energy cost for pushing (pulling) data to (from) the interconnect

through the SPI, that is, to use the API in List 1. For example, this

overhead using the MAX78000 MCU is 29% and 9.8% of the total
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Figure 6: Energy consumption of AEM, HAR, and PHM running on TaDA, compared with the best-performing single MCU,

using different communication technologies. A TaDA-based implementation saves up to 96.7% of the energy consumption compared to a

single MCU. The interconnect prototype bears a maximum 2.6% energy overhead.

energy consumption when running the PHM andHAR applications,

respectively. It is 10% of the total energy consumption using the

STM32L432 in theAEM application. Notwithstanding this overhead,

the TaDA configuration still consumes farless energy compared to

the best-performing single MCU.

5.2 Throughput

Given the same energy budget, understanding how the energy

gains due to TaDA allow systems to process more data requires

accounting for the environment dynamics.

Setup. We measure the number of completed application rounds as

a metric to evaluate system throughput over a fixed time period.

We count a completed application round when a data item fully

traverses the task pipeline, with each task being executed on the

respective MCU. As the power supply from the environment fluctu-

ates over time, the throughput reflects how efficiently TaDA utilizes

the incoming energy as it becomes available. The energy from the

environment in this amount of time is fixed and the same for both

TaDA-based implementations and single-MCU configurations, both

in absolute values and also over time.

We use 20 different real-world power traces [27]. These are col-

lected from five diverse scenarios, including an indoor office, out-

door stairs, a car moving, people jogging, and a washing machine

operating. Several solar panels are deployed in the indoor offices

and outdoor stairs. Several piezoelectric harvesters are deployed

on the car and on the washer machine. Multiple solar panels and

piezoelectric harvesters are deployed on two different people jog-

ging. The different features of the power traces we employ, also

discussed next, provide support to the generality of our results.

Using these power traces, we synthetically execute the three

applications in Sec. 4 using either the TaDA-based implementation

or a single MCU. We carefully model the capacitor charging process

and the execution of the application logic on the different MCUs

and the interconnect. We obtain the energy consumption profile

from the real hardware executions we discussed in Sec. 5.1, similar

to existing work in intermittent computing [9, 11, 41].

We determine the size of the capacitors for the TaDA-based

implementation as described in Sec. 3. The capacitor attached to

the single-MCU configuration suffices to complete a single appli-

cation round. We split energy from the power traces to charge the

capacitors proportionally to their size. Each platform is using the

Check-Only strategy to check the status of the interconnect as

described in Sec. 3.

Results. Fig. 7, Fig. 8, and Fig. 9 show the number of complete

application rounds for the TaDA-based implementation and the

single-MCU configuration, given the same energy budget.

We achieve the maximum improvement when running the HAR

application, shown in Fig. 8, with TaDA using 1 Kbps backscatter

communication. This is expected, in that it corresponds to the high-

est energy gain as per the discussion in Sec. 5.1. The TaDA-based

implementation can complete 68.7x more application rounds than

the MAX78000 MCU alone, which is again the best-performing one

among the possible single-MCU options. If the baseline were any

other single MCU, the improvement would be even higher. Even

with the minimum energy gain corresponding to the PHM applica-

tion using BLE communication, shown in Fig. 9, the TaDA-based

implementation doubles the number of application rounds com-

pleted with the same energy budget, compared to the MAX78000

MCU.

Note how the number of completed application rounds varies

across different scenarios, depending on the power trace. For in-

stance, node 1 in the jogging scenario exhibits the highest instant

and average input power. This yields the highest number of com-

pleted application rounds overall for both the TaDA-based im-

plementation and the single MCU configuration. When using the

piezoelectric harvester on the car, the input power is fairly low both

instantly and on average. The number of completed application

rounds is thus reduced for both the TaDA-based implementation

and the single-MCU configuration.

We investigate how input power impacts performance next, run-

ning micro-benchmarks that are instrumental to study the impact

of parameter settings and energy patterns.

5.3 Micro-benchmarks

The functioning of a TaDA-based implementation depends on a few

key system parameters and on external dynamics. We investigate

both here. The setup is the same as in Sec. 5.2.
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Figure 7: Completed application rounds for AEM application using TaDA, compared with the best-performing single MCU

configuration, using different communication technologies. Among all power traces, TaDA achieves better throughput improvement on

Jogging node 1, indicating that TaDA can effectively utilize energy when the input power is high.
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Figure 8: Completed application rounds for HAR application using TaDA, compared with the best-performing single MCU

configuration, using different communication technologies. In contrast to the AEM application, TaDA achieves the minimum throughput

improvement on Jogging node 1 because the interconnect saturates in this scenario. We discuss these dynamics in Sec. 5.3.

Pre-execution energy settings.We study how different energy

configurations to execute the pre-execution stage, described in

Sec. 3, may impact performance.

Fig. 10(a), Fig. 10(b), and Fig. 10(c) illustrate the number of com-

pleted application rounds across all power traces, using different

settings of the checking strategy. The plot provides evidence that,

in the applications we test and given the specific combination of

hardware and energy patterns, adopting a Check-Only strategy

achieves the best performance. This is especially visible when using

10 Kbps backscatter.

Inspection of the execution logs reveals that it happens very

rarely that an MCU first queries the interconnect without finding

data; then a subsequent check at a short time interval finds data

instead. This means that tuning the pre-execution state to invest a

variable percentage of energy for consecutive checks, while keeping

an MCU in sleep mode, is almost never efficient and represents a

waste of energy. Generally, however, the performance difference

between the different settings is less pronounced with a higher

number of completed application rounds, in that the relative impact

of the energy waste becomes marginal.

Charging strategy. Based on the same power traces as in Sec. 5.2,

we investigate how two of the possible charging strategies illus-

trated in Sec. 3 influence the performance. We disregard the config-

uration using multiple harvesters, in that this configuration would

increase the total energy budget available to the system. The results

would not, therefore, be comparable with other configurations.
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Figure 9: Completed application rounds for PHM application using TaDA, compared with the best-performing single MCU

configuration, using different communication technologies. Even with minimum energy gain in the case of BLE communication, TaDA

still doubles the number of completed application rounds compared to the MAX78000 MCU alone.
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Figure 10: Application rounds for TaDA-based implementations of AEM, HAR, and PHM with different energy configurations

for the pre-execution stage. Given the specific combination of hardware and energy patterns, the Check-Only strategy achieves the best

performance.

Fig. 11, Fig. 12, and Fig. 13 show the number of completed ap-

plication rounds for the TaDA-based implementation by charging

capacitors equally or proportionally to their size. The results indi-

cate that the latter yields the best overall performance. Using this

setting, it is rare to encounter situations where an MCU with the

capacitor fully charged waits before executing, unless the intercon-

nect is full or empty depending on whether it needs to pull or push.

Energy is more effectively used this way.

Differently, charging capacitors through a dedicated circuit that

equally distributes the incoming energy generates two undesired

effects. As the capacitor size is proportional to the energy required

to complete a workload, MCUs that require more energy are slowed

down, in that they need towait longer before reaching the activation

threshold. MCUs that require little energy, on the other hand, are

given more energy than what they really need. The interconnect

consequently does more work and the average sojourn time of data

at the interconnect increases, in that different MCUs are likely to

be active at very different times.

Limiting factors.As the interconnect mediates the data exchanges

across multiple MCUs in a TaDA-based implementation, it may

potentially represent a bottleneck. We investigate the environment

and system factors that may potentially limit the performance this

way. We find that these include short-term average input power and

fluctuations thereof, throughput of the communication technology

employed, and size of the message buffer in the interconnect.

Deployments of battery-less IoT systems span a variety of en-

ergy sources [16], which may strikingly differ in power dynamics.

Among the power traces we use, the most powerful one is the

trace in the jogging scenario, which features both highest instant

power (21 mW) and the highest average power (3.5 mW). The

weakest power trace is the one from the piezoelectric harvester

deployed on the washer machine, which shows both lowest instant

power (1.3 mW) and lowest average power (0.08 mW). We note

that the weaker is the power trace, the more the system throughput

is mainly determined by that and not by other factors, which we
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Figure 11: Application rounds for the TaDA-based AEM implementation, depending on charging strategies.When using BLE

communication technology, the two different charging strategies achieve similar throughput performance because the size of the two capacitors

used in the TaDA-based implementation happens to be similar.
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Figure 12: Application rounds for the TaDA-based HAR implementation with different charging strategies. Charging capacitors

proportionally to their size provides energy precisely where it is needed; in this case, to handle wireless communications

discuss next. In a sense, the energy content of the environment is

the first potential limiting factor.

Provided the ambient provides enough energy, the throughput

offered by the communication technology is likely to represent the

next limiting factor. The MCU in charge of driving transmissions is

usually the last in the applicationworkflow.When using backscatter

communications with low data rates, for example, the time it takes

for the communication technology to send data off might exceed

capacitor recharge times. If so, data generated by MCUs upstream

cannot be consumed in time and “piles up” at the interconnect.

We show evidence of this in Fig. 14, showing an excerpt of an

execution of the AEM application using the jogging power trace

with 1 Kbps backscatter communication. As the input power is

high, yet backscatter communication at 1 Kbps is slow, the number

of data items stored in the interconnect grows over time until

it eventually reaches the limit, which is a system parameter as

discussed in Sec. 3. In this situation, the execution stalls in that,

even if the MCUs upstream have sufficient energy to produce more

data, there is no space in the interconnect to store it. This situation

occurs because the last MCU in the application workflow is too slow

pulling data from the interconnect. When upstream platforms reach

the activation threshold, they find no space in the interconnect to

store more data and give up on executing.

Situations where the interconnect saturates may also happen

transiently; for example, because of a sudden but temporary burst

in input power. Independently of the communication technology,

the number of items the interconnect can accommodate may be-

come a limiting factor. For example, Fig. 15 shows a slice of the
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Figure 13: Application rounds for the TaDA-based PHM implementation with different charging strategies. Unlike Fig. 12, this

time charging capacitors proportionally favors controlling the camera.
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Figure 14: An excerpt of the jogging power trace, compared

with the number of items stored in the interconnect for the

TaDA-based implementation of AEM using 1 Kbps backscat-

ter communication. The execution stalls because even if MCUs

upstream have sufficient energy to produce more data, there is no

space in the interconnect. This happens because the last MCU in the

application workflow is too slow pulling data from the interconnect.

execution of the AEM application using the jogging power trace

and 10 Kbps backscatter communication. At time 2675 s, a sudden

increase in input power occurs. The MCUs upstream increase their

throughput and start pushing data to the interconnect faster than

the MCUs downstream can consume. The number of items stored

in the interconnect grows until it reaches the limit at time 2698 s.

As soon as the burst is over, however, data is progressively pulled

from the interconnect, which is eventually back in the same state

as before the burst. Note that this situation only happens when

TaDA is using the equal charging strategy, because it can provide

more energy to the smaller capacitors, decreasing their charging

time. Once the power burst is over, the MSP430FR5969 MCU used

to handle transmissions can progressively pull the data from the

interconnect until it is eventually empty again.
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Figure 15: An excerpt of the jogging power trace, compared

with the number of items stored in the interconnect for the

TaDA-based implementation of AEM using 10 Kbps backscat-

ter communication. Because of a sudden but transient surge in

input power, the number of items stored in the interconnect grows up

to the limit. The execution stalls until the power burst is over.

6 DISCUSSION

The results we gather in Sec. 5 are a function of two key aspects:

the selection of MCUs around the interconnect and the choice of

benchmark applications. We discuss how these aspects possibly

impact the conclusions we draw.

MCUs. The MCUs we use for the application and interconnect pro-

totypes are representative of the major classes of MCUs currently

on the market. The MSP430FR5969 MCU is a modern low-power 16-

bit MCU providing efficient I/O. The STM32L432 MCU represents

higher-power 32-bit MCUs with hardware FPU. The MAX78000

MCU provides hardware acceleration for specific workloads.

Many other MCUs are available that, however, arguably belong

to either of the three classes above. For example, other MSP430

MCUs as well as Cortex M0+ MCUs provide performance within

the same ballpark figures of the MSP430FR5969 MCU, and not any-

where close to any of the other two classes. Cortex M33 and M7

cores, with their hardware FPUs, belong together with STM32L432
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MCUs. Other hardware accelerators, such as the MAX78002 MCU,

offer performance way closer to the MAX78000 than to MCUs in

the other two classes. Based on this key observation, we maintain

that choosing a different combination of MCUs for the evaluation

is surely going to change the absolute numbers, yet the key conclu-

sions stay the same.

Benchmark applications. The processing stages of many IoT

applications are fundamentally similar [42], including sensing, com-

puting, and transmission. The primary difference is the size of sensed

data and processing complexity [42].

We argue that the three applications we prototype, described

in Sec. 4, meaningfully cover the application spectrum. Indeed, we

experiment with both large data sizes in PHM and small, yet higher

frequency data in HAR. We also consider regular signal processing

inAEM and embedded inference in PHM andHAR. The two options

for data transmission also allow us to study the effects of different

trade-offs between data rates and energy consumption.

Limitations. To run applications on TaDA, developers must split

possiblymonolithic implementations into transactional tasks, which

may impose a burden. This process is germane not only to TaDA but

also to any other task-based programming system [17, 36, 38, 52]. A

few tools exist to assist that help developers reduce this burden [18].

These tools can equally support TaDA developers.

It is finally worth noting that the TaDA is increasingly less ben-

eficial as the energy consumption of peripherals in the system out-

weighs that of the local processing on the MCUs. This is somehow

evident in the PHM application, where an energy-hungry camera

dominates the energy consumption. As shown in Fig. 6, TaDA does

not achieve significant energy savings for the PHM application

compared to the other two applications.

7 CONCLUSION

We presented TaDA, a system architecture designed to enable ef-

ficient execution of IoT applications powered by ambient energy

harvesting across heterogeneous MCUs. Programmers partition

the application logic by deploying different processing tasks to the

most energy-efficient MCU for the job. TaDA provides the efficient

run-time support enabling decoupled task executions in time and

space. We concretely achieve this through a special-purpose hard-

ware interconnect we design, which enables asynchronous message

passing across multiple MCUs with very limited energy overhead.

The interconnect also provides persistent storage to cross periods

of energy unavailability, offering intermittent computing support

to MCUs with no built-in NVM.

We use an MSP430FR5969 MCU to prototype the TaDA intercon-

nect and build three staple IoT applications we use as benchmarks.

When compared their energy and throughput performance with the

single most efficient MCU, our prototype achieves energy savings

of up to 96.7% per single execution. Given the same energy budget,

this yields a 68.7x throughput improvement.
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